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Abstract 
 
      Constraint databases have the specific advantage 
of being able to represent infinite temporal relations 
by linear equations, linear inequalities, polynomial 
equations, and so on. This advantage can store a 
continuous time-line that naturally connects with other 
traffic attributes, such as vehicle speed. In most cases, 
vehicle speed varies over time, that is, the speed is 
often non-linear. However, the infinite representations 
allowed in current constraint database systems are 
only linear. This article presents a new approach to 
estimate and forecast continuous non-linear vehicle 
speed using linear constraint database systems. Our 
new approach to represent and query non-linearly 
moving vehicles is based on a combination of local 
polynomial regression models and piecewise-linear 
approximation algorithms. Experiments using the 
MLPQ constraint database system and queries show 
that our method has a high accuracy in predicting the 
speed of the vehicle. The actual accuracy is 
controllable by a parameter. We compare the local 
linear regression model with the local cubic model by 
using a field experiment. It is found that the local 
cubic fit can implement a better estimation in the peak 
and valley of the data patterns. 
 
 
1. Introduction  

 
      Today relational databases are popularly applied 
into many traffic systems [1] [2], such as traffic 
management systems, public transit systems and 
Advanced Traveler Information Systems (ATISs). 
However, when the relational model is used to handle 
spatial data, the points, lines and polygons in space are 
discretely saved in tables and often lose spatial 

relationships in databases [3]. However, having only a 
finite set of tuples in the relational tables may make it 
difficult to see the intuitive relationship among the 
core traffic attributes [4].  
      Time discontinuity is another significant 
deficiency in relational databases. Everyone expects 
that, regardless of the magnitude of change, the 
complete snapshot produced at each time slice could 
duplicate all the unchanged data in the database. 
However, relational databases with time discontinuity 
[3] cannot store the complete information of moving 
objects, such as moving vehicles and pedestrians. 
      Constraint databases are viewed as a special kind 
of post-relational databases, although they share with 
relational database some important features, such as, 
formal, model-theoretic semantics, various high-level 
query languages like SQL and Datalog [5]. On the 
other hand, constraint databases have some specific 
features such as the ability to represent infinite 
relations by various types of constraints, to describe 
continuous temporal and arbitrarily high-dimensional 
and continuous spatial or spatiotemporal data [6]. 
      Constraint databases may allow many different 
types of constraints, such as, linear equations and 
linear inequalities over rational numbers or polynomial 
equations over real numbers. Constraint databases 
have the potential to serve as a useful tool for traffic 
data archiving and operation, although they were not 
designed for this particular purpose and need to be 
adapted for such a task.  
      The aim of this paper is to develop the local 
polynomial regression models to estimate and predict 
non-linear vehicle speed with the continuous time-line 
in linear constraint databases. The development of 
these new models means that constraint databases 
have the capability to model and store continuous non-
linear data. In addition, constraint databases have far-
reaching potentials to evaluate and analyze the 



information of traffic moving objects (vehicles and 
pedestrians) on the basis of statistical nonparametric 
methods.  
      This paper is structured as follows. Section 2 
discusses the local polynomial regression models. 
Section 3 describes piecewise-linear approximations. 
Section 4 presents the experiments that test the 
accuracy of using constraint databases to predict the 
speed of vehicles. Section 5 discusses the literature 
review. Finally, Section 6 gives a brief discussion and 
some concluding remarks.  
 
2. Local polynomial regression 

  
2.1. Definition 
 
      As an important data analytic approach, 
nonparametric density estimation can effectively 
describe the important structure in a set of data. There 
is a basic difference between the parametric and 
nonparametric approaches. The former assumes that 
some parameters can represent the density estimator; 
the latter does not assume a pre-specified functional 
form for the density estimator. Suppose that in a 
sample of random pairs (x1, y1),…, (xn, yn), the 
response variable is assumed to satisfy [22]: 

            
1/2( ) ( )i i i iY m x x  

            (1)           
where m(·) is the function to be estimated; υ(·) is the 
variance function; εi is an independent random 
variable with zero mean and unit variance; xi is a 
random variable having common density ƒ; i =1, …, n.  
      Local polynomial kernel estimators ෝ݉ሺݔ; ,݌ ݄ሻ [23] 
[24] [25] can be developed via “locally” fitting a pth 
degree polynomial ∑ β
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using weighted least squares. The bandwidth h is a 
nonnegative number controlling the size of the local 
neighborhood; and h is assumed to approach zero, but 
at a rate slower than n –1, that is:   
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( ) ( / ) /hK K h h    is a kernel function scaled by h. 
The weights are chosen according to the height of the 
kernel function centered about the particular point x, 
and the kernel weight Kh(xi – x) is the weight assigned 
to Yi. The data closer to x carry more influence in the 
value of m(x), not assuming a specific form of the 
regression function m. The functions of the estimators 
are listed below: 
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where e1 is the (p+1) × 1 vector having 1 in the first 
entry and zero elsewhere; 
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is an n × (p+1) design matrix, n is the number of 
observations.  
      The shape choice about the kernel function is not 
as important for the data estimation and analysis as the 
bandwidth selection (see Section 2.4). There are some 
choices [26], such as Epanechnikov, Biweight, 
Triweight, Normal, Uniform, Triangular, and so on. 
“Normal”– the Gaussian density function – is used in 
this research. 

2.2. Order choice 
 
      In terms of the order of polynomial fit for the 
asymptotic performance of ෝ݉ሺ൉; ,݌ ݄ሻ, [22] shows that 
fitting the polynomials of higher order leads to a 
possible bias reduction and a variance increase, and 
the odd order fits are preferable to the even order fits 
in the problem of the variability augment. Furthermore, 
the even order fits achieve lower efficiency in a bias 
reduction, especially in the boundary regions and 
highly clustered design regions. According to the 
practical performance in many cases, the order of 
polynomial fits, which are beyond cubic fit, need a 
very large sample to actualize a significant 
improvement. Therefore, this study proposes to use 
p=1 and p=3. The local cubic fit (when p=3) can 
implement a better estimation in the peak and valley of 
m, although the cubic fit has a higher requirement 
concerning its calculation and sample variability than 
the local linear model [26].  
 
2.3. Bandwidth selection 

 
      The choice of value for the bandwidth is 
particularly important to highlight the significant 
structure in a set of data. [27] executes a survey of 
several bandwidth selections for the density estimation, 
and these selectors are Biased Cross-validation (BCV) 
[28], Least Squares Cross-validation (LSCV) [29], 



Rule-of-Thumb (ROT), Solve-the-equation (STE) [23] 
[30] [31] [32] [33], and Smoothed Bootstrap [34], and 
summarizes that ROT has a small variance, yet an 
unacceptable large mean; LSCV has a good mean, yet 
too large a variance; BCV suffers from unstable 
performance; both STE and smoother bootstrap have a 
correctly centered distribution in mean and an 
acceptable variance. [35] compares three plug-in 
bandwidth selection strategies [22], such as ROT, STE, 
and Direct Plug-in (DPI) via the data simulation and 
analysis, and the result is that DPI has the same 
appealing performance as STE. Moreover, it does not 
need the extra complication of requiring a root-finding 
procedure and minimization.  
      There are several assumptions for the calculation 
of DPI bandwidth [35]: the random and independent 
pairs (X1, Y1), …, (Xn, Yn) have the common density ƒ 
with support confined to a compact set ܵ ൌ R, S= [a, 

b]; the errors are homoscedastic, and ν(x) = 2 for all 
x; p is an integer greater than r and s (where r, s ≥0; r 
+ s is even), and both pെr and pെs are odd; K is a 
second-order symmetric kernel with

2( ) ( )R K K x dx  . The cubic fit (p=3) has more 

degrees of freedom for estimating a high curve region 
in a set of data than the linear fit (p=1), and [35] 
clarifies the DPI rule by the particular case (r=s=2 and 
p=3) and the calculation steps about the direct plug-in 
bandwidth selector ෠݄஽௉ூ.  
 
3. Piecewise-linear approximation  
 
      Piecewise-linear approximation is the 
approximation of a nonlinear function by a set of line 
segments. Piecewise-linear approximation considered 
below creates the line segments based on the known 
discrete data points. In addition, the compressed data 
can speed up answering database queries. In a time 
series (ti, yi) for i =1, 2,…, n, the maximum error 
threshold Ψ controls the maximum difference between 
the original data and piecewise-linear approximation. 
That means that we assure that the original data is 
always within a narrow band with width Ψ around 
piecewise-linear approximation as shown in Figure 1: 

 
Figure 1. Piecewise-linear approximation [41] 
 
      The relation between a piecewise-linear function 
ƒ(ti) and yi satisfies:  
 

 | ( ) |i if t y    for each (ti, yi)         (3)  
 
      Given enough known conditions, a piecewise- 
linear function can be automatically produced using 
the following algorithm [41]: 
Input:  time series S and maximum error threshold  . 
Output: a piecewise-linear approximation function.  
Local variables: Begin is start, SL min and SU max 
slope of a piece. 
Begin: = (t1, y1) 
SL: = – ∞ 
SU: = + ∞ 
For  i = 1 to (n –1) do 
     S’L: = max [SL, slope (Begin, (ti+1, yi+1 – )] 
     S’U: = min [SU, slope (Begin, (ti+1, yi+1+ ))] 

if S’L ≤ S’U then 
     SL: = S’L 
     SU: = S’U 

else 
     add line f(t) = 0.5 (SL +SU)*(t – Begin.t) +Begin.y 
     Begin: = (ti, f(ti)) 
     SL: = slope (Begin, (ti+1, yi+1 – )) 
     SU: = slope (Begin, (ti+1, yi+1+ )) 

end-if 
end-for 
       add line f(t) = 0.5 (SL +SU)*(t– Begin.t) +Begin.y 

 

Figure 2. Local linear and cubic fits for vehicle 
speed data 

4. Experimental results  
 

4.1.  Data collection 
 

      The values of traffic speeds were collected by 
Cambridge Systematics, Inc. at the detector station 
(717490) of U.S. Highway 101 in Los Angeles, 
California on June 8, 2005 [36]. The data points (the 
circles in Fig. 2) represent the sequential five-minute 
average speed values (speed = g × flow / occupancy, 
unit: mph). The values of flow and occupancy were 
reported by the loop detectors in five different lanes. 



[43] provides the algorithm to track the g-factor, 
which depends on the actual vehicle length and the 
loop’s electrical circuit. 

4.2.Model implementation  
 

      The local polynomial regression models figure out 
the estimation of the average speed for all lanes. 
Meanwhile, the models alter the discrete vehicle speed 
points into the continuous speed curves: local linear 
regression model with p=1 (black curve) and local 
cubic regression model with p= 3 (red curve). The 
solid circles represent the average speed reported at 
the detector station.  
      Figure 3 and 4 respectively display the XY pairs 
about time and speed in the local linear and cubic 
models with those average speed values from the 
detector station (the number of the XY pairs is 361). 
Mean Square Error (MSE), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) are applied 
for the accuracy estimation, their definitions are shown 
in the following equations, where n is the number of 
the average speed reported by the detector station from 
4:30 pm to 6:30 pm (n=25), Yi 

is the average speed of 
the detector station, and Ŷi is the speed of XY pairs in 
the local linear and cubic models: 

 

Table 1. Model estimation 

                  

 

Figure 3. XY pairs in local linear model and 
average speed from detector station            

      The accuracy estimations about the linear and 
cubic models are given in Table 1, and the results 
show that the cubic model is closer to the speed values 
recorded by the detector station compared with the 
linear model. The data patterns in Figure 2, 3, and 4 

display that the local cubic fit (when p=3) can 
implement a better estimation in the peak and valley, 
which is consistent with the description in [26]. Due to 
the traffic congestion at the rush hours, the speed is the 
lowest at almost 5:00 pm, i.e. x=30, and then the 
speed begins to rise and has a tendency to level off 
after 6:00 pm, i.e., x=90. From 4:30 pm (x=0) to 4:40 
pm (x=10) and from 5:20 pm (x=50) to 5:40 pm 
(x=70), the local linear and cubic models show 
significant different information (see Fig. 3 and 4), and 
the local cubic model is more sensitive to follow the 
raw data. 

 

Figure 4. XY pairs in local cubic model and 
average speed from detector station 

4.3. Database implementation and queries  
 

      The combination of XY pairs in the local 
polynomial models and piecewise-linear 
approximation can change the continuous speed curves 
into the corresponding linear arithmetic constraints 
with high accuracy for data storage and query. More 
importantly, the accuracy can be adjusted and 
controlled via the error threshold Ψ, and the accuracy 
is higher with a smaller error threshold.   
      The query design and results are displayed in 
Management of Linear Programming Queries (MLPQ) 
[6]: MLPQ allows Datalog queries, minimum and 
maximum aggregation operators over linear objective 
functions, and some other operators. MSE, RMSE, and 
MAE are also applied for the accuracy estimation, 
where n is the number of XY pairs in every piecewise-
linear function, Yi is the speed of XY pair, and Ŷi is the 
speed calculated by the piecewise-linear function. 
      Based on piecewise-linear algorithm with the error 
threshold Ψ=0.05, the XY pairs’ data points in Figure 
3 and 4 are compressed into some linear functions, 
which are respectively shown in Table 2 and 3. The 
MSE, RMSE, and MAE columns summarize the 
accuracy analysis of every piecewise-linear function 
calculated by piecewise-linear approximation 
algorithm.  



      Now, the piecewise-linear segments listed in Table 
2 and 3 are actualized to exert the data analysis in 
constraint databases. In Figure 5, the software (MLPQ) 
shows the similar curves as Figure 2. Table 4 lists the 
model speed values evaluated by the local linear and 
cubic regressions and the query results from constraint 

databases. They are very close to each other, and even 
some query results are the same as the velocity values 
in the two models, i.e. error is zero. It also displays 
that the cubic regression has a better result than the 
linear regression. 

                                                                                                                                                                                                      
Table 2. Local linear model              

   

Table 3. Local cubic model              



Table 4. Result comparison 

 

 

Figure 5. Piecewise models speed in MLPQ      



5. Literature review 
 
      As a nonparametric method, the local regression 
follows the curved tendency of the data over the entire 
estimating region, not implement the model selection 
depending on the response. The local model is a real-
time model without data pre-classification and learns 
functions from the raw data [7]. Many approaches 
have been formed to offer the fast computation for one 
or more independent variables. However, the global 
model, as opposed to the local model, deviates from 
the data pattern and requires the offline training [7], 
such as neural networks and time series models. A 
complicated global function can be easily 
approximated into the local model via the design of 
band widths and weights. [8] depicts that the local 
modeling is not the approximate function with more 
accuracy from it, and this feature avoids negative 
interference exhibited by the global models. This is the 
primary fascination in the local modeling.  
      There exist a few distinguishing advantages in the 
local polynomial regression smoothing. This approach 
can avoid the drawbacks of the traditional kernel 
regression methodologies, such as the Nadaraya-
Watson estimator [9] [10] and the Gasser-Müller 
estimator [11]. The Nadaraya-Watson estimator 
produces an undesirable bias, and the Gasser-Müller 
estimator must pay a price in variance to manipulate a 
random design model. Also, the local polynomial 
fitting is competent for different models, such as 
random design, fixed design, highly clustered design, 
and highly uniform design, without boundary effects. 
Boundary modifications [12] [13] in multi-dimension 
are a tough task for other approaches, but the local 
polynomial fitting with high curvature adapts well to 
the bias problems at boundaries, so no boundary 
modification in this approach has remarkable merit. In 
addition, [14] proves that local polynomial smoothers 
of general orders achieve the mini-max efficiency over 
some well interpreted class of functions. The 
polynomial order selection is in a straightforward 
manner.  
      At present there are many methods and models 
concerning the short-term prediction in the domain of 
transportation. [7] summarizes these approaches, as 
follows: short-term forecasting algorithms [15], time 
series models [37], Kalman filtering models [38] [16], 
simulation models [39] [17] [18], dynamic traffic 
assignment models [19] [20], neural network models 
[40], and nonparametric methods [41] [21]. In terms of 
local constant regression in transportation, [21] and 
[42] respectively implement the k-nearest neighbor 
method and kernel estimator. [22] shows that the local 
linear method is better than the local constant methods 
in data distribution, and it is consistent with the 
conclusion in [7]: the local linear method is preferable 

to the k-nearest neighbor and the kernel smoothing 
method in the analysis of vehicle speed data.  
 
6. Conclusions 
 
      This article details the definition of local 
polynomial regression models, their bandwidth 
selection, and their order choice. The combination of 
the two models (the local linear or cubic fit) and 
piecewise-linear approximation algorithm is proposed 
as a new approach for estimating and predicting 
vehicle speed in constraint databases. The experiment 
results prove that this approach has a high accuracy in 
the storage of continuous non-linear data in linear 
constraint databases for transportation application.  
      The local cubic fit can implement a better 
estimation in the peak and valley of traffic data 
sources than the local linear fit, and yet the local cubic 
fit has a higher requirement concerning its calculation. 
Fortunately, the development of the software package 
can execute the complex calculations concerning the 
local cubic model and overcome this demerit to update 
the current transportation systems. Meanwhile, it can 
satisfy traffic data operation in a large data size.  
      Future research would concentrate on the non-
linear simulation of traffic moving objects and 
perform spatiotemporal data analysis in dynamic 
transportation environment.  
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