ACM Local Programming Contest 2007

Department of Computer Science and Engineering

University of Nebraska, Lincoln, NE

September 30, 2007

Problem A: Is it a Tree? (1997-1998 NC)
A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties.

1. There is exactly one node, called the root, to which no directed edges point.

2. Every node except the root has exactly one edge pointing to it.

3. There is a unique sequence of directed edges from the root to each node.

For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.

	[image: image1.png]

	
	[image: image2.png]@me \.@
OO0
O~

	
	[image: image3.png]

In this problem you will be given several descriptions of collections of nodes and directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case begins on a new line. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes. Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero and not more than 20. Connections will not be listed twice.

Output

For each test case display the line "Case k is a tree." or the line "Case k is not a tree.", where k corresponds to the test case number (sequentially number them starting with 1).

Sample Input

6 8 5 3 5 2 6 4 5 6 0 0

8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0

3 8 6 8 6 4 5 3 5 6 5 2 0 0

-1 -1

Sample Output

Case 1 is a tree.

Case 2 is a tree.

Case 3 is not a tree.

Problem B: Transferable Voting (1996 NC)
The Transferable Vote system for determining the winner of an election requires that a successful candidate obtain an absolute majority of the votes cast, even when there are more than two candidates. To achieve this goal, each voter completes his or her ballot by listing all the candidates in order of preference. Thus if there are five candidates for a single position, each voter's ballot must contain five choices, from first choice to fifth choice.

In this problem you are to determine the winner, if any, of elections using the Transferable Vote system. If there are c candidates for the single position, then each voter's ballot will include c distinct choices, corresponding to identifying the voter's first place, second place, ..., and cth place selections. Invalid ballots will be discarded, but their presence will be noted. A ballot is invalid if a voter's choices are not distinct (choosing the same candidate as first and second choice isn't permitted) or if any of the choices are not legal (i.e., a choice is illegal when it is outside the range from 1 to c).

For each election candidates will be assigned sequential numbers starting with 1. The maximum number of voters in this problem will be 100, and the maximum number of candidates will be 5.

 Table A Table B
----------------------------- -------

Voter First Second Third

 Choice Choice Choice

 1 1 2 4

 2 1 3 2 1 3 2

 3 3 2 1 3 2 1

 4 3 2 1 3 2 1

 5 1 2 3 1 2 3

 6 2 3 1 3 1

 7 3 2 1 3 2 1

 8 3 1 1

 9 3 2 1 3 2 1

 10 1 2 3 1 2 3

 11 1 3 2 1 3 2

 12 2 3 1 3 1

Consider a very small election. In Table A are the votes from the 12 voters for the three candidates. Voters 1 and 8 cast invalid ballots; they will not be counted. This leaves 10 valid ballots, so a winning candidate will require at least 6 votes (the least integer value greater than half the number of valid ballots) to win. Candidates 1 and 3 each have 4 first choice votes, and candidate 2 has two. There is no majority, so the candidate with the fewest first choice votes, candidate 2, is eliminated. If there had been several candidates with the fewest first choice votes, any of them, selected at random, could be selected for elimination. The test cases will not allow this decision to change the final result.
With candidate 2 eliminated, we advance the second and third choice candidates from those voters who voted for candidate 2 as their first choice. The result of this action is shown in Table B. Now candidate 3 has picked up 2 additional votes, giving a total of 6. This is sufficient for election. Note that if voter 12 had cast the ballot "2 1 3" then there would have been a tie between candidates 1 and 3.

Input

There will be one or more elections to consider. Each will begin with a line containing the number of candidates and the number of voters, c and n. Data for the last election will be followed by a line containing two zeroes.

Following the first line for each election will be n additional lines each containing the choices from a single ballot. Each line will contain only c non-negative integers separated by whitespace.

Output

For each election, print a line identifying the election number (they are numbered sequentially starting with 1). If there were any invalid ballots, print an additional line specifying the number of such. Finally, print a line indicating the winner of the election, if any, or indication of a tie; be certain to identify the candidates who are tied.

Sample Input

3 12

1 2 4

1 3 2

3 2 1

3 2 1

1 2 3

2 3 1

3 2 1

3 1 1

3 2 1

1 2 3

1 3 2

2 3 1

3 12

1 2 4

1 3 2

3 2 1

3 2 1

1 2 3

2 3 1

3 2 1

3 1 1

3 2 1

1 2 3

1 3 2

2 1 3

4 15

4 3 1 2

4 1 2 3

3 1 4 2

1 3 2 4

4 1 2 3

3 4 2 1

2 4 3 1

3 2 1 4

3 1 4 2

1 4 2 3

3 4 1 2

3 2 1 4

4 1 3 2

3 2 1 4

4 2 1 4

0 0

Sample Output

Election #1

 2 bad ballot(s)

 Candidate 3 is elected.

Election #2

 2 bad ballot(s)

 The following candidates are tied: 1 3

Election #3

 1 bad ballot(s)

 Candidate 3 is elected.

Problem C: Factorial Frequencies (1993 NC)
In an attempt to bolster her sagging palm-reading business, Madam Phoenix has decided to offer several numerological treats to her customers. She has been able to convince them that the frequency of occurrence of the digits in the decimal representation of factorials bear witness to their futures. Unlike palm-reading, however, she can't just conjure up these frequencies, so she has employed you to determine these values.

Recall that the definition of n! (that is, n factorial) is just 1x2x3x...xn. As she expects to use the day of the week, the day of the month, or the day of the year as the value of n, you must be able to determine the number of occurrences of each decimal digit in numbers as large as 366 factorial (366!), which has 781 digits.

Input

The input data for the program is simply a list of integers for which the digit counts are desired: one integer per line. All of these input values will be less than or equal to 366 and greater than 0, except for the last integer, which will be zero. Do not bother to process this zero value; just stop your program at that point.
Output
The output format is not too critical, but you should make your program produce results that look similar to those shown below.

Sample Input
3

8

100

0

Sample Output
3! --

 (0) 0 (1) 0 (2) 0 (3) 0 (4) 0

 (5) 0 (6) 1 (7) 0 (8) 0 (9) 0

8! --

 (0) 2 (1) 0 (2) 1 (3) 1 (4) 1

 (5) 0 (6) 0 (7) 0 (8) 0 (9) 0

100! --

 (0) 30 (1) 15 (2) 19 (3) 10 (4) 10

 (5) 14 (6) 19 (7) 7 (8) 14 (9) 20

Problem D: Duckpin Tournament (1997 PNW)
In a Duckpin Tournament, the winner is decided by the player with the highest number of tournament points earned by playing a number of matches. Points are awarded for winning a match and scoring the highest game during the match. A duckpin match consists of a series of three lines, or games. The match winner is the player with the highest series score, i.e., three game total. The high game winner is the player with the highest score for a single line during the match.

A line of duckpins is divided into ten frames. In each frame a player has three tries to knock down ten duckpins with a ball. If the player knocks down all ten pins on the first try, a strike is awarded and the frame is concluded (see exception below). If the player knocks down all ten pins in two tries, a spare is awarded and the frame is concluded (see exception below). If during any of the three tries a foul is committed by the player crossing the foul line, the frame is concluded and only the pins knocked down prior to that try are counted for the frame, with any bonus points coming from the next frame(s). The points earned in a frame equal the number of pins knocked down plus any bonus points earned for a spare or a strike. The bonus points earned for a spare or strike equal the number of pins knocked down on the next try following a spare or on the next two tries following a strike. A foul following a spare or strike earns zero bonus points unless the foul occurs on the second try following a strike; then only the bonus points earned on the first try are counted. A spare or a strike normally concludes the frame. However, if a spare or a strike occurs in the tenth frame, the frame is concluded by the player immediately taking the appropriate number of tries to earn the bonus points. The (cumulative) score for each frame equals the number of points awarded for the frame plus the score in the previous frame.

Write a program to produce a scoring summary for one or more duckpin matches of one to four players.
Input

The input for each match consists of an integer indicating the number of players, a list of players’ names (each name is a max. length of 10 alpha characters), followed by lines of integers representing the number of pins knocked down by each player on the first, second, or third try in each game in the match. The match is concluded by ‘#’. The input is concluded when the number of players for a match is zero.

Since each match consists of three games and each player gets three tries per frame in each game, the total number of lines of integers in the match will be nine times the number of players. The players play in the order that the names were listed. The order of the lines is: (1) three lines for the first player in the first game followed by three lines for each of the other players for the first game, (2) three lines for the first player in the second game followed by three lines for each of the other players for the second game, (3) similarly for the third game with the match concluded by ‘#’. The line of integers representing the first try will have at least ten integers but no more than twelve. Since a second or third try may not be attempted in a frame, the second and third lines may have fewer than ten integers. A negative integer indicates the number of pins knocked down however the player fouled on the try.

Output
The output shows a frame by frame score for each player for each game in the match. Each line of output consists of the player’s name, left justified in a field ten characters wide, and ten integers, right justified with a field four characters wide. At the end of each match, report the match and high game winner followed by a blank line.

Sample Input
3

Tim
Jim Bob

5 7 8 5 10 10 10 8 9 10 10 10

(scores for Tim’s first game)

5 2 1 4 1 0

 0 1 1 1 1

10 10 9 8 9 9 10 9 9 9 8

(scores for Jim’s first game)

 1 1 1 0 1 1 1

 1 1

7 6 8 9 -10 8 9 8 10 10 8 1

(scores for Bob’s first game)

3 2 2 1 1 1 1

 2 1 1

0 8 8 8 9 7 6 -6 7 9

(scores for the second game)

6 1 2 1 0 1 3 3 0

3 0 1 1 1 0 0

5 7 10 9 8 9 10 7 8 9 7

5 3 1 2 1 -3 2 1

(blank line shows no 3rd

tries were used in this game)

9 8 9 8 9 7 10 9 9 9

1 1 1 2 1 2 0 1 0

 1
 1 1 1

5 6 7 8 9 10 10 -10 10 10 10 10

(scores for the third game)

4 2 3 1 1

0 2 1

8 7 6 10 9 9 10 7 8 6

2 2 3 1 0 3 1 3

 1 0 1 1
 1

9 8 9 9 9 8 10 10 10 8

1 2 1 1 1 2

 1

1

#

0

Sample Output
Tim 17 26 36 46 76 104 123 133 143 173

Jim 29 49 67 77 96 106 126 145 164 182

Bob 16 26 45 55 55 65 83 93 121 140

Tim 9 18 36 46 56 65 74 74 93 102

Jim 17 37 57 75 94 114 131 138 157 174

Bob 18 28 46 65 82 92 111 121 140 150

Tim 9 19 37 47 67 87 97 97 127 157

Jim 17 27 36 56 75 85 105 123 133 143

Bob 18 37 56 75 93 113 143 171 190 200

Jim has the high series score of 499.

Bob has the high game score of 200.

Problem E: The Rotating Disk (1997 PNW)
A neat puzzle consists of a circular track with n marbles numbered 1 … n. n is at least 4. The marbles are arranged in a random order, and they can be moved around the track without altering their relative order. In one section of the track there is a rotating disk. The disk contains 4 of the marbles. The disk can be rotated by 180 degrees so that the inner order of the 4 marbles is reversed. Your mission, should you choose to accept it, is to write a program that will read the content of a puzzle and use the rotating disk to rearrange the marbles in natural order. The following example will demonstrate a description of a puzzle and display of moves. The size of the track will vary from one data set to another.

Input
Each data set will be a permutation of the integers 1 … n on a single line. Integers are separated by two spaces. Following the last data set is a negative integer.

Output

In your output echo the initial track in the order you received it from the input, followed by a blank line then the rotations. For each rotation, print out the track after the rotation. Each line should display only the track after one rotation. Re-sequence each line when printing such that the rightmost four integers represent the four marbles on the rotating disk in the correct order. If it is not possible to rearrange the disks in natural order, then print out a message indicating so.
Sample Input

 8 1 2 3 7 10 4 6 5 9

 1 2 3 5 4

 -2
Sample Output

8 1 2 3 7 10 4 6 5 9

8 1 2 3 7 10 9 5 6 4

4 8 1 2 3 7 6 5 9 10

7 6 5 9 10 4 3 2 1 8
 9 10 4 3 2 1 5 6 7 8

 5 6 7 8 9 10 1 2 3 4

1 2 3 5 4

 It is not possible to rearrange these disks in natural order.

Problem F: Self Numbers (1998 MC)
In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence

33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...

The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.

Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.

Input

There is none.

Output

1

3

5

7

9

20

31

42

53

64

 |

 | <-- a lot more numbers

 |

9903

9914

9925

9927

9938

9949

9960

9971

9982

9993

Problem G: Radar (1995 SC)
You have been hired to a team of software designers to write a new air-traffic control system. One of the functions of this new software is to automatically verify the functioning of the subject aircrafts' instrumentation and alert controllers to endangered, newly aloft, or possibly downed aircraft. You are to write a prototype of this function.

Your program will be given a series of scenarios which include 2 radar sweeps each. Each radar sweep will find 0 to 100 airplanes. Each time a sweep encounters a plane, the data acquisition system captures an azimuth (direction) reading and a distance (in miles) from the radar. It will also retrieve (from the plane) a squawk number and a ground speed in miles/hour (actually an airspeed with wind correction). Based on the two radar sweeps, your program is to determine if a warning is required for any plane in the radar's domain.

You should assume a radar range (radius of the area covered) of 10 miles and instantaneous sweeps that occur 5 seconds apart.

Based on the information about the radar and planes, you are to determine if the controllers should be warned of potential problems.

An "equipment warning" is issued if the average of a plane's two indicated airspeeds is not within 10% of the airspeed measured/calculated based on radar sweeps.

A "new intrusion" warning is issued if the second radar sweep indicates a plane which was not present in the first sweep, but whose indicated airspeed + 10% is sufficient to have brought the plane onto the scope (on the shortest path) between the two sweeps. If the speed is not sufficient to account for a plane which was already aloft, then the assumption must be made that there is a "new aloft" warning to be issued indicating a plane has just taken off within the domain of the radar.

A "domain exited" warning is issued if the first sweep of the radar indicates a plane which is not seen in the second sweep but whose indicated airspeed + 10% is sufficient to have accounted for the plane leaving the range of the radar (on the shortest path) between the two sweeps. If the speed is not sufficient to allow the plane to leave the radar scope between the sweeps, a "domain loss" warning is issued indicating that the plane has either landed or crashed with the controller's domain.

Input
The first line of each scenario contains a single integer (0<=N1<=100) that indicates the number of planes detected in the first sweep. The next N1 lines each contain the description of exactly one detected plane in sweep 1. Each description contains a squawk number (unique to the plane), an azimuth, a distance, and a ground speed. The squawk number is an integer between 1 and 5 digits in length. The azimuth, distance and ground speed are all real numbers in the format XXX.XXX with leading and trailing zeroes as needed to fill all 6 places.

The squawk number (0<S<32767) is a globally unique integer that identifies each plane and is used to match planes from sweeps 1 and 2. The azimuth (000.000<=A<=359.999) is the angle in degrees from North (sweeping in a circle toward the East) where the plane was detected.

Therefore, East is at 90 degrees; South is at 180 degrees; and West is at 270 degrees. The distance (000.000<=D<=010.000) is the distance from the radar to the plane (added distance due to altitude has been removed by the radar's sensing logic). The ground speed (000.000<=G<=999.999) is the speed at which the plane is moving (in any direction) relative to the radar.

Immediately following the lines with the descriptions of planes in the first sweep is a line with a single integer (0<=N2<=100) indicating the number of planes detected in the second sweep. The next N2 lines each contain the description of exactly one detected plane in sweep 2.

The next scenario (if any) starts with N1 on the next line. The scenarios are followed at the end of the file with an integer 0.
Output

For each scenario, you are to print "Scenario # X" where X is the number of the scenario starting with 1 for the first scenario and incrementing by 1 for successive scenarios. Each subsequent line contains exactly one report for each plane requiring a warning indication. These lines are to be sorted based on the squawk number. Reports consist of the squawk number left-justified in columns 1 to 5 and one of the following warnings " -- equipment warning", " -- new intrusion", " -- new aloft", " -- domain exited", or " -- domain loss" starting in column 6. (You must print the blanks and dashes exactly as shown in the strings above.) There are no messages printed for planes for whom no warning applies. Print a blank line between scenarios.

Sample Input

4

222 060.111 007.600 095.000

1496 203.122 009.444 598.991

111 000.000 005.100 999.999

013 333.333 006.711 188.448

4

111 001.000 003.713 999.999

777 263.122 009.933 477.633

333 083.014 004.300 127.122

222 040.713 009.813 098.125
0

Sample Output

Scenario # 1

013 -- domain loss

222 -- equipment warning

333 -- new aloft

777 -- new intrusion

1496 -- domain exited

Problem H: Jugs (1997 SC)
In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were confronted with the following puzzle. They were given a 3-gallon jug and a 5-gallon jug (both initially empty) and were asked to fill the 5-gallon jug with exactly 4 gallons. This problem generalizes that puzzle.

You have two jugs, A and B, and an infinite supply of water. There are three types of actions that you can use: (1) you can fill a jug, (2) you can empty a jug, and (3) you can pour from one jug to the other. Pouring from one jug to the other stops when the first jug is empty or the second jug is full, whichever comes first. For example, if A has 5 gallons and B has 6 gallons and a capacity of 8, then pouring from A to B leaves B full and 3 gallons in A.

A problem is given by a triple (Ca,Cb,N), where Ca and Cb are the capacities of the jugs A and B, respectively, and N is the goal. A solution is a sequence of steps that leaves exactly N gallons in jug B. The possible steps are

fill A
fill B
empty A
empty B
pour A B
pour B A
success

where "pour A B" means "pour the contents of jug A into jug B", and "success" means that the goal has been accomplished.

You may assume that the input you are given does have a solution.

Input
Input to your program consists of a series of input lines each defining one puzzle. Input for each puzzle is a single line of three positive integers: Ca, Cb, and N. Ca and Cb are the capacities of jugs A and B, and N is the goal. You can assume 0 < Ca <= Cb and N <= Cb <=1000 and that A and B are relatively prime to one another. The last line of the input file are three negative integers.
Output
Output from your program will consist of a series of instructions from the list of the potential output lines which will result in either of the jugs containing exactly N gallons of water. For each line following each action, list the numbers of gallons of water in jug A and in jug B, respectively. The last line of output for each puzzle should be the line "success". Output lines start in column 1 and there should be one empty line between puzzles.

Sample Input

3 5 4
5 7 3
-1 -1 -1

Sample Output

fill B 0 5
pour B A 3 2
empty A 0 2
pour B A 2 0
fill B 2 5
pour B A 3 4
success

fill A 5 0
pour A B 0 5
fill A 5 5
pour A B 3 7
success

1

