
Computer Programming for Engineering and Science

(CSCE 155N, Summer 2014)

Final Exam

Held on 14th of August, 2014

Name :

Save : YES NO

Course No : CSCE155N Matlab

Instructions:

1. This is open book, open note, but not open computer or open neighbor. Please do not
use email, texting, Morse code, sign language, spy cameras, etc. during the exam.

2. If you have a question about the meaning of an exercise, ask! Getting things wrong
because of misunderstandings can be aggravating for me as well as you.

3. If you wish to have the exam saved so that you can retrieve it later, please indicate this.
Exams so marked will be saved until at least the second week of classes in the fall.



2 Final Exam

1. (10 points) Consider the following snippet of code. What do each of the last four lines
do and print? Explain. Think carefully, and even though you may not have tried this
before, there is a good chance you will get it right!

a = ’b’;

b = ’c’;

c = 14;

eval(a) % What happens?

[eval(a), ’ = 3 * 7’] % What happens?

eval([eval(a) ’= 3 * 7’]) % What happens?

c % What happens?

2. (10 points) Consider the following functions. What would be the response to the com-
mand line x = nifty(2+3,3) * 4? Be careful! While this may appear to be the same as
an example last summer, there are subtle changes. The concepts, however, still apply.

function a = nifty(b,c)

t = c + neato(bummer(c), bummer(b));

a = t - bummer(neato(t,c))

end

function x = neato(y,z)

x = y + z;

end

function x = bummer(y)

x = y * 2;

end



Held: August 14, 2014 3

3. (10 points) The recursive function for calculating a Fibonacci number as shown in class
was horribly inefficient because of repeated calls for the same value. Take a look at the
following. What does it display if n is 6? Does it solve the inefficiency problem of the
earlier version? Explain.

function f = fibonacci(n)

saveF = zeros(1,n);

f = fibo(n)

function f = fibo(n) % Note: Nested function so saveF is seen everywhere

if n < 3

f = 1 % Might display here

elseif saveF(n) > 0

f = saveF(n) % Might display here

else

f = fibo(n-1) + fibo(n-2) % Might display here

saveF(n) = f;

end

end

end

Here is the original inefficient version:

function x = fibo(n)

if n <= 2

x = 1;

else

x = fibo(n-2) + fibo(n-1);

end



4 Final Exam

4. (10 points) Consider the following function.

(a) What would be the response to the call fun with no arguments?

(b) Rewrite it (the function and default x) so that it evaluates infix notation expressions
that are formed as nested cell arrays.

function t = fun(x)

if nargin == 0

x = {’+’, {’+’, 6, {’*’, 2, 3}}, {’*’, {’+’, 5, 1}, 7}};

end

if iscell(x)

switch x{1}

case ’+’

t = fun(x{2}) + fun(x{3});

case ’*’

t = fun(x{2}) * fun(x{3});

end

else

t = x;

end



Held: August 14, 2014 5

5. (10 points) Consider the following code that checks to see if an array is sorted. Create
an anonymous function for each of the following cases that responds with true if the
first argument is bigger than the second. Finally show how to invoke isSorted to an-
swer the requests that follow:

(a) The elements are playing cards as defined in the next exercise. (The numbering of
the cards 1 - 52 indicates size.)

(b) The elements are struct triangles with base and height fields. Size is determined
by the areas.

(c) The elements are struct student with fields age, name, and GPA. Size is deter-
mined by GPA.

function s = isSorted(a, cFun)

s = true;

for ii = 2:length(a)

if ~cFun(a(ii-1), a(ii))

s = false;

end

end



6 Final Exam

6. (10 points) Consider the following code segment. Fill in the bottom for loop so that
shuffled cards (actually the index of each card) are dealt (in normal rotation sequence)
to the four players (represented initially as four empty vectors in cell array p).

p = {[], [], [], []};

s = {’Clubs’,’Diamonds’,’Hearts’,’Spades’};

for c = 1:52

card(c).suit = s{ceil(c/13)};

card(c).val = mod(c,13)+1;

end

x = 1:52;

for ii = 1:100

c1 = randi([1, 52]);

c2 = randi([1, 52]);

t = x(c1);

x(c1) = x(c2);

x(c2) = t;

end

for c = 1:52

% What goes in here????

end



Held: August 14, 2014 7

7. (10 points) Consider the following code. Trace through how it works. Effectively, what
is its practical purpose?

x = [3 4 0 8 9 9 9];

m = length(x);

ii = m;

while ii > 0 && x(ii) == 9

x(ii) = 0;

ii = ii - 1;

end

if ii > 0

x(ii) = x(ii) + 1;

end

8. (10 points) Consider the following code. What do the functions push and pop really
do? What is the result of the code that follows the function definitions?

function s = push(v, s)

s = [v s];

end

function [v s] = pop(s)

v = s(1);

s = s(2:end);

end

x = ’3 4 * 2 5 * +’;

stack = ’’;

for ii = 1:length(x)

if x(ii) >= ’0’ && x(ii) <= ’9’

stack = push(x(ii), stack)

elseif ismember(x(ii), ’+*-/’

[a stack] = pop(stack);

[b stack] = pop(stack);

c = eval([a x(ii) b]);

stack = push(c, stack);

end

end

[v stack] = pop(stack);

v



8 Final Exam

9. (10 points) Indicate the time complexities of the following examples. They may be
O(log n), O(n), O(n log n), or O(n2). Hint: Be especially careful with the last two,
because what the claim to be doing might not be what they are actually doing. Do not
simply count the number of steps!

function b = sort(a) % What is complexity, including call to small?

for ii = 1:length(a)

s = small(a(ii:end)) + ii-1;

t = a(s);

a(s) = a(ii);

a(ii) = t;

end

b = a;

function s = small(a) % What is complexity of just this function?

s = 1;

for ii = 2:length(a)

if a(ii) < a(s)

s = ii;

end

end

function exercising(n) % What is complexity, including call to helfStep?

% My exercise regimen of n steps for each of n days.

for ii = 1:n

halfSteps(n)

end

function halfSteps(n) % What is complexity of just this function?

if n > 1

fprintf(’I have %d steps to go. Half way is %d steps.\n’, n, n/2)

halfSteps(n/2)

else

fprintf(’Just one more step!\n’)

end



Held: August 14, 2014 9

10. (10 points) Beginning with the following assignment to a, what will each of the expres-
sions yield? (First, what is the value of a? Hint: reshape takes the elements in the
order they are stored - column by column - and rebuilds it column by column. We tend
to prefer seeing things row by row; that is the reason for the transpose operator (’).)

a = reshape(1:16, [4, 4])’

a([1,end],[1,end])

a([end,1],[end,1])

a(1:2:3, 1:2:3)

reshape(a(1:5:16), [2,2])’



10 Final Exam

Question Points Score

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

Total: 100


