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Abstract

An approximate count of the number of (1) k-
dimensional rectangles that contain, overlap or are
within a query rectangle Q, and (2) linearly moving
points that are to the left of a moving query point Q on
the x-axis at time t, can be found in (poly)-logarithmic
time in the number of rectangles or moving points.

1 Introduction

Let S be a set ofk-dimensional rectilinear rectangles,
that is, rectangles with sides parallel to the axes,P be a
k-dimensional point, andQ be ak-dimensional rectilin-
ear rectangle. Consider the following problems that ask
to find the:

Stabbing: Number of rectangles inS that containP .

Contain: Number of rectangles inS that containQ.

Overlap: Number of rectangles inS that overlapQ.

Within: Number of rectangles inS that are withinQ.

Alternatively, letS be a set of linearly moving points
on thex-axis, lett be a time instance, andQ be a moving
point, and consider the problem that asks to find the:

Count: Number of points inS to the left ofQ at timet.

The above five problems can be reduced toDomi-
nance, which for a setS of points and a pointP asks to
find the:

Dominance: Number of points inS dominated byP .

wherepoint dominance is defined as follows:
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Definition 1 Point A = (a1, . . . , ak) dominates point
B = (b1, . . . , bk), written asA ≻ B, if and only if
bi ≤ ai for 1 ≤ i ≤ k.

Using an ECDF-tree [1] the dominance problem can
be solved in logarithmic time in the worst case. The
ECDF-tree is a static data structure that does not allow
updates; however, it can be extended to an ECDF-B-tree
which performs both querying and updates efficiently,
that is:

Theorem 1 [Zhang et al. [7]] For any fixed constant
size page capacityB, the dominance problem can be
solved using anO(n logk−1 n) size ECDF-B-tree in
O(logk n) time. Further, the ECDF-B-tree allows a se-
quence of updates inO(logk n) amortized time.

Main results: The Stabbing, Contain, Overlap,
and Within problems can be solved approximately in
O(n logk−1 n) space andO(logk n) time (Theorem 3).
The Count problem can be solved approximately in
O(logn) time (Theorem 5).

2 Reductions of the Rectangle Problems

In the following, let A = (a1, . . . , ak), B =
(b1, . . . , bk), C = (c1, . . . , ck), andD = (d1, . . . , dk)
be k-dimensional points, let−A denote the point
(−a1, . . . ,−ak) and(A, B) denote the2k-dimensional
point (a1, . . . , ak, b1, . . . , bk). The following are well-
known facts about point dominance.

Lemma 1 A ≻ B ↔ − B ≻ −A.

Lemma 2 A ≻ B andC ≻ D ↔ (A, C) ≻ (B, D).

Also letR be the rectangle with lower-most cornerA

and upper-most cornerB andQ be the rectangle with
lower-most cornerC and upper-most cornerD. We as-
sume thatR andQ are non-empty, that is,B ≻ A andD

≻ C. The following four lemmas are also known [3] or
easy to prove.
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Lemma 3 R containsC ↔ (C,−C) ≻ (A,−B).

Lemma 4 R containsQ ↔ (C,−D) ≻ (A,−B).

Lemma 5 R overlapsQ ↔ (D,−C) ≻ (A,−B).

Lemma 6 R is within Q ↔ (−C, D) ≻ (−A, B).

Let f be the function that maps each rectangle of
form R into the point(A,−B).

Let g be the function that maps each rectangle of form
R into the point(−A, B).

Theorem 2 k-dimensionalStabbing, Contain, Over-
lap, andWithin reduce to2k-dimensionalDominance.

Proof: First we usef andg to map eachk-dimensional
rectangle inS into a 2k-dimensional point. Letf(S)
andg(S) denote the set of points obtained by usingf

andg, respectively. Second, we create an ECDF-B-tree
indexIf for f(S) and a separate ECDF-B-tree indexIg

for g(S).
By Lemmas 3, 4, and 5 we can useIf and the

2k-dimensional query points(C,−C), (C,−D), and
(D,−C), respectively, to answer the first three prob-
lems. By Lemma 6 we can useIg and the query point
(−C, D) to answer theWithin problem.

3 Border Point and Window Queries

An upper (lower) bound dominancequery has the
following form:

DoesS have less (more) thans rectangles
that containC, or contain, overlap, or are
within Q?

Let us create separate indicesIA and IB for the
lower-most and the upper-most corner vertices, respec-
tively, of the rectangles inS, and also let us create in-
dicesI−A andI−B for their negatives. Let#(P, I) be
the number of rectangles in indexI dominated by point
P , and letmin be the minimum function. Then:

Lemma 7

#((C,−C), If) ≤ min(#(C, IA), #(−C, I−B))
#((C,−D), If) ≤ min(#(C, IA), #(−D, I−B))
#((D,−C), If) ≤ min(#(D, IA), #(−C, I−B))
#((−C, D), Ig) ≤ min(#(−C, I−A), #(D, IB))

Proof: By Lemma 3, #((C,−C), If) is the count
of the rectangles that containC, while #(C, IA) (or
#(−C, I−B)) clearly is the count of the rectangles
whose lower-most (resp. negative upper-most) corner
point is dominated byC (resp. −C). Since eachR

that containsC has its lower-most (negative upper-most)
corner dominated byC (reps.−C), but not all rectan-
gles whose lower-most (negative upper-most) corner is
dominated byC (resp.−C) actually containC, the first
condition must hold. The others cases are similar.

Lemma 7 is particularly useful forborder points and
rectangles (the latter also calledborder windows), which
are located close to the border of the space in which all
the rectangles inS lie.

Example 1 Suppose that in the2-dimensional case, all
rectangles inS lie within the rectangular space0 ≤
x, y ≤ 100, 000. Also suppose that we need to find
the number of rectangles that contain the pointC =
(25, 47), which clearly is a border point. Hence, un-
less there is an unusual distribution of the rectangles,
we expect(25, 47) to dominate few or no lower-left cor-
ner points of the rectangles inS. Hence we also expect
#(C, IA) to be zero or a small non-negative integer and
a good upper bound approximation for#((C,−C), If).
We can find that upper bound more efficiently by search-
ing index IA with point C than we can find the exact
value by searching indexIf with (C,−C).

For k-dimensional rectangles, the upper (lower)
bound dominance query can be answered using Theo-
rems 1 and 2 inO(log2k n) time. Here we have:

Theorem 3 The approximate algorithm based on
Lemma 7 requiresO(n logk−1

n) space and returns an
upper boundu in O(logk n) time. Whenu < s, then the
upper bound dominance query is “yes” and the
lower bound dominance query is “no.”

Since in general for border point and window queries
u < s, Theorem 3 is particularly useful for them.

4 Sequences of Updates

Theorems 1 and 2 imply thatIf andIg allow a se-
quence of updates inO(log2k n) amortized time. In
some cases only a finite number of insertion updates are
possible.

Definition 2 RectangleR with lower-most cornerA
and upper-most cornerB dominates rectangleQ with
lower-most cornerC and upper-most cornerD, if and
only if A ≻ C andB ≻ D.

By Theorem 2 and Dixon’s Lemma ([4], p. 123):

Theorem 4 Let c be any fixed constant. If in a se-
quence ofk-dimensional rectanglesR1, R2, . . . no rect-
angle dominates any earlier rectangle, and every rectan-
gle has integer coordinate values greater than or equal to
c, then the sequence must be finite.
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Figure 1. Approximating points below line.

5 Moving Points

The position of any pointP moving linearly along the
x-axis can can be represented by a functionaP · t + bP .
Alternatively, it can be represented as a point(aP , bP )
in a dual plane. This dual representation is attractive
because of the following well-known lemma (see [5]):

Lemma 8 Let P = aP · t + bP andQ = aQ · t + bQ

be two moving points in one dimensional space, and
P ′ = (aP , bP ) andQ′ = (aQ, bQ) be their correspond-
ing points in the dual plane. SupposeP overtakesQ or
vice versa at time instancet, then

−t =
bP − bQ

aP − aQ

that is,−t is the slope of the lineP ′Q′. Hence, the
Count problem reduces to the problem of finding how
many points are belowl, wherel is a line crossingQ′

with slope−t in the dual plane.

As an approximate solution, we first find the rectan-
gle that contains all the points in the dual plane. Then we
cut the line within the rectangle intom number of equal
pieces by horizontal and vertical line segments. For ex-
ample, Figure 1 shows a set of points within a rectangle
and a line that crosses the rectangle. The crossing line is
cut intom = 4 pieces horizontally by the line segments
Ci andBi+1 for 1 ≤ i ≤ 3 and vertically by the line
segmentsBj andCj+1 for 1 ≤ j ≤ 3.

Let I be the ECDF-B-tree that stores the dual repre-
sentations of the moving points. The following are up-
per and lower bounds for#Below, the number of points
below the crossing line:

#Below ≤ #(Am+1, I) +
m∑

i=1

#(Bi, I)−#(Ai+1, I)

#Below ≥ #(Am+1, I) +
m∑

i=1

#(Ai, I) − #(Ci, I)

An approximation of#Below is their average:

#(A1, I) + #(Am+1, I) +
∑m

i=1
#(Bi, I) − #(Ci, I)
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Example 2 In Figure 1 the lower bound is5 and the
upper bound is9, and the average of these is7, which is
exactly the number of points below the line.

In generalm can be considered to be a constant that
effects the accuracy of the approximation.

Theorem 5 The approximation usesO(n logn) space
and answersCount queries inO(m log n) time where
the crossing line in the dual plane is cut intom pieces.

The above approximation method can be extended
to Count queries with arbitraryk-dimensional moving
points. Hence it contrasts well with earlier precise algo-
rithms for Count queries that requireO(

√
n) time and

O(n) space with1-dimensional andO(logn) time and
O(n2) space withk-dimensional moving points [5] and
earlier approximation methods [2, 6] that use “buckets”
that cannot be efficiently updated.
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