Midterm Exam

Name :
Course No : CSCE155M

Instructions:

1. This is open book, open note, but not open neighbor.
2. If you have a question about the meaning of an exercise, ask! Getting things wrong because of misunderstandings can be aggravating for me as well as you.
3. If answers do not fit in the space provided, use the back of a sheet and very carefully indicate and label this so I don't miss it in grading.
4. You may take the entire period.
5. (10 points) Keeping in mind that a logical array is utilized quite differently from a numeric array, consider the follow interaction:
```
>> x = [lllllllll
x =
    2 
>> y = x > 3
y =
        0
>> z = [2 1 1 7 4 3 5 6]
z =
\begin{tabular}{lllllll}
2 & 1 & 7 & 4 & 3 & 5 & 6
\end{tabular}
```

(a) What is the result of entering the following three expressions?

```
>> x(y)
>> x(z)
>> x(x)
```

2. (10 points) Consider the following code:
```
function f = fibo(n)
        if n <= 2
            f = 1;
        else
            f = fibo(n-2) + fibo(n-1);
        end
end
```

(a) If this function is called with n being 6 , how many times is fibo(3) called (recursively)?
(b) What is the resulting value when n is 6 ?
(c) Does the computer remember previous values for n that are restored as recursion is exited, or is there more than one variable named n that happens to have different values? Explain.
3. (10 points) Consider the following code.

```
function list = insert(e, list)
    small = list < e;
    big = list > e;
    list = [list(small), e, list(big)];
end
```

(a) What happens with $l=\operatorname{insert}\left(6\right.$, [2 $\left.\begin{array}{llll}2 & 5 & 8 & 9\end{array}\right]$) (sorted array)?
(b) What happens with $l=\operatorname{insert}\left(6,\left[\begin{array}{llllll}1 & 5 & 6 & 6 & 6 & 8 \\ 11\end{array}\right]\right)$ (element already there)?
(c) What happens with $l=\operatorname{insert}(6,[8274913])$ (unsorted)?
4. (10 points) Consider the following code.

```
count = 0;
for a = 1:n
    for b = 1:n
        count = count + 1;
    end
    for b = 1:n^2
        count = count + 1;
    end
    for c = 1:n
        for d = 1:n
                for e = 1:log2(n)
                count = count+1;
            end
                for f = 1:n
                    count = count+1;
                end
        end
    end
end
```

(a) Give a formula for the final value to show how it can be calculated.
(b) What is the big O complexity?
5. (10 points) Consider the following logic expressions.
(a) Check the expressions in which short circuiting is enabled.
(b) Circle the expressions in which short circuiting actually occurs.
(c) Evaluate each expression.
(d) Where does a side effect of a function take place, and what happens?

Here are the expressions:
(a) $25>357 \|$ false
(b) $-5==8 \| 21>9$
(c) $45<24 \mid$ fprintf $\left({ }^{\prime} h o w d y^{\prime}\right)$
(d) $45<245 \&$ fprint $\left.f^{\prime} h o w d y^{\prime}\right)$)
(e) $45<245 \& \& f p r i n t f$ ($\left.^{\prime} h o w d y^{\prime}\right)$
(f) true $|\mid 2<71$
(g) $2-16<6 \& 5>2$
6. (10 points) Write a piece of code that determines if weather is warm and wet, cool and dry, hot and dry, cold and wet, etc. assuming logical variable precip and numeric variable degrees with hot being over 90 , warm over 80 , mild over 70 , and cold 60 or under, and prints out an appropriate message for each. Do this in each of the following ways. Time is of the essence, so if you can express an answer without being comprehensive, go ahead.
(a) Separate if statements with no compound tests
(b) One nested if statement (no elseif's are allowed)
(c) An if with elseif's and no compound tests
(d) A switch statement (tricky! Create a new integer variable.)
7. (10 points) Consider the following code. The variable deck is a vector of numbers from 1 to 52 represents playing cards. The number and order do not matter.

```
1 function [card deck] = draw(deck, n)
2 if nargin == 1
n n = randi([1 length(deck)], 1);
4 end
5 pick = deck(n);
6 suits = {'Clubs','Spades','Diamonds','Hearts'}
7 card.value = mod(pick, 13) + 1;
8 card.suit = suits{ceiling(pick/13)};
9 if nargout == 2
10 deck = deck(deck ~}= pick)
1 1 ~ e n d
12 end
```

(a) What happens if the user does not indicate a particular card?
(b) Is the card determined by the position in the deck or the value at a given position? How can you tell?
(c) Why is 1 added to the expression in line 7 ?
(d) Why is suits a cell array instead of a regular array?
(e) What is happening in line 10 ?
(f) Why are lines 9 and 11 included?
8. (10 points)

Consider the following function. $c F u n$ is intended to be the handle of a function which compares two elements in some desired way and returns true if the elements are NOT in the desired order.

```
function s = flexSort(a, cFun)
...
    if cFun(a(ii), a(jj))
        t = a(ii);
        a(ii) = a(jj);
        a(jj) = t;
    end
end
```

(a) What happens in flexSort if the pair of elements being tested are NOT in the desired order? (Why is t needed?)
(b) Write a function compCards that compares two cards as defined by the previous exercise and returns true if the first suit precedes the second suit or (if the suits are the same) the first card value is smaller than the second.
(c) Rewrite your function as an anonomous function. Hint: Avoid using if statements. Instead use ONLY the test itself, which may be compound.
9. (10 points) A figure created by $h=p l o t(x, y)$ continues to exist until it is explicitely deleted. While it exists, it can be modified, either directly with commands setting labels etc. or by the set function which, paired with get, can modify any of a number of properties of the figure.
(a) h is the name of a handle in the above command. What does the value of h represent?
(b) Using get, how would you get the complete listing of properties of the figure and their values?
(c) Using set, show how you could triple the thickness of the plot line. (The property you need is LineWidth.)

Question	Points	Score
name	10	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Total:	100	

