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Abstract

An approximate count of the number of (1) k-
dimensional rectangles that contain, overlap or are
within a query rectangle @, and (2) linearly moving
points that are to the left of a moving query point @ on
the z-axis at time ¢, can be found in (poly)-logarithmic
time in the number of rectangles or moving points.

1 Introduction

Let S be a set ok-dimensional rectilinear rectangles,
that is, rectangles with sides parallel to the axede a
k-dimensional point, an@ be ak-dimensional rectilin-

ear rectangle. Consider the following problems that ask

to find the:

Stabbing: Number of rectangles if that containP.
Contain: Number of rectangles if that contairng).
Overlap: Number of rectangles ifi that overlap®.
Within: Number of rectangles iff that are withinQ.

Alternatively, letS be a set of linearly moving points
on thex-axis, lett be a time instance, ari@ be a moving
point, and consider the problem that asks to find the:
Count: Number of points inS to the left of@ at timet.

The above five problems can be reducedtmmi-
nance which for a setS of points and a poinP asks to
find the:

Dominance: Number of points iS5 dominated byP.

wherepoint dominance is defined as follows:
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Definition 1 Point A = (ay,...,ax) dominates point
B = (b1,...,by), written asA = B, if and only if
b; < a; forlglgk

Using an ECDF-tree [1] the dominance problem can
be solved in logarithmic time in the worst case. The
ECDF-tree is a static data structure that does not allow
updates; however, it can be extended to an ECDF-B-tree
which performs both querying and updates efficiently,
that is:

Theorem 1 [Zhang et al. [7]] For any fixed constant
size page capacitys, the dominance problem can be
solved using anO(nlog" ' n) size ECDF-B-tree in
O(log" n) time. Further, the ECDF-B-tree allows a se-
guence of updates kﬁ(logk n) amortized time. [ ]

Main results: The Stabbing, Contain, Overlap,
and Within problems can be solved approximately in
O(nlog" ' n) space and(log" n) time (Theorem 3.
The Count problem can be solved approximately in
O(logn) time (Theorem 5).

2 Reductions of the Rectangle Problems

In the following, let A = (a1,...,a;), B =
(bl,...,bk), C = (cl,...,ck), andD = (dl,...,dk)
be k-dimensional points, let—-A denote the point
(—a1,...,—ax) and(A4, B) denote thek-dimensional
point (a1, ..., ak,b1,...,b;). The following are well-
known facts about point dominance.

Lemmal A-B < —B»—A. [ |

Lemma2 A > BandC >~ D < (A,C) >~ (B,D). &

Also let R be the rectangle with lower-most cornér
and upper-most corngB and ) be the rectangle with
lower-most corne’ and upper-most corngp. We as-
sume that? and@ are non-empty, that if3 >~ A andD
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easy to prove.



Lemma 3 R containsC' < (C,-C) > (A,—B). =
Lemma 4 R contains) < (C,—D)> (A,—B). &
Lemma5 RoverlapsQ < (D,—C) = (A,—B). &
Lemma6 Riswithin@Q < (-C,D)> (—A,B). m

Let f be the function that maps each rectangle of
form R into the point(A4, —B).

Let g be the function that maps each rectangle of form
R into the point(— A, B).

Theorem 2 k-dimensionalStabbing, Contain, Over-
lap, andWithin reduce t@®2k-dimensionaDominance

Proof: First we usef andg to map eactk-dimensional
rectangle inS into a 2k-dimensional point. Letf(S)
and g(S) denote the set of points obtained by usifig

that contain€' has its lower-most (negative upper-most)
corner dominated by (reps. —C), but not all rectan-
gles whose lower-most (negative upper-most) corner is
dominated byC' (resp.—C) actually contairC, the first
condition must hold. The others cases are similarm

Lemma 7 is particularly useful fdsorder points and
rectangles(the latter also calledorder windows), which
are located close to the border of the space in which all
the rectangles i lie.

Example 1 Suppose that in th-dimensional case, all
rectangles inS lie within the rectangular spade <

x,y < 100,000. Also suppose that we need to find
the number of rectangles that contain the pdiht=
(25,47), which clearly is a border point. Hence, un-
less there is an unusual distribution of the rectangles,
we expeci25,47) to dominate few or no lower-left cor-
ner points of the rectangles i Hence we also expect

andg, respectively. Second, we create an ECDF-B-tree #(C, I4) to be zero or a small non-negative integer and

indexI; for f(S) and a separate ECDF-B-tree indgx
for g(.S).

By Lemmas 3, 4, and 5 we can ugg¢ and the
2k-dimensional query point$C, —C), (C,—D), and
(D, —C), respectively, to answer the first three prob-
lems. By Lemma 6 we can udg and the query point
(—=C, D) to answer th&Vithin problem. [ |

3 Border Point and Window Queries

An upper (lower) bound dominancequery has the
following form:

Does S have less (more) thars rectangles
that containC, or contain, overlap, or are
within Q?

Let us create separate indicég and Ig for the

a good upper bound approximation #f(C, —C), I).

We can find that upper bound more efficiently by search-
ing index I 4 with point C' than we can find the exact
value by searching indek: with (C, —C).

For k-dimensional rectangles, the upper (lower)
bound dominance query can be answered using Theo-
rems 1 and 2 i) (log®* n) time. Here we have:

Theorem 3 The approximate algorithm based on
Lemma 7 require®(n logh ™! n) space and returns an
upper bound: in O(log" n) time. Whenu < s, then the
upper bound dominance query is “yes” and the
lower bound dominance query is “no.” ]

Since in general for border point and window queries
u < s, Theorem 3 is particularly useful for them.

4 Sequences of Updates

lower-most and the upper-most corner vertices, respec-

tively, of the rectangles i, and also let us create in-
dicesI_4 andI_g for their negatives. Le# (P, I) be
the number of rectangles in indéxdominated by point
P, and letmin be the minimum function. Then:

Lemma 7

#((07_0)7If> S min(#(cv-[A)7 #(_Ca I—B))

#((07_D)?If) S min(#(C7IA)7 #(_DalfB))

#((D7_C)alf) S mil’l(#(D,IA), #(_07—[—3))

#((703D)7Ig) S IHiIl(#(*C, I*A)a #(DaIB))

Proof: By Lemma 3, #((C,—C),Iy) is the count

of the rectangles that contaifi, while #(C,14) (or
#(—C,I_p)) clearly is the count of the rectangles

Theorems 1 and 2 imply thdl and, allow a se-
qguence of updates iﬁ)(log% n) amortized time. In
some cases only a finite number of insertion updates are
possible.

Definition 2 RectangleR with lower-most cornerA
and upper-most corneB dominates rectanglel) with
lower-most cornelC’ and upper-most corndp, if and
onlyif A= CandB > D.

By Theorem 2 and Dixon’s Lemma ([4], p. 123):

Theorem 4 Let ¢ be any fixed constant. If in a se-
guence ofs-dimensional rectangle®;, Ro, . .. no rect-
angle dominates any earlier rectangle, and every rectan-

whose lower-most (resp. negative upper-most) cornerdle has integer coordinate values greater than or equal to

point is dominated byC' (resp. —C). Since eachR

¢, then the sequence must be finite. ]



Figure 1. Approximating points below line.

5 Moving Points

The position of any poinP moving linearly along the
x-axis can can be represented by a functign ¢ + bp.
Alternatively, it can be represented as a pdib, bp)
in a dual plane. This dual representation is attractive
because of the following well-known lemma (see [5]):

Lemma8 Let P = ap -t +bp andQ = ag -t + bg
be two moving points in one dimensional space, and
P’ = (ap,bp) and@’ = (aq, bg) be their correspond-
ing points in the dual plane. SuppoBeovertakes) or
vice versa at time instan¢ethen

; bp — b
o ap —aqQ
that is, —t is the slope of the line?’Q’. Hence, the
Count problem reduces to the problem of finding how
many points are beloy; where! is a line crossingy’
with slope—t in the dual plane. ]

As an approximate solution, we first find the rectan-
gle that contains all the points in the dual plane. Then we
cut the line within the rectangle int@ number of equal
pieces by horizontal and vertical line segments. For ex-
ample, Figure 1 shows a set of points within a rectangle

m

#Below < #(Ams1, 1)+ Y #(Bi, I) = #(Aira, 1)

i=1

#Below > #(Ami1, 1) + Y #(Ai, 1) — #(Cy, T)

=1
An approximation offt Below is their average:
#(Ah I) + #(Am-‘rlﬂ I) + eril #(Bi7 I) - #(Cﬁ I)
2

Example 2 In Figure 1 the lower bound i§ and the
upper bound i9, and the average of these7iswhich is
exactly the number of points below the line.

In generabln can be considered to be a constant that
effects the accuracy of the approximation.

Theorem 5 The approximation use®(nlogn) space
and answer€ount queries inO(mlogn) time where
the crossing line in the dual plane is cut imtopiecesm

The above approximation method can be extended
to Count queries with arbitrary:-dimensional moving
points. Hence it contrasts well with earlier precise algo-
rithms for Count queries that requir®(/n) time and
O(n) space withl-dimensional and)(logn) time and
O(n?) space withk-dimensional moving points [5] and
earlier approximation methods [2, 6] that use “buckets”
that cannot be efficiently updated.
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