
Program Documentation and Style Guidelines

by Dr. Usha Chandra

What are programming guidelines?
The purpose of these programming guidelines is to promote the use of good programming style and documentation.

Useful programs have much longer lifetimes than the classroom programming assignments. Real life programs have

to be modified and updated quite often during their lifetime unlike the programs that you would be developing. It is

very likely that the analyst who maintains these programs may not be the one who developed them and hence good

style and documentation are very essential for another programmer to understand and work with your programs.

The following programming guidelines were created to make your programs simple, consistent and easy to read and

deal primarily with the coding phase of the software life cycle. However, coding is the easiest and least time

consuming phase of the software life cycle of real world problems. A thorough problem analysis and design should

precede coding/implementation phase. Simply stated, the more time you spend on the problem analysis and design

phase the less frustrated you will be during implementation and testing phase.

Program Header: Every program that you submit in the lab or in the lecture as programming exercise should have a

program header as given below:

% Script file: geometry
% Purpose:
% To calculate area and perimeter of simple shapes.
%
% Record of revisions:
% Programmer : John Tooker
% Date Due : 9/8/09
% Date submitted:
% References : www.mathworks.org
% Help Received : Identify all help received and from whom and what

% help.
% If no help was received, then note that here
% Variables Used/data dictionary:
% width - scalar, The width of the rectangle in inches
% length - scalar, The length of the rectangle in inches
% area - scalar, The area of the rectangle in square inches
% perimeter - scalar, The perimeter of the rectangle in inches

%

% Assumptions:

% For example,

% For this program to generate correct results, the vectors A, B and C,

% should be of the same size.

What are the program documentation guidelines?

1. All functions should begin with a preface of comments as given below: The writing of these expressions

should be clear and concise. The goal is to communicate to another programmer two things:

 What must be true in order for that programmer to use the function; and

 What work the function will accomplish.

 2

Not such a good design:
function [diameter] = find_diameter(radius)

% Purpose: computes the diameter of a circle given the radius

% precondition: radius >= 0

% postcondition: returns diameter, if radius > 0

 Diameter = 2 * radius;

end

The programmer who calls a function is responsible for ensuring that the precondition is valid. But if you

do not specify a precondition, all bets are off and you are responsible. When you write a function, you

should make every effort to detect when a precondition has been violated. If you detect that a precondition

has been violated, then print an error message and halt the program.

a good design:

% Purpose: computes the diameter of a circle given the radius

% precondition: radius >= 0

% postcondition: returns diameter, if radius > 0, otherwise prints an error message

When you write a function, you should make every effort to detect when a precondition has been

violated. If you detect that a precondition has been violated, then print an error message and halt the

program rather than causing a disaster as a system or program crash.

2. Logical sections of the code should be commented. Such functional comments should be easily

distinguishable from the rest of the code. Please do not comment each and every MATLAB statement in

your program. Major loops and selection statements should be commented. Comments before the code

should be indented at the same level. Comments within selection/loop statements should be indented

consistently using a tab or 3 spcaes or whatever you are comfortable with. For example,

%make sure the radius of a circle is positive

if (radiusCircle> 0)
 diameterCircle = 2.0 *radiusCircle;

 areaCircle = pi * radiusCircle * radiusCircle;

 circumferenceCircle = 2 * pi * radiusCircle;

3. Create a data dictionary/variables used for each program to make program maintenance easier.

What are the Style Guidelines?

Variable Names:

1. Descriptive and meaningful identifier names should be used. radius, diameter, and circumference

are more descriptive than r, d, and c.

2. Declare global variables in all capital letters to make them easy to distinguish from local variables.

3. MATLAB is case sensitive. We recommend that variable names and function names begin with a capital

letter. In MATLAB, you cannot get into trouble if you use this convention since so many common variable

names are predefined constants or functions in Matlab, e.g., min, max, pi, etc. Also, mixing up cases results in

different occurrences of variables.

 radius = 2.4; % radius of what - a ball, a globe, earth, moon

 circleRadius = 2.4; % much better puts it in context

4. Variables should be initialized at the appropriate place.

 3

Code Segments:

5. Use a semicolon at the end of all MATLAB assignment statements to suppress echoing of assigned values in the

command window. If you need to examine the results of a statement during program debugging, you may

remove the semicolon and replace them before submitting your program for grading.

6. Use parenthesis as necessary to make your equations clear and easy to understand.

7. Use blank lines between logical sections of the code to enhance program readability.

8. Consistent indentation conventions (like 3 spaces or a tab) are to be used for nested statements in a block.

9. Leave blank lines between functions.

10. Align and indent the body of the function.

11. Do not write functions that are more than 25 lines.

12.The indentation in your program should reflect the organization of your code.

if (x < 0)

 y = abs(x);

else

 y = -x;

end

13.Always indent code blocks in while and for constructs to make them more readable.

Files and Input/Output:

14. Save ASCII data files with a “dat” file extension to distinguish them from the M-files that have a file extension

of .m

15. The diagnostic and prompting messages should be self-explanatory.

Not such a good prompt:
Enter an integer

a good prompt:
Enter the radius of a circle in inches:

16. Format all the output statements so that they can be easily understood.

17. Always include the appropriate units with any values that you read or write in your program.

