CSCE 155N – MATLAB

Introduction to Computer Programming

Spring 2012

Instructor:

Dr. Charles Riedesel
riedesel@cse.unl.edu
259 Avery, 472-3486

 http://cse.unl.edu/~riedesel (follow link to appointments!)

Teaching Assistants:

SRC - Avery 13A

Michael Bimberg
 michaelbimberg@hotmail.com
W
1:30-2:30, R 2:00-3:00

Sandeep Kuttal (lab TA)
skuttal@cse.unl.edu
W
12:30-1:30

Ertong Zhang
ezhang@cse.unl.edu
T
3:00-4:00

Miles Wynn
mwynn@cse.unl.edu
M
9:00-11:00

Matthew Karges
mkarges@cse.unl.edu
F
1:00-2:00

Credit Hours:
3 (3 Lectures plus 1 Lab each week)

Prerequisites:
4 years high school mathematics

Text:
MATLAB: A Practical Introduction to Programming and Problem Solving, 2nd ed., Stormy Attaway, Elsevier 2011

Course Description:

Introduction to computers and problem-solving with computers for applications in the sciences and engineering. Problem analysis and specification, algorithms, programming in a high-level language, and data representation and processing.

Course Website:
Blackboard, and http://cse.unl.edu/~riedesel/pub/cse155N
Course Objectives:

1. Design and implement computer programs to solve small-scale scientific and engineering problems.

2. Use well-established programming practices such as modular decomposition, descriptive identifier naming, and appropriate commenting to create maintainable programs.

3. Test and debug programs effectively and efficiently.

4. Locate, understand, and use a wide range of pre-defined functions.

5. Select and use appropriate scalar and aggregate data types.

6. Select and use appropriate control structures.

7. Select and use appropriate input/output operations for terminal, file, graphical, and GUI-based input/output.

8. Understand basic numerical method techniques for solving non-linear equations.

9. Gain foundational knowledge of computer science: complexity, data representation, translation and compilation, recursion.

Course Topics:

1. Introduction to computers and programming

2. Introduction to MATLAB variables, expressions, matrices

3. Overview of MATLAB Programming and Plotting

4. Selection Statements

5. Looping

6. Programming with Functions

7. String Manipulation

8. Data Structures: Cell Arrays and Structs

9. Creating Graphical User Interfaces (GUIs)

10. Advanced File Input and Output

11. Advanced Functions, including Recursion

12. Cell Structures & Structure Arrays

13. Searching and Sorting

14. Numerical Techniques

Grading:

· Labs, Prerequisite Test & PAT
10%

· Attendance and Participation
5%

· Programming Projects
40%

· Test 1
10%

· Test 2
10%

· Final Exam
25%

Collaboration Policy:

Academic dishonesty of any kind will be dealt with in a manner consistent with the CS&E Department’s Policy on Academic Integrity. You are expected to know and abide by this policy. A principle concept underlying integrity is transparency. Proper practices of documentation for all borrowed and collaborated works will be provided and must be followed without exception.

A certain level of collaboration will be permitted on specified homework exercises. It is critical that all collaboration is carefully documented in order to avoid charges of academic dishonesty. If collaboration between two or three students is occasional and it is clear that all participants thoroughly understand the resulting work, full credit may be allowed. If it becomes excessive, there may be some loss of credit in order for grading to remain equitable. Participants may be questioned to determine the extent of their understanding and contribution.
http://cse.unl.edu/ugrad/academic_integrity.php
Labs & Prerequisite Test:

Each lab (the prerequisite test grade serves for the first lab) contributes equally to the final lab grade. The prerequisite test yields full credit if completed during the first week, with reduced credit for later submission. The placement test is located at http://cse.unl.edu/ugrad/placement_exam.shtml that should be taken in the first couple days. A lab grade is computed with 10% on the pretest, 80% on the worksheet, and 10% on the posttest (open to modification).

Attendance & Participation:

Attendance will be taken regularly. Absences can be excused for good cause. Participation is considered to be active involvement in class, in meeting with TAs and instructor, completing homework, etc.

Programming Projects:

There will be four projects that will generally involve developing programs, documenting them and preparing reports of the results. You are expected to write well-documented, modular code for these assignments. Details for completion and submission will be provided. Credit is evenly divided across each project. Programs do not earn full credit merely for running correctly. Credit is awarded for correctness, software design, formatting & style, and testing. Late and messy work in a large class such as this is costly for the graders. Thus credit will be reduced for excess time that the grader needs to find all the components of the work. Late work may receive partial credit, but only if it is submitted by the time the graders are ready to process it. Note that this time may be unknown and can vary! Revised: A total of 5 class days (not counting weekends) will be available through the semester for late submission without penalty.
Tests:

Collaboration is not permitted on tests. Half the grade weighting (5%) of each test will be shifted to a later test or the final exam if doing so improves the final grade. There may be follow-up drills that enable students to recover some points lost in the tests.

General:

To be successful in this class, you cannot fall behind. Each lecture and lab builds on prior material, and you will not understand and be able to apply it unless you attend the lectures, read and experiment with corresponding sections in the text, and complete the lab assignments and programs. The average student should expect to spend about 8-12 hours per week on this class (including time spent in lectures and lab).

MATLAB is a licensed product and the Computer Science Department has a limited number of these licenses for students in this class. Outside of your scheduled lab period, computers with MATLAB licenses are available in Avery Room 15. There is an upper class student (and usually some TAs) in the CSE Student Resource Center, Avery 13A.

	week of
	lectures
	text
	lab
	assignments

	1/9-13
	introduction, basics
	1
	accts, survey, test-drive IDE
	pre-test

	1/17-20
	computing, expressions, matrices
	1
	Vectors and Matrices
	

	1/23-27
	functions, simple input/output
	1, 2
	Functions, fprintf, input
	

	1/30-2/3
	plots, scripts
	2
	plots
	

	2/6-10
	relational expressions
	3
	Array Centric programming
	project 1 due

	2/13-17
	selection structures
	3, 4
	If-else
	

	2/20-24
	looping structures
	4, 5
	For, while loops
	

	2/27-3/2
	functions & program design
	6
	Advanced functions
	exam 1

	3/5-9
	strings
	7
	Strings
	

	3/12-16
	data structures, cell arrays & structs
	8
	Cell arrays and Structures
	Project 2 due

	3/26-30
	advanced file input/output
	9
	I/O related programs
	exam 2

	4/2-6
	advanced functions, recursion
	10
	Recursive functions
	

	4/9-13
	applications, numerical techniques
	11, 12
	GUI related programs
	project 3 due

	4/16-20
	graphical interface
	10, 13
	GUI related programs
	

	4/23-27
	graphical interface
	13
	PAT, survey
	project 4 due

	Finals
	
	
	
	final exam

ACE Learning Objective:
This course is approved for ACE Student Learning Objective 3, according to the following criteria:

SLO3: Use mathematical, computational, statistical, or formal reasoning (including reasoning based on principles of logic) to solve problems, draw inferences, and determine reasonableness.

1. Describe opportunities students should have to learn the outcome.
How is the learning objective embedded in the course?

The course presents many opportunities to learn computational and formal reasoning methodologies and skills to solve problems, draw inferences, and determine reasonableness. Specifically, the lectures, together with the programming assignments and the weekly laboratory sessions, teach students both algorithms and the implementation of those algorithms to solve problems. That is, the course not only teaches students about how to design algorithmic solutions to solve problems, but how to engineer designs into working programs. This engineering process involves significant debugging, testing, and refining code. These activities teach and reinforce inferencing: a student must draw inferences when diagnosing why a program crashes, does not compile, or generates incorrect output; after making fixes, a student must re-evaluate the design to see if the outcome meets expectations, and further draw inferences on how to proceed. Finally, an algorithm is fundamentally a logical sequence of steps that, given a set of input, generates output. Specifications for the output determine reasonableness. Through algorithmic development, with top-down design, problem analysis and specification, step-wise refinement, and modularization, the students, when programming, are trained to determine the reasonableness of their solution. For example, students are trained to examine how their algorithms handle exceptions (which could terminate an algorithm prematurely if handled incorrectly), deal with boundary conditions (to prevent their programs from crashing), and prevent infinite loops (which could prevent reaching an outcome). The course has approximately 45 hours of lectures each designed to explore concepts and paradigms that are central to the field of computer science. Students will master control flow, repetition, selection, input and output processes, and procedure and function design and invocation. Students will learn fundamental problem solving paradigms, including abstraction, encapsulation, exception handling, and event-driven programming. Through lectures, laboratory sessions, and programming assignments, students learn about problem analysis and specification, top-down design, algorithm development (including recursion), step-wise refinement, and modularization. Students will also be exposed to various algorithms, such as for searching and sorting. The course has approximately 14 hours of laboratory sessions, each designed to train students to apply what they learn in the lectures to actual implementation and analysis of algorithms and software programs. Laboratory sessions require students to solve problems, to debug or revise programs, to analyze programs. These activities reinforce the students on problem solving, drawing inferences from their design and implementation, and determining reasonableness of a solution. The course includes several programming assignments designed to help students learn about designing algorithmic solutions and the practice of implementing solutions as correct software programs, involving key steps such as program analysis, solution identification and evaluation, solution-to-algorithm mapping, initial feasibility analysis, coding, debugging, testing, and refinement. These steps provide ample opportunities for students to apply their computational and formal reasoning skills to solve problems, draw inferences, and determine reasonableness.

2. Describe student work that will be used to assess student achievement of the outcome and explain how the students demonstrate the knowledge and skills specified by the outcome.

The assessment of achievement of the outcome consists of three primary tools: exams, programming assignments, and laboratory assignments. The programming assignments inherently embed the results of problem solving, inferencing, and reasonableness reasoning, because in order to produce a working program that compiles, runs, and computes the correct output, a student must devise and implement an algorithmic solution. For the laboratory assignments, worksheets—where students submit their findings from solving the problems given—are graded, and pre- and post-tests are given to students to test how they have learned. There are 2–3 midterm exams and a comprehensive final exam. Most of the questions are designed to measure comprehension, application, and analysis (according to Bloom’s level), and a few will be on evaluation and synthesis. These will assess student understanding of the fundamental CS concepts and paradigms covered in the course. Students will be asked to design algorithms to solve problems, to analyze algorithms to infer what they might or might not do, to evaluate algorithms to determine how well they meet their design goals. These questions allow us to assess the students’ ability to solve problems, draw inferences, and determine reasonableness. There are 4–6 programming assignments. These will assess student’s ability to apply CS concepts and paradigms to hands-on problem solving and actual software implementation. There are 13–15 structured laboratory assignments. These will assess students’ knowledge on programming, a specific programming language (syntax), debugging, and algorithm development.

3. As part of the ACE certification process, the department/unit agrees to collect and assess a reasonable sample of students' work and provide reflections on students' achievement of the Learning Outcomes for its respective ACE-certified courses.
Please comment on your plans to develop a process to collect and evaluate student work over time for the purpose of assessing student success for this ACE outcome.

In accordance with the ABET accreditation process, the CSE Department systematically collects A, B, and C samples of every assignment (exam, laboratory, homework, quizzes, etc.). Reviews of these student work samples are made by the CSE Department’s Assessment Committee when the CSE Department reports to the ABET accreditation board. A standardized online post-test is required for every student in CSCE155. Results downloaded, archived to a database, analyzed by the Assessment Committee, and reported to the CSE Department Chairperson and Curriculum Committee. Assessment reports are considered by the CSE Department Chairperson and Curriculum Committee in developing instructional and curricular strategies and implementation and in the ABET Accreditation Self-Study.

Reinforcements

According to the ACE document approved by faculty (Structural Criteria, item 9), "Every ACE course will reinforce at least one of the following skills listed below as appropriate for the discipline and as identified by the department offering the course..." Indicate skills that will be reinforced by the course by clicking on as many as apply and describe briefly how those skills will be reinforced.

These areas are those OTHER THAN the one or two outcomes for which you seek ACE certification. Students will not receive ACE credit for the reinforced skills, and the reinforced skills do not need to be assessed for ACE purposes.

What Outcome(s) or skill(s) will be reinforced in this course?

Critical Thinking

Critical thinking is key in the development of algorithms and during the debugging process of implementing a program. The course provides numerous opportunities for critical thinking in lectures, programming assignments, and laboratories. The laboratories and assignments are problem-based and students are tasked to apply critical thinking to solve problems.

Problem Solving

The development of algorithms and the implementation of programs are inherently problem solving. The course provides numerous opportunities for problem solving in programming assignment and laboratories. The laboratories and assignments are problem-based and students are tasked to solve problems.

