10

Animating Spatiotemporal Constraint Databases

Jan Chomicki', Yuguo Liu?, and Peter Revesz?

! Monmouth University, West Long Branch, NJ 07764, USA
chomicki@monmouth.ed,

WWW home page: http://www.monmouth.edu/~chomicki
2 University of Nebraska-Lincoln, Lincoln, NE 68588, USA
revesz@Qcse.unl.edu,

WWW home page: http://cse.unl.edu/"revesz

Jan Chomicki Yuguo Liu Peter Revesz

Abstract. Constraint databases provide a very expressive framework
for spatiotemporal database applications. However, animating such databases
is difficult because of the cost of constructing a graphical representation
of a single snapshot of a constraint database. We present a novel approach
that makes the efficient animation of constraint databases possible. The
approach is based on a new construct: parametric polygon. We present
an algorithm to construct the set of parametric polygons that represent
a given linear constraint database. We also show how to animate objects
defined by parametric polygons, analyze the computational complexity
of animation, and present empirical data to demonstrate the efficiency
of our approach.

1 Introduction

Spatiotemporal databases have recently begun to attract broader interest [10,
12,27]. While the temporal [4,23,24] and spatial [14, 28] database technologies
are relatively mature, their combination is far from straightforward. In this con-
text, the constraint database approach [15] appears to be very promising. Con-
straint databases provide a uniform framework for modeling arbitrarily high
dimensional data, they are thus naturally suited for temporal, spatial, and spa-
tiotemporal database applications. Constraint databases are similar to relational
databases: They enjoy formal, model-theoretic semantics and support a variety
of well-established query languages like relational algebra, relational calculus,
and variants of Datalog.

Spatiotemporal databases applications, like modelling continuous evolution
or change in natural and social phenomena, lead to a new mode of user inter-
action. The user would like to be able to animate the spatiotemporal objects
present in the database by viewing their consecutive snapshots. The need to
support animation efficiently adds new requirements to the underlying database
engine. Snapshots of spatiotemporal objects have to be displayed quickly. That’s
where the constraint database technology falls somewhat short. In that approach,
a snapshot of a spatiotemporal object is a spatial object, represented implicitly
using a conjunction of inequalities (for polyhedral objects the inequalities are

linear). Such a representation cannot be immediately displayed on computer
screen: It has first to be converted to an explicit boundary representation. The
conversion is relatively time-consuming. It has also to be repeated for every time
instant in the animation. As a result, animation with a fine time granularity be-
comes slow and the ability to do real-time animation is limited.

To make the animation of spatiotemporal objects more efficient, we propose
to use a separate data model just for the display purposes (the decoupling of
retrieval and display was postulated in the context of spatial query languages by
Egenhofer [8,9]). For linear constraint databases, this model is a natural gener-
alization of the spaghetti data model [18], called the parametric spaghetti data
model (introduced in [5]). The basic modelling construct of the latter model is
a parametric polygon. Using parametric polygons the conversion from an im-
plicit constraint representation to an explicit display representation is broken
into two stages: the construction of parametric polygons and their instantiation
with consecutive time instants followed by display. The first stage, responsible
for the bulk of the conversion, is now done only once, which leads to very sub-
stantial time savings and makes animation much more efficient. In this paper, we
describe the mapping from linear constraint databases to parametric polygons
and show using empirical data the superiority of this approach.

The plan of the paper is as follows. In section 2 we introduce the basic no-
tions of linear constraint databases and the parametric spaghetti data model.
In section 3 we present the mapping used for the construction of parametric
polygons. In section 4 we show two basic animation algorithms for spatiotempo-
ral objects and compare them empirically. We also discuss the issue of efficient
display of snapshots. In section 5 we discuss related work and in section 6 we
present conclusions and speculate about future work.

2 Basic Concepts

2.1 The Linear Constraint Data Model

In the linear constraint data model [15,18,25] each database consists of a finite
set of constraint relations. Each constraint relation consists of a finite set of
constraint tuples. Each constraint tuple is a conjunction of linear constraints
over the attribute variables of the relation. For example, suppose that desert is
the following constraint relation:

Desert(x, y, t) :- x >= 0, y >= 0,

x -t <=10, x + y <= 20,
t >= 0, t <= 10.
Desert(x, y, t) :- x >= 0, y >= 0,
x+y+t <= 30,
t >= 10, t <= 20.

The intended meaning of each of the above constraint tuples is a set of
polygons, with one polygon for each time instance satisfying the inequalities on

t. In this way, one can represent, for example, how the boundaries of a desert
area are changing over time. For example, at times 0,10 and 20 the desert area
would look as shown in Figure 2.1. At time 0 the area is the polygon shown in
solid lines. Between time 0 and 10 the right side of the desert extends until at
time 10 the area becomes a triangle. Then the shape remains a triangle but it
expands further until at time 20 the hypotenuse becomes the dotted line shown
in the figure.

30
t=20
2
=0.10
=20
10 Desert .
<10
t=0 .
0 10 2 30

Fig.1. An Example of Desert Area Changing

A more complex example with many constraint tuples is a relation City that
describes the expansion of the area of a city over time. Each constraint tuple
represents one small region of the city. We created such a constraint relation that
approximates the area of the city of Lincoln, Nebraska, for the years between 1950
and 1990. The snapshot of the city for year 1990 is shown in Figure 2.1.

0 b 10

Fig. 2. City Area Snapshot at t = 1990

15

20

Although the linear constraint data model allows any number of attribute
variables to be constrained by conjunctions of linear constraints, in this paper
we assume that three distinguished variables are linearly dependent only on
each other, namely z and y for the dimensions in the plane and ¢ for time.
Other attribute variables may be present and dependent on each other but must
be independent of z, y and ¢. The animation algorithm refers only to those
three variables and therefore, for simplicity, we assume that they are the only
variables in constraint tuples. As we are dealing with continuous movement in
the Euclidean plane, we fix the domain of all the variables to be the set of real
numbers.

A snapshot of a constraint tuple over z, y and ¢ is obtained by instantiating
the variable ¢t to some specific value tg. A snapshot of a constraint relation
consists of snapshots of all the tuples instantiated to the same value #g.

2.2 The Spaghetti Data Model

The spaghetti data model [18] is a very popular model for representing spatial
databases for CAD (Computer Aided Design) and GIS (Geographic Information
Systems)[28]. Depending on the dimension K of the data it is possible to be
more specific and to talk the K-spaghetti data model. In this paper we assume
that K = 2, because in GIS applications the objects of interest are planar. Hence
we in our paper spaghetti will mean 2-spaghetti unless otherwise specified.

In the spaghetti data model we can represent only spatial objects that are
composed of a finite set of closed polygons. As a matter of fact, each spatial
object can be decomposed into a set of triangles (some are degenerate triangles
like line segments or points) where each triangle is represented by its three
corners in a single relational database table. There are many good algorithms
from computational geometry for triangulating polygons [1]. In this paper, we
consider only polygons which are triangles.

Example 1. Let us consider the polygonal figure in Figure 1.

In the spaghetti model the figure in Figure 1 is represented by the relation
in Table 1.

Note that the rectangle is represented by two and the pentagon by three
triangles.

The abstract semantics of a spaghetti data model is for each object the set
of points (in two dimensions) that belong to the area of the plane that is within
any of the triangles associated with that object.

2.3 The Parametric Spaghetti Data Model

The parametric spaghetti data model provides an alternative representation of
linear constraint databases. The parametric spaghetti data model uses paramet-
ric polygons. For example, the constraint tuple for the desert relation (Figure

11

w A0 (o) ~ [ee] ©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3. A polygonal figure

Table 1. Triangular Representation

~|
~|
N
~|
N

ID x'
pl
11
11
tl
rl
rl
p2
p2
p2

[es}
o

(=]

[y
ﬂﬂw:i—‘w@@
an

—

—_
(S
U O|UY H N W O = |

DD O DN = ~J| W D |

Qo Co| O N || W O |

W | W = =Nl =8
[
ww.h»—n:cuco«:»—la
i

Table 2. Parametric Spaghetti Data Representation of the Desert Tuple

[elyle” [y'[z" ly" [FROM|TO|
0[0 [20[10+¢[10t [0 [10
0[0[10+t/0 [10+t[10t [0 [10
0[0[T0+t[0 [0 |10+t[10 |20

2.1) can be represented in the parametric spaghetti data model as the table in
Table 2.

The parametric spaghetti model extends with a temporal parameter ¢ the
spaghetti model. The range of the parameter ¢ is given for each row of the
above table. Each row is a parametric triangle. The vertices of this triangle are
defined as linear functions of ¢. A parametric polygon can be represented by
a number of parametric triangles. A snapshot of a parametric triangle is the
triangle obtained by instantiating the variable ¢ to some value t(that is in the
interval (FROM,TO). The meaning of a parametric triangle is the set of all its
snapshots.

Using parametric polygons one can represent spatiotemporal objects that are
defined using linear arithmetic constraints [5]. The latter objects need, however,
to satisfy an additional condition: all of their snapshots have to be bounded.
The objects may still be unbounded in time.

What kind of change can be represented using parametric polygons? Due to
the restrictions to linear functions of ¢, only fized-speed continuous transforma-
tions can be modeled. The transformations include translation and scaling, so
continuously moving, growing, or shrinking polygons may be represented. Ob-
jects may appear and disappear finitely many times (each incarnation will be
modeled as a different parametric polygon). They can also finitely many times
change their attributes like color or shading. However, only spatial extents can
change continuously in this model.

To implement parametric polygons, one does not need to extend the rela-
tional data model. Each linear function of ¢ can be represented using exactly
two coeflicients. If pair is not available as a data type, one simply doubles the
number of attributes holding spatial data.

3 Constructing the parametric representation

In this section we show how to construct a representation in the parametric
spaghetti model of a spatiotemporal object defined using linear arithmetic con-
straints over z, y, and ¢.

Let w(z,y,t) be a generalized tuple over z, y, and ¢. It represents a poly-
hedron P with finitely many extreme points. In order to be able to construct
an equivalent parametric representation, we require that w(z,y,t) describes a
closed bounded polygon for every time instant to. Otherwise, the snapshot cannot
be represented in the parametric spaghetti model. Note that a spatiotemporal
object can be unbounded but only in one dimension: ¢.

Mapping Algorithm:

1. Determine the extreme points and the faces of P [22].

2. Determine all the intersections of the faces of P. Each such intersection is
a line and can be described as a system of two linear equations in z, y,
and t (the faces are described by single linear equations). From this system
obtain the equation relating z and ¢ (eliminate y) and the one relating y and
t (eliminate x). We will call those equations the characteristic equations of

the line. For each line, determine which extreme points lie on it (there may

be 1 or 2).

3. Let tg,...,tx be the time coordinates of the extreme points of P, sorted
in ascending order. Duplicates are ignored. If there is a point in P whose
t-coordinate is greater than t;, then P is unbounded in the ¢-dimension and
all extreme points with ¢ = ¢, are marked "right special”. Symmetrically, if
there is a point in P whose t-coordinate is less than ¢y, all extreme points
with ¢ = to are called ”left special”.

4. For every left-open interval I = (t;,t;+1], repeat the following:

(a) Denote by Py the slice of P that contains all the points of P whose time
coordinates are in I. Py is a polytope, possibly with some vertices that
were not among the extreme points of P. The vertices of P; are obtained
by substituting ¢; (or ¢;41) in the characteristic equations of each line of
P to obtain the z and y coordinates and checking whether the resulting
point is in P. The lines for which the check is positive for both ¢; and #;11
are marked as "relevant to Pr”. All the vertices of Pr have t-coordinates
equal to t; or t;41 (by construction).

(b) Among the edges of Py pick those that lie on lines that are relevant to Py
(those edges will connect a vertex with ¢t = ¢; with one that has ¢t = ¢;1).
For each such edge the characteristic equations of the corresponding line
give a representation of one vertex of a parametric polygon.

(¢) Triangulate the obtained parametric polygon, for example by picking
an arbitrary order of parametric vertices vg,v1,v2,v3,... and forming
the triangulation (vg,v1,v2), (vo, v2,v3), No new triangulation points
are created. Each obtained triangle defines a parametric row T with
T.FROM = tz' and T.TO = tz'+1.

5. If there are any right special points, define I = [t;, +00) and:

(a) Denote by Py the slice of P that contains all the points of P whose time
coordinates are in I. This is still a polyhedron but no longer bounded.
The vertices of Py are obtained by substituting ¢, in the characteristic
equations of each edge of P to obtain the z and y coordinates and check-
ing whether the resulting point is in P and whether the line contains a
point with ¢ > #; (to exclude lines connecting two vertices with the same
t).The lines for which both checks are positive are marked as ”relevant
to Pr”.

(b) The relevant lines of P; do not contain edges but rather extreme rays of
Py (they are also extreme rays of P). For each such ray the characteristic
equation of the corresponding line gives a representation of one vertex
of a parametric polygon.

(¢) Triangulation is done is in the previous case. The attributes T.FROM =
ty, T.TO = +00.

6. The left-special points are treated symmetrically to right-special points.

Ezample 2. We apply the above construction to the constraint relation repre-
senting Figure 2.1. We obtain the following extreme points (z,y,1):

(0,0,0),(10,0,0), (10, 10, 0), (0,20, 0), (0, 0, 10), (20, 0, 10), (0, 20, 10), (0, 0, 20),

(30,0, 20), (0, 30, 20).

None of them is special. We obtain two slices: (0, 10] and (10, 20]. Some of
the faces are: £+t = 10 and z +y = 20. From the intersection of those two faces
we obtain two characteristic equations z = 10+ ¢ and y = 10 — ¢ that describe
one vertex of a parametric polygon. The remaining vertices are determined in a
similar way. For the slice (0, 10] we obtain a parametric quadrangle which is then
triangulated into two triangles (in a time-independent way). Those triangles are
represented by the first two rows in Table 2. The last row in this table represents
the second slice (10, 20].

4 Naive and Parametric Animation

By the animation of a linear constraint database relation R we mean the se-
quential display of its snapshots or spatial extents (the set of (x,y) points) at
times tg,t1,...,t, at the user’s request. The user specifies the initial time g,
the time period A and the number of steps n, with the implicit condition that
ti=ti_1+ Aforeach 1 <i<n.

In this section we describe and compare two methods for the animation of
linear constraint databases. These two methods are called the naive and the
parametric animation methods.

4.1 Animation Methods

Naive animation method. The naive animation method works directly on linear
constraint databases. It finds for each time instance t;, by instantiating the
variable t to t;, a linear constraint database relation that has only two spatial
variables, namely z and y. Each constraint tuple of this relation defines a convex
polygon. The naive method finds a triangulation of each polygon and the vertices
of each triangle. Finally, it displays the set of triangles.

Parametric animation method. The parametric animation method has a pre-
processing step and a display step. In the preprocessing step it constructs a
parametric spaghetti database representation of the linear constraint database
using the algorithm outlined in section 3. This construction needs to be done only
once, before any user requests. The construction also finds for each parametric
triangle p a beginning time ¢, frorm and an ending time ¢, ¢,. Before ¢, rrom or
after t,.4, the parametric triangle has no spatial extent and does not need to be
displayed.

During the display step, which is done at the user’s request, for each con-
secutive time instant ¢; and for each parametric triangle it is checked first that
t; is between ¢p, from and t,4,. Corresponding to the parametric triangles whose
range includes t;, the parametric method finds, by instantiating the variable ¢

I
' Spatial Constraint X
| Database Spageti
I
|
Spatial Congtraint .
=1 Datebase Spaghett

[[
t=2 °]

Spatial Congtraint X
Mhml

Spatiotemporal
Congtraint
Datebase

Parametric
Spaghetti

Fig. 4. Two Methods for the Animation of Spatiotemporal Databases

to t;, a set of triangles defined by their corner vertices. Then it displays the set
of triangles.

Both animation methods assume that the computer system used provides
in its graphics library as a primitive a display module for triangles defined by
their corner vertices. Such a primitive is common in computer systems. The two
animation methods are summarized in Figure 4.

4.2 Computational Complexity

To compare the time complexity of both animation methods, we restrict ourselves
to constraint relations consisting of single generalized tuples and their parametric
representations. As each tuple is processed independently, the time of animating
a constraint relation is then obtained in a straightforward way. Also, we assume
that all processing is done in main memory.

We define first the following parameters:

— m - the number of constraints in the generalized tuple,
— k - the number of parametric tuples representing the generalized tuple,
— n - the number of animation steps.

Lemma 1. k € §(m?).

Proof. From the description of the mapping in section 3, it is clear that k €
O(m?). To see that this bound is actually achieved, consider a family of pyramids
whose “bottom” side is an m-gon and the remaining sides are isosceles triangles.
Now take the intersection of this solid with a half-space whose bounding plane
cuts across the solid by meeting its bottom side at an angle a, 0 < a < 7/2.
The result can be represented as a constraint tuple with m + 2 linear arithmetic
constraints but the conversion produces a representation with O(m?) parametric
tuples.

Lemma 2. For any given time t, the number of parametric tuples containing t
is in O(m).

The naive approach requires no preprocessing. Each snapshot can be con-
structed and displayed in O(mlogm) time [19]. Thus the entire animation re-
quires O(nmlogm) time. In the parametric approach, a polyhedral represen-
tation of the generalized tuple (step 1 of the mapping) can be constructed in
O(mlogm) time [19]. The entire preprocessing thus takes O(max(k, mlogm))
time, due to the size of the parametric representation. Displaying all the snap-
shots takes O(nk) time. In the worst case (k € O(m?)), the total time required
by parametric animation is O(nm?), compared to O(nm logm) for the naive one.
However, this was a rather artificial example. We have found that in practice
k € O(m), and then the parametric approach requires O(mlogm + nm) time,
compared to O(nmlogm) for the naive one.

Parametric animation can be further improved. For example, relations with
parametric triangles can be indexed using one of the interval-indexing methods

like interval or priority search trees [19]. Triangles to be displayed at a given time
can then be quickly retrieved (in time O(log k4 m) which by Lemma 1 is O(m)).
In this approach, the display time can thus be reduced to O(nm) even when
k € O(m?). This is optimal. However, building of the index takes O(k log k) time.
This cost can be amortized over multiple runs if the parametric representation
is built once and animated several times. (Notice that such amortization is not
possible in the naive approach.)

Another possible optimization that does not use an index consists of keeping
track during the animation of the set of “live” parametric triangles (those whose
interval (FROM,TO) contains the current time). If the number of “live” triangles
at any given time is small (and thus one avoids having to look at the many
triangles that are not “live”), the savings may be significant. Lemma 2 says
that the size of the set of live triangles is in O(m). This approach could be
implemented by creating two copies of the parametric table: one sorted on the
FROM column (the FROM table) and the other on the TO column (the TO
table). The copies are then merged. When a FROM tuple is encountered during
the merge, the parametric triangle is added to “live” set, otherwise (a TO tuple)
the corresponding triangle is removed from this set. In addition, one needs to keep
track of the current time and at every consecutive time instant instantiate all the
“live” parametric triangles. This approach adds O(k log k) time to preprocessing.
Now display consists of n display events and O(k) interval endpoint events. Each
of the latter involves insertion or deletion in a structure of size O(m). Each of
the former involves retrieving all objects in this structure. Thus display now
takes O(nm + klogm) time. If the number of “live” triangles at any time can
be bounded by a constant, this approach takes O(n + k) time, as compared to
O(nlog k) using interval indexing.

4.3 Implementation Results

We implemented both animation methods in Microsoft Visual C++ on top
of MLPQ (Management of Linear Programming Queries), a system developed
and used at the University of Nebraska for querying linear constraint databases
[21,17]. The animation system is named ASTD (Animation of Spatiotemporal
Databases).

The main library routines that we implemented include an O(m?)-time rou-
tine to convert a linear constraint database with only x,y special variables into a
set of triangles, and a separate routine to convert linear constraint databases with
z,y and t special variables into a set of parametric triangles. No optimizations
of the parametric approach were used. We implemented the animation routines
that use the conversion routines and the Visual C++ MFC class library function
for displaying triangles given their corner vertices.

We also implemented a graphical user interface module through which a user
can call the ASTD system and specify the following parameters: the animation
method to be used, the name of the linear constraint database relation to be
animated, the initial time, the time period, and the number of time steps. ASTD
also allows the setting of another parameter, namely the minimum delay time

dmin- The minimum delay time controls the speed of the animation in the sense
that there must be at least dy;n time between the issue of two commands to
display a set of triangles. In our execution experiments the minimum delay time
was set to be very small. Hence each snapshot was essentially displayed as soon
as the animation algorithm calculated the corner vertices of the set of triangles
to be displayed.

We measured the execution times for the animation of the two examples
(desert, city area) described in section 2 using the same parameters. In addition,
we have experimented with an even more complex example: a spatiotemporal
representation of the geographic range of California gull. Two snapshots of this
representation are shown in Figure 4.3.

The ASTD system ran on a 266 MHz Pentium IT with 64M memory in a Win-
dows NT environment. Table 3 compares the execution times (in milliseconds)
of the two animation methods on the above three examples. For all examples,
the parametric animation method was much faster. The missing entry in the last
row is due to the fact that the computation ran out of available memory.

Table 3. Naive vs. Parametric Animation (Time in Millisecond)

ExampleNumber of Tuples/ Without Parametric|With Parametric
Number of Time Points|Representations Representations

Desert (2 /20 2,980 480

City 17 /20 17,860 1,680

Gull 131 / 60 - 12,470

4.4 Time Series

For completeness, we mention another possible approach to the problem of an-
imating spatiotemporal databases. In this approach the time series of all the
snapshots is precomputed and stored in a relational database. During the ani-
mation, consecutive snapshots are retrieved and displayed. This approach suffers
from the fact that time granularity has to be fixed in advance. More significantly,
the amount of data required by this approach is considerably higher than in the
approaches described in the present paper. As a result, the animation data may
have to be stored on disk, significantly increasing animation time.

5 Related work

Spatiotemporal data models and query languages. Spatiotemporal data models
and query languages are a topic of growing interest. The paper [27] presents

600

400

200

G600

400

200

Fig. 5. California gull at t=0 (top) and t=31 (bottom).

one of the first such models. In [10] the authors define in an abstract way mov-
ing points and regions. Apart from moving points, no other classes of concrete,
database-representable spatiotemporal objects are defined. In that approach con-
tinuous movement (but not growth or shrinking) can be modeled using linear
interpolation functions. In [12] the authors propose a formal spatiotemporal data
model based on constraints in which, like in [27], only discrete change can be
modeled. An SQL-based query language is also presented. We have proposed
elsewhere [7] a spatiotemporal data model based on parametric mappings of ge-
ometric objects. This model is also capable of modeling continuous change and
avoids some of the closure problems of the parametric spaghetti model.

Computer animation. In this area many formalisms and systems for the
specification of graphical animations have been proposed, including scripting
languages [13]. The issues include, among others, producing realistic effects, an-
imation language design, and making animation efficient and easy to build. The
animations can typically be specified in several different ways (the following list
is based on the system Maya (http://www.aw.sgi.com): by key frames with in-
terpolation between them, procedurally, by inter-object constraints or by motion
path (the path is specified by the user as a NURBS curve). To our knowledge,
the work on computer animation has so far concentrated solely on the display
level and the need to have a separate database representation of animations has
not been identified.

Robotics and vision. Spatiotemporal applications abound in those areas. How-
ever, the emphasis is on finding robot trajectories (robot motion planning) or
reconstructing object trajectories from a sequence of images (computer vision).
Trajectories are not treated as objects which can be stored in a database, queried,
or animated.

User interface design. Linear arithmetic constraints have been proposed as
a language for user interface specification [2]. The main emphasis of this work
is on dealing with constraint relationships (constraint hierachies) and efficient
constraint solving. Constraints are not treated as database objects. Also, con-
straints are used to specify a single state of the interface, not a sequence of such
states.

6 Conclusions and Future Work

We have shown that defining a separate display data model enhances the us-
ability of spatiotemporal constraint databases by making their animation more
efficient. This work opens many avenues for further research.

Computer animation. For more serious animation projects, it may be nec-
essary to look into constraint languages that are more expressive than linear
arithmetic constraints, e.g., polynomial constraints. For such constraints, new
parametric representations have to be developed. We also believe that our ap-
proach can be further enhanced using techniques from computer graphics, anima-
tion, and computational geometry (more efficient construction of the parametric
representation, more efficient display). In computer graphics, it is common to

animate scenes with thousands of polygons per scene. If such animations are rep-
resented using constraints and stored in the database, it may become infeasible
to perform preprocessing and display entirely in main memory. Then external
memory algorithms [26] and index structures [16] need to be used.

Two-tiered data model. If the parametric 2-spaghetti data model is more
suitable than the linear constraint database model, then perhaps the latter
may be abandoned altogether? In fact, the parametric model can express some
spatiotemporal objects which are not definable using linear constraints [5, 6].
However, the parametric model lacks important closure properties, e.g., it is
not closed with respect to intersection [6]. This means that relations containing
parametric polygons cannot be joined, although other operations like selection
or projection can easily be supported. Therefore, we believe that the constraint
model remains more suitable for querying. However, one should explore the op-
tion of storing the parametric polygons in a database and providing necessary
indexing mechanisms. In this way content-based retrieval of animations can be
supported.

Higher dimension. In this paper, we focused on two dimensional spatiotempo-
ral problems which only had z, y and ¢ as linearly dependent variables. However,
many real-life spatiotemporal problems are three dimensional, that is, involve
three spatial and one temporal variables that are linearly dependent on each
other [20]. We need to develop a three-dimensional parametric representation
and study translations of three-dimensional constraint databases to this repre-
sentation. Also, the display of three dimensional parametric spaghetti databases
on two dimensional computer screens has to be studied.

Multiple time granularities. It is natural to allow multiple time granularities:
years, months, days, etc. To represent them in a constraint database one can
use complex values in the time domain or multiple temporal attributes. The
parametric representation would have to be suitably extended and the mapping
from constraint databases to the parametric representation generalized.

Rotation. Neither the linear constraint data model nor the parametric spaghetti
data model can describe rotation of objects. Since rotation is a fairly common
movement of spatiotemporal objects, an extension has to be found of both data
models that can describe rotational movements. We are currently investigating
data models that add rotation without having to deal with general polynomial
constraint databases.

General continuous change. It is natural to allow other attributes, apart from
the spatial ones, to change continuously. For an example, consider continuous
picture shading. To represent it, one would define the shade attribute as a (linear)
function of time. No extension of the constraint data model is necessary to
represent such an attribute. The parametric spaghetti model is easy to extend
in this direction by allowing linear functions of time in non-spatial attributes.
The change to the display algorithm is also minor. However, the mapping (section
3) from linear constraint databases to the parametric representation continues
to work only under the assumption that spatial and non-spatial attributes are

independent [3]. In practical terms, it means that all the points of a polygon
have to change in exactly the same way.

Acknowledgments

The work of the first author was supported by NSF grant TRI-9632870. The work
of the second and third authors was supported by NSF grants IRI-9632871 and
IRI-9625055, and by a Gallup Research Professorship. The first author thanks
Anna Lipka of Alias/Wavefront for the information about Maya and Vassilis
Tsotras for the references to the literature on interval indexing. The authors are
grateful to the anonymous reviewers for their helpful comments.

References

1. M. Bern. Triangulations. In Goodman and O’Rourke [11], chapter 22, pages 413
428.

2. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arithmetic con-
straints for user interface applications. In ACM Symposium on User Interface Soft-
ware and Technology, 1997.

3. J. Chomicki, D. Goldin, and G. Kuper. Variable Independence and Aggregation
Closure. In ACM Symposium on Principles of Database Systemns, pages 40-48,
Montréal, Canada, June 1996.

4. J. Chomicki. Temporal Query Languages: A Survey. In D. M. Gabbay and H. J.
Ohlbach, editors, Temporal Logic, First International Conference, pages 506-534.
Springer-Verlag, LNAI 827, 1994.

5. J. Chomicki and P. Z. Revesz. Constraint-Based Interoperability of Spatiotemporal
Databases. In International Symposium on Large Spatial Databases, pages 142-161,
Berlin, Germany, July 1997. Springer-Verlag, LNCS 1262.

6. J. Chomicki and P. Z.. Revesz. Constraint-Based Interoperability of Spatiotemporal
Databases. Geoinformatica, 3(3), September 1999.

7. J. Chomicki and P. Z. Revesz. A Geometric Framework for Specifying Spatiotem-
poral Objects. In International Workshop on Time Representation and Reasoning,
Orlando, Florida, May 1999.

8. M. Egenhofer. Why not SQL! International Journal of Geographic Information
Systems, 6(2):71-85, 1992.

9. M. Egenhofer. Spatial SQL: A Query and Presentation Language. IEEE Transac-
tions on Knowledge and Data Engineering, 6(1), 1994.

10. M. Erwig, R.H. Giiting, M. M. Schneider, and M. Vazirgiannis. Spatio-Temporal
Data Types: An Approach to Modeling and Querying Moving Objects in Databases.
In ACM Symposium on Geographic Information Systems, November 1998.

11. Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Com-
putational Geometry. CRC Press, 1997.

12. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with
Constraints. In ACM Symposium on Geographic Information Systems, November
1998.

13. M. Gervautz and D. Schmalstieg. Integrating a scripting language into an interac-
tive animation system. In Computer Animation, pages 156-166, Geneva, Switzer-
land, 1994.

14. R. H. Giiting. An Introduction to Spatial Database Systems. VLDB Journal,
3(4):357-400, October 1994.

15. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages.
Journal of Computer and System Sciences, 51(1):26-52, August 1995.

16. P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for Data
Models with Constraints and Classes. Journal of Computer and System Sciences,
52(3):589-612, 1996.

17. P. Kanjamala, P.Z. Revesz, and Y. Wang. MLPQ/GIS: A Geographic Information
System using Linear Constraint Databases. In 9th COMAD International Confer-
ence on Management of Data, pages 389-393, Hyderabad, India, December 1998.
Tata McGraw Hill.

18. J. Paredaens. Spatial Databases, The Final Frontier. In International Conference
on Database Theory, pages 14-32, Prague, Czech Republic, January 1995. Springer-
Verlag, LNCS 893.

19. F. Preparata and M. Shamos. Computational Geometry. Springer-Verlag, 1985.

20. J.. Raper. Three Dimensional Applications in Geographical Information Systems.
Taylor & Francis, 1989.

21. P. Z. Revesz and Y. Li. MLPQ: A Linear Constraint Database System with Ag-
gregate Operators. In International Database Engineering and Applications Sympo-
stum, pages 132-137. IEEE Press, 1997.

22. R. Seidel. Convex Hull Computations. In Goodman and O’Rourke [11], chapter 19,
pages 361-375.

23. R. T. Snodgrass. Temporal Databases. In Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space, pages 22—64. Springer-Verlag, LNCS 639, 1992.
24. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors.
Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings,

1993.

25. L. Vandeurzen, M. Gyssens, and D. Van Gucht. On the Desirability and Limitations
of Linear Spatial Database Models. In International Symposium on Large Spatial
Databases, pages 14-28, 1995.

26. J.S. Vitter. External Memory Algorithms and Data Structures. In J. Abello and
J.S. Vitter, editors, Ezternal Memory Algorithms and Visualization, DIMACS Series
on Discrete Mathematics and Theoretical Computer Science. American Mathemat-
ical Society, 1999.

27. M. F. Worboys. A Unified Model for Spatial and Temporal Information. Computer
Journal, 37(1):26-34, 1994.

28. Michael F. Worboys. GIS: A Computing Perspective. Taylor&Francis, 1995.

