CSCE 230 Computer Organization

Spring Semester – May 1, 2007
Final Exam:  Do 3 type X, 2 type Y, 1 type Z, and 4 type W exercises – 10 points each
Name ____________________________

1. (X) Demonstrate the idea of Booth’s Algorithm using the following unsigned decimal multiplication.  (Rewrite it in the spirit of Booth and actually do the multiply!  
                   215
* 29000599900
2. (X) Carry-Save units typically have inputs for 2n-1 addends.  Explain why this is true.  Design an optimal Carry-Save adder circuitry for 12 bit wide multiplication that uses 7- input carry-save units along with perhaps the usual 3-input units and, of course, the final stage being a regular 2-input adder.

3. (X) Perform the following operations, making certain that the result is properly rounded and normalized (just like the operands).   Assume unsigned binary notation for everything but the exponent part!
1.101011 * 22
  1.001101 * 28
   1.110000 * 2-3
   + 1.100101 * 21
- 1.011011 * 28
* 1.110000 * 23
4. (X) Complete the following table, showing the decimal values assuming the binary numbers are unsigned, 2’s comp, biased (also called excess), and  hexadecimal.  The bias should be 2n-1, where n is the number of digits in the binary string.  For example, the bias for 101010 would be 32.
Binary          Unsigned        2’s Comp.      Biased         Hex
0011
11101

100001
01101101
5. (X) Demonstrate non-restoring integer division by dividing 10101100 by 1000.  Assume both these values are positive.
6. (Y) Consider a processor with 1024 general purpose registers.  However, only a single 32 register block may be accessed at any given moment.  A special “register block pointer” register holds the address of the beginning of the 32 register block.  All instructions that access registers automatically use this special register.  The jal instruction automatically adds 16 to this register and a new rtl (return from link) subtracts 16.  An exception occurs if this register space memory is exceeded.  Design this register block and associated pointer register, exception line, and special 16 adder/subtracter.  Discuss how one might use this feature to make nested function calls.
7. (Y) Discuss the feasibility, usefulness, and practicality of making a) the program counter and b) the instruction register into a general purpose register.  In the case of  the program counter, write a short MIPS-like routine that demonstrates its use as a general purpose register in doing a C-style switch.
8. (Z) Consider a new kind of branch instruction that is still pc-relative, is unconditional (always branches), has two fields that refer to registers, and an.8-bit size field.  The first register contains a memory address which represents the beginning of a block of possible branch offsets.  The second register contains an index indicating which of the possible branch offsets to take.  Make any needed modifications in the data path and FSM to implement this new branch.  Write a short MIPS-like routine that demonstrates its use as a C-style switch.
9. (Z) Implement a new instruction that increments (by 1) a value in memory.  It behaves essentially like a lw followed by the increment followed by a sw, except that no general register is actually loaded/stored so that field can be ignored.

10. (W) What might be the steps to send a single character to the printer (a) using polling?  (b) Using interrupts?  Assume there is a memory mapped data register and a status register that indicates ready and interrupt enable.
11. (W) Compare/contrast data transfer on synchronous and asynchronous busses.

12. (W) Discuss the concept of handshaking.  What signals are needed?  How does the timing work?

13. (W) How might an I/O operation be initiated, performed, and ended using DMA (eg. In figure 10.17 and 18) for writing a block of memory of some given size from some given location to disk at some given track and sector?  Would the processor necessarily be blocked from accessing memory during the entire time of transfer?  Explain.
14. (W) In most processors, interrupts are automatically disabled at the time an interrupt occurs.  Why?  When would be an appropriate time to enable the interrupts again?

