
CSCE155N Lab 02

1. Lab Objectives
a. Introduce arrays and array operators.
b. Differentiate array operators and matrix operators.
c. Create, access, modify, and resize arrays.
d. Use arrays and logical arrays as indices into another array.
e. Solve computational problems that involve array manipulation.
f. Formalize science/engineering problems as matrix or array computations.
g. Practice formatting output.
h. Introduce vectorized code.

2. Prior to Lab
a. Read the laboratory handout, and verify the examples in the practice section.
b. Read chapters 1, 2, 4, and 5.

3. Practice
a. Array Creation: Type each of the following Commands into the Command Window and

observe the output.
array = [1 2 3 4]

a = [0 1 + 7]

b = a(2)

a(2) = 12; disp(a);

b = [a(2) 7 a]

x = [1 : 2 : 10]

y = 1 : 2 : 10

ylen = length(y); disp(ylen);

g = 1 : 4; k = g; disp(k);

b. Matrix Creation: Type each of the following Commands into the Command Window and
observe the output.
x = [1 2 3; 4 5 6]

y = [1 2 3; 4 5]

x(2)

x(2 , 1)

x(2 , 3) = 20;

a = 2 + x

a = 2 - x

a = 2 * x

a = x / 2

b = zeros(2)

c = size(b)

d = zeros(1 , 2)

e = ones(3)

f = eye(4)

c. fprintf() and sprint(): Type each of the following Commands into the Command
Window and observe the output.
printf('%f\r\n' , pi);
fprintf('%.2f\r\n' , pi);
fprintf('%05.2f\r\n' , pi);
fprintf('% 5.2f\r\n' , pi);
fprintf('% 5d' , 10);
out = sprintf('%f' , pi); disp(out);
out = sprintf('%.2' , pi); disp(out);
out = sprintf('%05.2f' , pi); disp(out);
out = sprintf('% 5.2f' , pi); disp(out);
out = sprintf('% 5d' , 10); disp(out);

4. Activities
a. Download all files from URL NEEDED to your Z:csce155n\lab02 or equivalent directory.
b. Array Operations

i. Modify AtimesB.m so that the results of A x B is correctly computed and
displayed

ii. Modify CtimesD.m so that the result of C x D is correctly computed and
displayed

iii. Modify CplusD.m so that the result of C + D is correctly computed and displayed.
Note that not all of these operations are straight forward. Leave comments
explaining what steps you used to accomplish the required task and why.
Example values for A, B, C, and D are provided below, and should be used for
testing purposes

ܣ = ൥
10 2 4
5 6 2
3 −3 1

൩ ܤ = ሾ5 9 −12ሿ ܥ = ቂ 5 10 4
−3 5 −3

ቃ ܦ = ൥
1 2
5 10
8 6

൩

c. 3D Matrices
i. Modify makeMatrix.m so that the function creates and displays a matrix of your

choice with three dimensions. There are several ways to accomplish this, but
the zeros() or ones() Commands may be helpful

d. Vector Manipulation
i. Input the Command time = clock into the Command Window, and observe

the result in your workspace. Note that the hours, minutes, and seconds are
displayed in the fourth, fifth, and six indices of the array

ii. Modify timeToClock.m so that the function displays only the correct whole
number of hours, minutes, and seconds. The built in function fix() can be
used to get the integer part of a fractional number

e. Mathematical Operations over Vectors and Basic Plotting

i. Modify plotCosine.m to create a vector of 50 evenly spaced points between – ߨ
and ߨ, calculate the cosine of those points, then plot those points versus their
cosine

ii. Label the plot’s x and y axes
iii. Include a legend for the curve
iv. Save your plot as an EPS file, with the filename plotCosine.eps

Hint: MATLAB has the built-in functions linspace(), cos(), plot(), xlabel(),
ylabel(), and legend()

f. Plotting Several Curves
i. The sales (in billions of dollars) for two separate divisions of XYZ Corporation for

each of the four quarters of 2016 are stored in a file called salesFigures.mat
ii. Modify plotSales.m, to load the file salesFigures.mat

iii. Separate this 2 x 4 matrix into vectors for the two divisions
iv. Create a single plot that contains two curves (one for each division)
v. Each division's curve should be a different color

vi. Label the plot's x axis and y axis
vii. Include a legend for the curve

viii. Save your plot, as an EPS file, with the filename plotSales.eps
ix. Hint: MATLAB has built-in functions load() and hold()

g. Smallest
i. Modify smallest.m such that it displays the smallest of three input variables

using if, elseif, else, and end statements. Be aware of the use of >, <, >=, <=,
==, &&, and || operators. Note that although min() and max() functions are
built-in to MATLAB, you may not use them in this exercise.

h. Hamming Distance: Hamming distance is the distance between two strings of equal
length, measured by the number of letters in the string that are not identical.

i. Modify hammingDistance.m such that it correctly calculates the hamming
distance of any two strings of equal length. The sum() Command and ==
operator will likely be useful. Note that a single equals sign is used to set one
variable equal to another, while two are used to check for equality, and create a
logical array.

i. Making Change
i. Modify makingChange.m to convert the cents given as input into the minimum

number of American coins needed to make change for that amount. The fix()
or floor() Commands may be helpful.

j. Leap Year (Extra Credit)
i. A given year is normally a leap year if it is a multiple of four. However, on years

divisible by one hundred, this rule is ignored, except in years also divisible by
four hundred. For example, 2020 will be a leap year, but 2100 will not be, but
the year 2000 was.

ii. Modify leapYear.m such that it correctly calculates whether or not any given
year will be a leap year.

iii. If statements and the mod() Command, which returns the remainder after
division of two numbers will be helpful.

