## Diophantine Equation

The extended Euclid's algorithm determines not only the greatest common divisor $d$ of two positive integers $m$ and $n$ but also integers (not necessarily positive) $x$ and $y$, such that $m x+n y=d$. Modify the algorithm to find integer solutions to the Diophantine equation $a x+b y=c$ with any set of integer coefficients $a, b$, and $c$ (non-zero $a$ and $b$ ).

## Input

There may be multiple cases. Each case will be presented on a separate line with the three integer coefficients $a, b$, and $c$ separated by white space. The last case will be followed by a line containing a 0 (zero) for $a$ and/or $b$. All integers will fit within 32 bit signed notation.

## Output

For each case display the case number and the particular solution, if it exists, formatted as in the Sample Output. If either $x$ and/or $y$ is ambiguous, say so. If there is no solution, say so.

## Sample Input

| 2 | 5 |  |  |
| :---: | :---: | :---: | :---: |
| 20 |  |  |  |
| 1027 | 712 | 1 |  |
| 51 | 712 |  | 0 |
| -2 | 5 | 20 |  |
| 4 | 0 |  | 8 |

## Sample Output

Case 1: -40 20
Case 2: -165 238
Case 3: 00
Case 4: 14060

