
Funky Solver Modules

This is an exercise with funky solver modules (more commonly known as finite state machines - fsm). You
are given descriptions of fsm’s along with some input strings to feed into them. You then trace the route
followed through the fsm for each string. Submit your solution under the file name FunkySolverModule with
the appropriate language extension.

Input

There may be multiple fsm’s to construct and test. Each case consists of the description of an fsm followed
by input strings for testing. The last case is followed by a line containing 0 0 (two zeroes).

An fsm is described by a set of states and the transitions between the states. On the first line are two positive
integers indicating the number of transitions and the number of test strings respectively. The transitions are
described on the following lines, one per line, as the name of the first state, an input character, an output
string, and the name of the next state. These fields are delimited only by commas (any spaces are part of
the field).

State names are strings of up to 10 alphabetic characters and (embedded) spaces. Input characters can
be any printable ASCII character, including the space and comma. The starting state is named Start.
An accepting final state, if one exists, is named Accept which can be appended with an optional digit to
disambiguate multiple accepting states. Whether or not explicitely included, a Reject state is assumed to
exist and is the destination of any unspecified transition. An output string may be from 0 to 20 printable
characters, including the newline represented as \n. If the string contains a comma, the entire string should
be quoted with double quotes. Any double quotes or literal back slashes in the output string should be
doubled (with the first one serving as an escape to disambiguate the string).

Each of the test strings is then presented, one per line. Trailing blanks are possible if blanks are allowed
as input characters of the fsm. A test string will not be longer than 100 characters. Any invalid characters
should be ignored.

Output

For each new fsm, print its number formatted as shown in the example. For each input string, print its
number followed by the string, formatted as in the example. (Input string numbering restarts at 1 with a
new fsm.) On the next line print the resulting output string. This could continue onto additional lines if
newline characters are found in the output string. If an Accept state is defined, use a third line to indicate
if exectution ended at that state (Accept) or not (Fail).

Sample Input

7 3

Start,+,positive,Even

Start,-,negative,Even

Even,0,,Even

Even,1, flip,Odd

Odd,0,,Odd

Odd,1, flip,Even

Even,?," ""Good,\nat last!""",Final

+1010?

-000111?

+abce

0 0

Sample Output

fsm 1.

1. +1010?

positive flip flip "Good,

at last!"

Accept

2. -000111

negative flip flip flip

Fail

3. +abcd

positive

Fail


