
Theoretical Computer Science 116 (1993) 117-149

Elsevier

117

A closed-form evaluation for
Datalog queries with integer
(gap)-order constraints*

Peter Z. Revesz
Department of Computer Science and Engineering, Universily of Nebraska-Lincoln, Lincoln,
NE, USA

Abstract

Revesz P.Z., A closed-form evaluation for datalog queries with integer (gap)-order constraints,

Theoretical Computer Science 116 (1993) 117-149.

We provide a generalization of Datalog based on generalizing databases by adding integer order

constraints to relational tuples. For Datalog queries with integer (gap)-order constraints (denoted as

Datalog<“), we show that there is a closed-form evaluation. We also show that the tuple recognition

problem can be done in PTIME in the size of the generalized database, assuming that the size of the

constants in the query is logarithmic in the size of the database. Note that the absence of negation in

critical, Datalog queries with integer order constraints can express any Turing-computable

function.

1. Introduction

In this paper we consider a generalization of Datalog based on the notion of

a constraint tuple. The important idea of a constraint tuple comes from constraint

logic programming systems, e.g. [4,8,14], and it generalizes the notion of a ground

fact. This allows the declarative programming of new applications, including various

combinatorial search problems (see [30] for a survey). Recently, Kanellakis et al. [171

extended this idea to database systems through the design of CQLs (constraint query

Correspondence to: Peter Z. Revesz, Department of Computer Science and Engineering, University of

Nebraska-Lincoln, Lincoln, NE 68588, USA.

*A preliminary version of the results in this paper appeared in 1261. This work was supported in part by
NSF grant IRI-8617344, NSF-INRIA grant INT-8817874 and by ONR grant NOOO14-83-K-0146 ARPA

Order No. 4786 while the author was at Brown University, and by the Institute for Robotics and Intelligent

Systems in Canada.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

118 P.Z. Revesz

languages). For example, in the relational database model, R(3,4), or R(x, y) with

x = 3, y=4, is a tuple of arity 2. In our framework, R(x, y) with x=y, x <2 is

a generalized tuple of arity 2 and so is R(x, y) with x-y 2 25, where x and y are any

integers satisfying these constraints. An important feature of generalized tuples of

arity k is the description, by a finite representation, of a possibly infinite set of

standard relational database tuples with arity k.

A CQL can be considered to be a union of a database query language and

a decidable logical theory together with a bottom-up evaluation in closed form.

For a CQL to be feasible, the bottom-up evaluation has to be efficient. A generally

accepted measure of performance of a bottom-up evaluation is data complexity,

which was introduced by Chandra and Hare1 [S], and by Vardi [31]. Data complexity

measures the complexity of answering a fixed query in terms of the size of

the database. The rationale behind data complexity is that the size of the

database dominates the query size by several orders of magnitude for most applica-

tions.

It is well known that any Datalog and any inflationary Datalog’ [l, 213 query

evaluated on traditional relational databases have PTIME data complexity. In [17] it

is also shown that any inflationary Datalog’ with rational order and any inflationary

Datalog’ with equality over an infinite set of constants query can be also evaluated in

PTIME data complexity. The latter case is also considered in [2,11,19,25]. However,

the case of Datalog queries combined with the theory of integer order [lo] was left as

an open problem.

There are other attempts to combine some form of integer constraint solving with

existing relational database languages. For example, Kabanza et al. [151 examined

a way of combining relational calculus with a limited form of recursion, called linear

repeating points. (Linear repeating points are points of the form c + kn, for each integer

n and fixed integer constants c and k.) As [151 shows, for unary and binary predicates,

this gives exactly Presburger definability, which is a clear extension of relational

calculus, but it still lacks expressibility of simple operations such as transitive closure.

Another related paper by Chomicki and Imielinski [7] builds directly on Datalog by

restricting the application of the successor function to one argument (say always the

first argument) of relations. This restriction disallows the order predicate, which

cannot be expressed in this language. Hence, both of these results leave open the

natural case of Datalog combined with the theory of integer order. There are many

problems that can be expressed in this language. The following age-bounds problem is

one example.

Example 1.1. Alfred and Alice have children Bernard, Carl and Donald in this order.

Bernard and Bernice have child Edward. Donald and Denise have children Elise and

Fred. Edward and Elise have child Gerald. Fred and Felice have child Harold (see

Fig. 1). Alfred is not yet 70, and Harold is already in school. Gerald was born just last

month. Elise is over 4 years older than her younger brother Fred, and Bernard is over

25 years older than his son Edward. Assuming that between parents and their children

A closed-form evaluation for Datalog queries 119

Alfred ce Alice

I I I
Bernard e Bernice Carl Donald e Denise

I /

I
Edward

I

ce Elise Fred cp Felice

Gerald

Fig. 1. Alfred and Ahce’s family.

Harold

there is over 17 years difference and that no siblings are twins or born in the same year,
how old is Donald?

The Datalog<” program below finds for each person p the set of ages y that p can
have. It will be the conjunction of the strictest upper and lower age limits. The upper
bound will be the conjunction of another set of constraints: the upper bound implied
by the age of the parents of p, the upper bound implied by the age of an older sibling of
p, and the explicitly stated upper bound for the age of p. The upper bound that is
calculated from the age of the parents is again a conjunction of constraints. Similarly
for the other defined relations.

age(p, ~1
upper-a&4 Y)

._

upper_age_by_parents(p,y,) :-

upper_age_by_parents(p, y) :-

upper_age_by_sibling(p, y,) :-

upper_age_by_sibling(p,y) :-
lower_age(p, y) ._

lower_age_by_child(p,y,) :-

lower_age_by_child(p, y) :-
lower_age_by_sibling(p,y,) :-

lower_age_by_sibling(p,y) :-

upper-wk y), lower-age(p,y)
upper_bound(p, y), upper_age_by_parents(p, y),

upper_age_by_sibling(p, y)

father(pJI upper-age(f; YZ), gen-diff(yI,yA,
mother(p,m), upper-age(m y3), gen-difS(yI,y3)

di@(p, YI ,fT ~2)~ difS(p, YI, m, ~3)

no-known-parents(p)

next_sibling(n, p), upper_age(n, y2),

sibl-difS(yI, YX), difS(p, Y,, n, y2)
youngestchild

lower_bound(p, y), lower_age_by_child(p, y),
lower_age_by_sibling(p, y)

eldestchild(p, e), lower_age(e, y2)

gen-difS(y,,yl), difS(e,y,,p,yI)
childless(p)
next_sibling(p, n), lower_age(n, y2),

sibl-difS(y2,y1), difS(n,y~,p,~~)
youngestchild

120 P.Z. Reoesz

Most of the input database relations can be represented in a standard Datalog style,

including the ,father, mother, no-known-parents, eldestchild, next-sibling, youngest-

child, and childless relations. We describe here only those database relations whose

definitions need integer order constraints. We use here for integer variables x and y,

abbreviations like x cloy, that stands for the constraint x+ lO<y (see the text for

further explanation).

gen_di,fS(yI, y2) :- y1 <17 y, %minimum age difference between generations

sibl_dijf’(yI , y2) :- y, < y, % minimum age difference between two siblings

dtfs(Edward, y,, Bernard, y2) :- y1 cz5 y2

diff(Fred, y, , Elise, y2) :- y1 c4 y2

difS(x,y,,s, y2) :-x # Edward, x # Fred

upper_bound(Alfred, y) :- y < 70

upper_bound(Gerald, y) :- y = 0

upper_bound(x, y) :-x # Alfred, x # Gerald

lower_bound(Gerald, y) :- y = 0
lower_bound(Harold, y) :- 5 < y

lower_bound(x, y) :- x # Gerald, x # Harold, 0 <y

Using these inputs, the program can find the best bounds for each person’s age.

For example, since Harold is childless and a youngest child, the tuples

lower_age_by_child(Harold, y) and lower_uge_by_sibling(Harold, y) do not place

any restrictions on his age (i.e., y can be any integer in these). Therefore,

lower_age(Herold, y) will remain just the lower bound that is given initially, (i.e.,

5 <y). Since Harold is also the eldest child of Fred, and there is no explicitly given

difference between Harold and Fred’s ages, lower_bound_by_child(Fred,y,) will be

(=Y)A(Y -+~r)=5 <Is~I=23<~I. Since Fred is also a youngest child, Fred’s

lower_age will be the same. Hence, Fred is more than 23 years old. By continuing this

way, the program will find that Donald’s age is between 47 and 49.

Our main difficulty in integrating relational database languages and integer-order

constraints was developing the appropriate quantifier elimination procedure for the

positive existential subset of the theory of integer order. The quantifier elimination

procedure that we develop can be used recursively to evaluate Datalog’” queries.

(This paper assumes that the variables range over the integers, but the techniques are

also applicable to any discrete or (gap)-ordered domain.)

This paper describes for Datalog’” queries a bottom-up evaluation method that

terminates in a closed form on any generalized relational database input (Theorem

3.17). The evaluation method always gives some (possibly non-unique) generalized

relational database output. This output database is equivalent to the unique least-

fixpoint model of the implicit unrestricted relational database input (Theorem 3.19).

A closed-form evaluation for Datalog queries 121

In general, the output of our evaluation procedure is not unique. Note that this does

not cause any problems because the least-fixpoint model of any query is a unique

unrestricted relational database. The situation of having several possible generalized

relational database outputs is only due to the fact that the same unrestricted relational

database can be described finitely by several syntactically different generalized rela-

tional databases.

Let Q be any Datalogcz query with program P and generalized database d. For

any relational tuple A(t), testing whether A(t) belongs to the model of Q can be

done in O(nk+’ +(~--l)~‘“~‘)) time (Theorem 4.7), where n is the size of d, k is the

largest arity of a relation in P, u is the largest and 1 is the smallest constant in either

t or Q, and m is the maximum number of relation symbols in a rule of P. For the case

of linear recursive programs, the test has NLOGSPACE data complexity

(Theorem 4.8).

The above result is quite intuitive. For example, one may ask “Could Donald be 48

years old?“. This can be answered by testing whether the tuple Age(Donald,48)

belongs to the model of the Datalog<” program and the generalized database input in

Example 1.1. Many generations’ time may pass, but if the database is kept updated,

then the same program can still test Donald’s age, and the test will take longer because

of his new descendants.

The existence of a closed form for Datalog’” is pleasantly surprising. It is easy to

see that stratified Datalog? with integer order is undecidable as this constraint query

language can express all Turing-computable funtions (see Proposition 2.3). The key

reason for the undecidability is the first-order expressibility of the successor function,

which together with the recursive power of Datalog gives the expressibility of all

p-recursive functions.

Proposition 2.3 is worth comparing with the complexity results of Immerman [123

and Vardi [31]. They show that any query in any language with PTIME data

complexity can be expressed in Datalog’ with an integer order predicate, and

conversely, any query in Datalog with an integer order predicate has PTIME data

complexity. Immerman and Vardi, however, use only traditional relational databases,

whereas in Proposition 2.3 we use generalized relational databases.

An important technical contribution of this paper is the definition of a gap-graph on

integer variables. Intuitively, k-variable gap-graphs partition the k-dimensional point

space and capture the essential properties of each subset. A gap-graph is a graph with

variables and two constants as vertices and some (undirected or directed) edges

between distinct vertices together with a gap-order labeling for each edge. A gap-order

is either = on an undirected edge or cs on a directed edge for some nonnegative

integer subscript g that denotes the minimum difference between the two ordered

elements. (That is, the vertices can represent either integer constants or integer

variables. In the latter case, the gap-order labels are meant to restrict the possible

values that the variables can take.) While gap-graphs arise naturally, they potentially

form an infinite partition of the point space (since there is no limit a priori on the gap

values): the challenge is to show that a finite number of gap-graphs always suffice to

122 P-Z. Reties

describe any input and output generalized database. We show this to be true in a very

general setting using a geometric argument.

We start by giving some definitions and propositions in Section 2. The closed-form

evaluation method for Datalog with integer order queries is described in Section 3.

Also in Section 3, we prove that the method terminates on any input and computes

a well-defined unique model for each query. The analysis of the tuple recognition

problem for Dataloy’” queries in general and for the special case of linear recursive

queries is given in Section 4. Finally, open problems are listed in Section 5.

2. Basic concepts

Our work will be a particular generalization of Codd’s relational database model [3]

and the language Datalog. We assume that the reader is familiar with these concepts

and their relevance to databases. An introduction to these can be found for example in

[16,28]. In this section we will give only the necessary definitions for the new

generalizations of relational databases and Datalog.

Generalized relational databases. Our database framework is set up as follows. Let

A(x1, ..., xk) be a relation symbol with arity k. Let tEZk be any sequence of k integers.

(We denote by Z the set of integer numbers.) We call t a tuple and A(t) a relational

tuple. In the relational model database relations are composed of a finite number of

relational tuples. An integer order constraint is of the form u = v, u # L‘, u < v, or u < v,

where u and v are variables or constants. Variables range over the intensional domain

Z. Constants and =, #, 6, < are interpreted as integer numbers and their ordering.

Let @(x1, xk) be a conjunction of integer order constraints over distinct variables

x1, . . . , xk. We call 4 a constraint tuple. We call an expression of the form

A(x1, ..., xk):-4(xl> ...> xk) a generalized relational tuple, where x1, , xk are distinct

variables, and, when there is no confusion about substitutions, we write A(@).

We view each generalized relational tuple A (x1, . , xk) :- C#I(x1, . . , xk) as a finite

description for a possibly infinite number of relational tuples A(tl), . . , A(t,), where

each ti~Zk and ti satisfies 4, i.e., ti I= 4 in the standard sense. Therefore, we are dealing

with special types of unrestricted (finite or infinite) relational databases. For each

database and query program, we call the finite set of constants appearing in them the

active domain D.

Closed-form bottom-up evaluation. We require that the evaluation of the query,

given an input generalized relation, yield an output generalized relation which has the

same type of constraints as the input generalized relation. This we call the closed-form
requirement. One reason for this requirement is that a closed form allows the

composition of queries.

We also require that the evaluation be bottom-up, i.e., that it evaluate the subgoals

before the head of the rules. We make this requirement to allow the possibility of

compiler and run-time optimizations. We know that many good optimization

A closed-form evaluation $or Datalog queries 123

methods for relational database languages are based on bottom-up evaluation. For

more about optimization and the importance of bottom-up evaluation, see [16, 281.

Su$ty. Recall that an assumption is Codd’s relational model is that relations (both

input and output) are always finite structures, that is, they are always composed of

a finite number of relational tuples. This is called the safety requirement. Analogous to

that requirement, in our extension of the relational database model, we require that

relations be composed of a finite number of generalized relational tuples. This

requirement assures that the queries are always evaluable in finite time. Guaranteed

finite-time evaluation helps in testing and debugging programs, especially since the

halting problem in general is undecidable, and makes automated programming

possible. (Note that finiteness does not follow from closure. In general, the defined

database relations may be describable by only an infinite number of constraints of the

types that appear in the database input.)

An important point to note here is that in the relational database model, to

guarantee safety (i.e., that the output database is finite), only a restricted subset of

relational calculus, namely, safe relational calculus is allowed as a query language [3].

By contrast, our general evaluation method works for any Datalog’” query, that is,

the evaluation method finds a finite generalized output database in finite time for any

finite generalized input database. Let us now describe our query language.

Dutalog with integer order. The syntax is that of traditional Datalog where the

bodies of rules can also contain a conjunction of integer order constraints. A Datulog

program P with integer order, is a finite set of rules of the form

A()-Al,A,)...) Al.

The expression A, (the rule head) must be an atomic formula of the form R(xr , . .,x,,),

and the expressions A,, . , AI (the rule body) must be atomic formulas of the form

Xi=Xj, Xi#Xj, Xi~Xj, Xi<xj, or R(x,, x,,), where R is some predicate symbol.

The semantics of a Datalog program P on a generalized database rl, . . . , r, (repre-

senting unrestricted relational database p1 , . . . , p,) is the least fixpoint of the mono-

tone mapping defined by a first-order formula 4P and pl, . . . , pn. We explain dP by an

example right below. This is as in the case without constraints, the only difference

being the use of unrestricted relational databases [16,24]. The following example

appears in [17], except that there the variables are interpreted to range over the

rationals.

Example 2.1. Consider the Datalog with integer order query P:

R(x,Y):--R,(x,Y)

124 P.Z. Revesz

Let this query be applied to a generalized database r0 representing the unrestricted

relation pO. Then 4P is the following first-order formula, where R, is interpreted as pO:

This formula defines a mapping from unrestricted relations p of arity 2 to unrestricted

relations of arity 2. Here R is singled out because it is the predicate variable that is

initialized to p and will receive the output of $P. This mapping is

where we denote by 6 our interpretation of the symbols =, #, < and <. This

mapping is monotone with respect to set inclusion for p. By the Tarski fixpoint

theorem, it has a least fixpoint, which is the output of the query program applied to

input rO.

Datalog with integer gap-order (Datak~g<~). The syntax is that of Datalog with

integer order constraints with one addition. In the rule bodies and the generalized

database we allow atomic formulas called gap-orders of the form Xi <s Xj where gE N.

(We use N to denote the set of natural numbers.) We interpret this as a limited form of

addition, namely, as Xi+g <xj. Otherwise, the semantics is the same as for Datalog

with integer order constraints. Let us illustrate this language also with an example.

Example 2.2. The following Datalog<” program expresses a variant of the shortest

path problem:

Suppose that the input relation E describes distances between cities in miles using

generalized database tuples. For example, the generalized database tuple

E(x,y,s,,sz):-x=Toronto, y=Boston, s1 <400s2

describes that there is a 400 miles long direct flight from Toronto to Boston. Note that

the last two arguments represent by variables the endpoints of a stretched-out and

movable string and the gap-value between the endpoints represents the distance

between the two cities. Similarly, the generalized tuple

E(x,y,s,,s,):-x=Boston, y= London, s1 <2000 s2

describes that there is a 2000 miles long direct flight from Boston to London.

Intuitively, the strings need to be concatenated to measure distances of flights with

connections. The query will do exactly that, i.e., concatenate the strings along all

possible paths. Then it becomes easy to check whether there is a path of length

1 between any two given cities c1 and c2 by testing whether in the generalized output

database there is a generalized relational tuple P(~,,x~,.~~,x~):-~(x~,x~,x~,x~)

such that t+4(xl,xz,x3,x,), where t=(cl,c 2, 0, I). For example, we could test

A closed-form evaluation for Datalog queries 125

whether t = (Toronto, London, 0,250O) is such a tuple. The answer in this case would

be “yes”, indicating that there is a flight (with connections) of length 2500 from

Toronto to London.

Remark. The type of test in Example 2.2 is called a tuple recognition test, i.e., we want

to find whether a standard relational database tuple t is in the generalized output

database. We know that 1 is the length of the shortest path between cities c1 and c2 if

the recognition test succeeds for tuple t =(c,, c2,0, 1) and fails for tuple t’=

(cl, c2, 0, l- 1). Hence, using binary search or other standard search techniques, we

can always find by a number of tuple recognition tests the length of the shortest path.

Recognition tests like the one in Example 2.2 motivate our analysis of the problem in

Section 4.

Generalized data complexity. The way Chandra and Hare1 [S] and Vardi [31]

define data complexity is based on tuple recognition. That is, they actually phrase the

query evaluation problem as a decision problem. They define, for a fixed query Q,

a language L,= { (t, d): tEQ(d)). That is, the language consists of the set of strings

which are pairs of a standard relational database tuple t and an input database d (also

written as a string of standard relational database tuples) such that t is in the output

database in a complete evaluation of Q on d. In Section 4 we use a modified definition

of data complexity to allow d to be a generalized database. We define the language as

L,={(0): tl=gAgEQ(d)}, h w ere t is a standard relational tuple that satisfies some

generalized relational tuple g that is in the generalized output database in our

evaluation of Q on d.
StratiJied Datalog’ with integer order constraints. The syntax is that of Datalog

with integer order constraints with one addition. We allow in rule bodies expressions

of the form lR(xl, x,), where R is some predicate symbol. We give the language

stratified semantics [6]. Recall that we call a relation an intensional database (or IDB

for short) relation if it is defined in terms of other database relations, i.e., the relational

predicate symbol occurs in the head of one or more rules of the program. The

stratified semantics introduced by Chandra and Hare1 [S] means that we group IDB

predicates (and rules in which they occur as head) into strata, or layers, and evaluate

each layer in sequence. The only restriction that we make is that an IDB predicate

should not occur negated before the computation passed its layer.

We give the following simple proposition to illustrate that dealing with integer

order can be hard and to put our results on DatalogCz into a better context.

Proposition 2.3. Any Turing-computable function is expressible by a query of StratiJied
Datalog’ with integer order constraints.

Proof. Since the class of Turing-computable and the class of p-recursive functions are

equivalent (see [20,22]), it is enough to show that all p-recursive functions can be

expressed. Recall from [22] (see Definition 5.5.2 in [22]) that a function is p-recursive

if and only if it can be obtained from the initial functions of zero, projection, and

126 P.Z. Recesz

successor by the operations of composition, primitive recursion, and unbounded

minimalization applied to regular functions. (See for the other basic definitions also

1221. We repeat here for clarity only the definition of regular. A (k + 1)-place function

y is regular if and only if, for every tin N k, there is an m such that g(r?, m)=O.)

In our Datalog’ simulation we use the convention that the function values of the

initial and all built-up functions are in the last argument of the predicates with the

same name that the functions have. The zero function is immediate. We do it by

simply letting zero(O) be a database fact. The projection functions are also straightfor-

ward. For each ith k-place projection function, with 1 <i < k, we let

be database facts. The successor function can be expressed as follows:

succ(x, y) :-x < y, i distant(x, y)

distant(x, y) :- x < z < y

In the above the bottom rule must be done before the top rule by stratification.

Together the two rules say that y is the successor of x, if y is greater than x and there is

no integer z between x and y.

Let I> 0 and k 3 0 and let g be an I-place function and f and hI , . , h, be k-place

functions. Then the composition of f obtained from g and h,, , kl can be simulated

as follows:

./I% y):-gY(% Y), kl(%xl),h(%x-I)

Primitive recursion is also straightforward:

f(fi, 0, y):-d%Y)

f(ii,m’,y):--k(~,m,x,y),,f(fi,m,x),succ(m,m’)

For the unbounded minimalization, stratified negation is again necessary. As in the

definition of successor, the bottom rule is evaluated first:

smuller(m’,m):-g(ti,m’,O),m’<m

Finally, we note that the depth of the stratification need not be larger than two,

because of a theorem of Kleene [20] which states that only one application of

unbounded minimalization is sufficient to express any p-recursive function. 0

Remark. It follows from [17] that stratified Datalog’ with rational order can be

evaluated in PTIME in the size of any generalized extensional database. Clearly, the

difficulty comes from having the integers as the domain and not from negation. In the

theory of rational order [9] we cannot express many things that we can express in the

theory of integer order; for example, we cannot express successor (+ 1).

A closed-form eoaluation for Datalog queries 127

3. A closed-form evaluation for Datalog with integer gap-order

In this section we show that, for Datalog<” programs and any generalized input

database, there is a closed-form evaluation. This evaluation strategy will be similar to

the naive evaluation algorithm used for Datalog only. That is, at each step, all possible

rule applications are considered with all possible substitutions of database facts for

subgoals. The complication results from the database facts being generalized rela-

tional tuples.

Our main goal is to prove that there is an evaluation algorithm for which the

number of steps necessary is finite and that the algorithm computes a well-defined,

unique output for each query. (For complexity results, see Section 4). We will proceed

as follows.

In Section 3.1 we simplify the problem by transforming Datalog<” queries into

a special form, where each generalized tuple is represented as a gap-graph (Definitions

3.1 and 3.2 and Lemma 3.4). Second, we give some basic notions about gap-graphs,

the most important of which is consistency (Definition 3.443.6) and show a simple

way to test whether a gap-graph is consistent (Lemma 3.8).

In Section 3.2, we define shortcut, merge and subsume as the three basic operations

on gap-graphs (Definition 3.8-3.10). We also show in several lemmas the semantic

correctness of these operators. Essentially, this means that the operators are consist-

ency preserving (Lemmas 3.1 l-3.13).

In Section 3.3 we define generalized rule applications and our evaluation method in

terms of the four basic operations on gap-graphs. We prove in Theorem 3.17 that the

evaluation method always terminates. Finally, we prove in Theorem 3.19 that the

evaluation method always yields the desired unique least-fixpoint model (defined in

Definition 3.18).

3.1. Gap-graphs

For this section, let D be any fixed finite set of integers. We start with the basic

definitions of gap-orders and gap-graphs.

Definition 3.1. Let x and y be any two integer variables. Given some assignment to the

variables, a gap-order x cs y for some gap-value gE N holds if and only if x + g < y

holds in the given assignment. A gap-order x = y holds if and only if x and y are equal

in the given assignment.

Definition 3.2. Let xi, .., x, be a set of integer variables, and let 1 and u be any

elements of Du { +CO- CO} such that 1 cu. Then a gap-graph is any graph that has

n+2 vertices labeled x i,x. and 1 and u and has between any pair of distinct

vertices at most one undirected edge labeled by = or one directed edge labeled by

a gap-order cs for some gEN.

128 P.Z. Revesz

In what follows, we will always assume when talking about edges that an edge

labeled by = is undirected and an edge labeled by a cs for some gE N is directed. The

direction in the latter case is necessary only to make it clear which vertex is less than

the other. We will assume that if a directed edge from vertex v to another vertex u has

label cs on it, then v cs u is the gap-order constraint that is represented within the

gap-graph.

Two examples of gap-graphs are shown in Fig. 4(a) and (b). The first one has both

undirected and directed edges, while the second one has only directed edges.

Definition 3.3. A gap-graph G is consistent if and only if there is an integer assignment

.d to the variables in the vertices that satisfies all the gap-order labels on the edges.

We denote this as d (= G.

Gap-graphs provide an alternative representation of generalized tuples which are

conjunctions of integer gap-order constraints. This is spelled out in Lemma 3.4.

Lemma 3.4 helps to transform the problem of evaluating a Da&log<” query into

a graph problem. We can assume later that the generalized input database has only

gap-graphs as generalized tuples.

Lemma 3.4. Let C be any conjunction of integer (gap)-order constraints over variables

Xl> ..., xk. Let 1 be the smallest and u the largest constant in C (if there are no constants,

let I= - 03 and u = + co, and if there is only one constant c, let I= c and u = + co). Let

n be the size of C (measured in the number of atomic constraints =, f, 6, <, or <s).

Then

(a) C can be represented as a finite disjunction of gap-graphs over x1, xk, 1, u.

Moreover, any assignment ~2 satisfies C ifand only if,F4 is a consistent assignment to at

least one of the gap-graphs in the representation.

(b) For any fixed k, the representation can be found in O(nk+ ‘) time.

Proof. See Appendix. 0

Example 3.5. The algorithm in the proof of Lemma 3.4 is too long to illustrate in

every detail, but suppose as a simple example that C is the formula

x#yr\y<lOr\x <,zr\z<y.

Then rewrite it as

(x<yvy<x)A(y<lov lO=y)r\x <,z/\(z<yvz=y).

Put this into disjunctive normal form

(X<yAy<loAX <,ZAZ<y)V..~V(y<XA lo=JJAX <3ZAZ=y).

A closed-form evaluation for Datalog queries 129

Each of the eight disjuncts can be represented by a gap-graph over vertices

x, y, z, lo,+ co. Note that the last disjunct is unsatisfiable, since lO= y =z and x is

supposed to be both greater and less than 10 (by more than 3). Its corresponding

gap-graph will be inconsistent.

The following two definitions describe some concepts that are related to gap-graphs

and are used repeatedly throughout Section 3.

Definition 3.6. For each gap-graph G, we call the graph obtained by deleting all

gap-order labels in G the underlying graph of G. For each graph G, we call the graph

obtained by merging all equal vertices and deleting all edges with = labels the

compact graph of G.

For example, Fig. 2 is the underlying graph and Fig. 3 is the compact graph of the

gap-graph (a) in Fig. 4. Note that compact graphs have only directed edges. Also note

that a compact graph may have multiple labels for vertices and multiple edges

between vertices. Using Definition 3.6 simplifies our proofs when only the properties

captured by the underlying graphs or the compact graphs are important. For instance,

it is simpler to talk about path lengths within compact graphs than within gap-graphs.

Definition 3.7. A directed edge from vertex u to another vertex w with any gap-value

in a gap-graph we denote as (u, w). A chain of directed edges (0, wl),(wl, w2),

. . . , (w, _ i, w,) we call a path. If t’ = w,, then we call the path a cycle. The length of the

path from u to w, is the sum of the gap-values in labels of the directed edges plus

(n- 1). If there is no directed edge leading to a vertex, then the vertex is called a leafi

A gap-graph is acyclic if and only if its compact graph is acyclic.

Fig. 2. Example of underlying graph. Fig. 3. Example of compact graph.

130 P.Z. Recesz

For example, (x, Y),(Y, .Q), (x2, 18) is a path of the gap-graph (a) in Fig. 4. The

length of the path is 9. The leaves of the gap-graph are x1 and 2. The gap-graph is

acyclic, because its compact graph in Fig. 3 is acyclic.

When we know the gap-value g of a directed edge (u, w), and there is no confusion

with gap-orders, we will also use v cgu’ to refer to the directed edge.

It is clear from Lemma 3.4 that the alternative representation by gap-graphs is

semantically equivalent in the usual sense to the conjunctive integer gap-order

formula. Therefore, the notion of consistency of a gap-graph is naturally linked with

the notion of satisfiability of a conjunctive integer order formula. The advantage of

using the former is that it can be easily checked whether a gap-graph is consistent.

That check is described in Lemma 3.8.

Lemma 3.8. Let G be a gap-graph with vertices vl, u,, 1, u, where 1, UEDU

{ + cc, - ~8) and 1 -CU. When 1, UFD, G is consistent tfand only if it is acyclic and in the

compact graph of G the longest path from 1 to u is less than (u - 1) and there is no path

from u to 1. When I= - ‘CC or u = + c%, G is consistent if and only if it is acyclic and there

is no directed edge ending at 1 or starting ,from u.

Proof. See Appendix. 0

Note that when I= - x or u = + m, we cannot have a directed edge ending at 1 or

starting from u, because these would say that there is some variable v smaller than
- CC or greater than + m, which is clearly impossible.

3.2. The operations on gap-graphs

In this section we describe the three basic operations on gap-graphs. These opera-

tions are called shortcut (Definition 3.9) merge (Definition 3.10), and subsume

(Definition 3.11).

The three operations are delined on gap-graphs that serve as generalized tuples.

The definitions of these operations may be broadened to generalized relations that are

composed of a finite number of gap-graphs. Intuitively, in that case the shortcut would

replace the projection, the subsume would replace in most cases the difference, and the

merge would replace the natural join operation in relational algebra.

Definition 3.9. Let G be a gap-graph with vertices y, ul, . . . , v,, 1, u, where 1, UEDU

{ + CO, - “o) and 1 <u. Then a shortcut operation over vertex y transforms G into an

output gap-graph with vertices ~1~) . . , L’,, and u, + 1 = 1 and v,, + 2 = u as follows.

First, for each 0 < i, j < n + 2, do the following:

If vi = y and y = z‘~ are edges in G, then add t.li = vj as an undirected edge to G.

If Vi=y and y <s~j are edges in G, then add Ui <avj as a directed edge to G.

If Vi <y y and y = rj are edges in G, then add vi <y vj as a directed edge to G.

If vi <s, y and y <42 rj are edges in G, then add vi <sl +.42+ 1 vj as a directed edge to G.

A closed,form evaluation for Datalog queries 131

Second, for each g and k, if Vi cs Uj and vi <h Vj and g < k, then delete first edge. If

more than one edge remains between any two vertices, then the shortcut operation

fails, returns an error message, and it does not produce a shortcut gap-graph as

output. Otherwise, also delete y and all edges incident on y.

The intuition behind the shortcut operation is fairly straightforward. We want to

eliminate a vertex y. Just erasing y and the edges incident on y is not enough, because

they imply gap-order constraints about other vertices and that information would be

lost. We need to explicitly preserve that information. The first part of the operation

does exactly that. It is easy to see that it tests all possible cases in which two edges

incident on y can imply a new gap-order constraint. Also note that the case Vi -=c~, y

and y >92 vj is left out, because these two edges do not imply a new gap-order

constraint.

The first part only adds (undirected or directed) edges to the graph. As a result of

the first part, it could happen that the graph will have multiple edges between some

pair of vertices v and w. The second part cleans up these multiple edges. It deletes all

directed edges from v to w except the one with the largest gap-order constraint. By

symmetry, it does the same for all directed edges from w to v.

By Definition 3.2, there can be only one edge between each pair of vertices v and

w in a gap-graph. Hence, if after the second step there remain several edges (e.g., an

undirected and a directed edge, or two edges with opposite directions) between any

pair of vertices v and w, then the shortcut operation cannot return a gap-graph. It is in

this case that the shortcut operation fails and returns an error message saying “no

gap-graph output can be produced”.

Parenthetically, we remark that the gap-graph returned by the shortcut operation

may be inconsistent by Definition 3.6. Note that consistency is not checked by the

shortcut operation.

An example of the shortcut operation is shown in Fig. 4. The input gap-graph is

shown in part (a) and the gap-graph obtained as a result of the shortcutting over

vertex y is shown in part (b). There the shortcut creates three new directed edges, i.e.,

x1 c6 x2, x1 <i xj and 2 c9 x2, and updates the gap value of one directed edge, i.e.,

edge 2 c3x3.

Definition 3.10. Let G1 and G2 be two-graphs over some (maybe different) subsets of

the variables Y,, . . . , v, and over the same constants I and U, where 1, UED u { + co, - CT, >

and 1 cu. Then a merge operation on G, and Gz creates a gap-graph G with vertices

~l,~~~,~n,Gl+l-- - 1, v,+ z = u as follows. For each 0 < i, j d n + 2, do the following:

If there is no edge between vi and Uj in G1 and GZ, then do nothing.

If there is an edge between vi and Vj in only one of G, or G,, then add that edge to G.

If Vi = vj is an edge in both G1 and Gz, then add vi = Lij as an edge to G.

If Vi <s, Vj in G1 and vi <sz Vi in Gz are edges, then add vi <mnXCg, ,92, vj as an edge to G.

If Ui >s, Uj in Cl and Vi >92 Uj in G2 are edges, then add Vi >max(s, ,92, Vj as an edge to G.

In any other case the merge operation fails, and it does not return any graph.

132 P.Z. Reuesz

Fig. 4. Example of shortcut of a gap-graph.

(cl Cd)
Fig. 5. Example of merge of gap-graphs.

The intuition behind the merge operation is also simple. We want any assignment

that satisfies the output gap-graph to satisfy both of the input gap-graphs. The

operation guarantees this by checking that the corresponding edges in the two input

gap-graphs are compatible and by adding always the edge which has the stricter

gap-order constraint to the output gap-graph. The last condition “in any other case”

includes the cases when Gi and G2 are not compatible, for example, when, for some

variable v and w, one specifies that u is less than w while the other says that v is greater

than w. In these cases there is clearly no assignment that can satisfy both graphs;

hence, the merge operation will fail.

An example of the merge operation is shown in Fig. 5. The input gap-graphs are (a)

and (c), Figs. 4 and 5 and the result of the merge operation is in part (d), Fig. 5. There

the merge operation creates a gap-graph such that on each edge the gap value is the

A closed-form evaluation /br Datalog queries 133

Fig. 6. Example of subsume of gap-graphs.

maximum of the corresponding gap values in the two input gap-graphs. For example,
x2 c2 18 in (a) and x2 c3 18 in (c) yields x2 c3 18 in (d).

Definition 3.11. Let G1 and G2 be two gap-graphs over the same set of variables
vl,...rv,andconstantsv,+,=landv,.z= u,wherel,uEDu{+a,--}andl<u.We
say that G1 subsumes G2 when Vi <y2 vj (or vi = uj) is a directed (or undirected) edge in
Gz if and only if z+ <s, Uj for some g1 >g2 (or Yi = Vi) is a directed (or undirected) edge
in G1.

The subsume operation serves to compare gap-graphs that have the same underly-
ing graphs. For gap-graph A to subsume another gap-graph B, for each correspond-
ing directed edge, A must have a larger gap-order constraint than B has. The
importance of this comparison will become clear in Section 3.3, where we show
a visual representation of the notion of subsumption.

Next we give an example of subsume using Fig. 6. The gap-graphs (a) and (e) in Figs.
4 and 6 have the same underlying graphs. By checking the conditions in Definition
3.11, we see that (e) subsumes (a). (Note that the “and only if” within Definition 3.11
ensures that the gap-graphs compared have the same underlying graphs.)

After describing how the three operations are performed, we now show the semantic
correctness of the operations defined, that is, we show that the operations are
consistency-preserving. We make this notion more precise for each of the cases
discussed below. For the shorcut operation, we want to show that the input gap-graph
is consistent if and only if the output gap-graph is consistent.

Lemma 3.12. Let G be a gap-graph over variables y, v1 , . . . , v, and constants v,+ 1 = 1
and v, + z = u, where 1, UE D u { + GO, - co f and 1< u. Let G’ be the gap-graph obtained by

shortcutting over y in G (if it exists). Let a,, a,, a,, be any sequence of integer

numbers. Then a,,al,...,a,/=G if and only if G’exists and a,,...,a,+G’.

134 P-Z. Rewsi

Proof. See Appendix. 0

For the merge operation, we want to show that the and of the input gap-graphs is

consistent if and only if the output gap-graph is consistent.

Lemma 3.13. Let G1 and G2 be two gap-graphs over some (maybe different) subsets of

the variables vl, . ,v, and over the same constants v,, 1 = 1 and v,+ 2 = u, where

1, UED u { + co, - CO} and 1 <u. Let G be the gap-graph obtained by merging G1 and G2
(if it exists). Then, for any assignment .d = {a,, . . . , a, >, d I= G 1 and .d I= G2 if and only

if G exists and .d +G.

Proof. See Appendix. 0

For the subsume operation we want to show that if .d is a consistent assignment to

a gap-graph G, then .cP is also a consistent assignment to any gap-graph that

G subsumes. Note that the reverse may not be true. Our evaluation method uses only

the first direction.

Lemma 3.14. Let G1 and G2 be two gap-graphs over variables vl, v, and constants
1 and u, where 1, UED u { + CO, - 03) and 1 CU. If G, subsumes G2 then, for any assign-

ment d=(aI, a,}, if &/=GI, then AI=G2.

Proof. By Definition 3.3 .d I= G1 if and only if A satisfies all gap-order constraints on

the edges. Assume that d I= G1 and G1 subsumes GZ. It is easy to see that d also

satisfies each gap-order constraint in GZ. Each gap-order constraint ai <sr aj (or

ai=Uj) in Gz holds because ai <s, aj for some g1 292 (or ai=Llj) is true in Cl by

Definition 3.11. Hence, .01 b G2. q

3.3. The query evaluation method

In Section 3.3.1 we present our query evaluation algorithm called EVAL for

DatalogCz queries that are presented in gap-graph form. We also describe a simple

procedure to find the gap-graph form of Datalog<” queries.

In Section 3.3.2 we show that EVAL terminates on every Datalog with integer order

query that is input in gap-graph form. To prove termination we transform the

problem of query evaluation to a geometric problem, by representing each gap-graph

as a point in some finite-dimensional space. That enables the use of a geometric lemma

(Lemma 3.16) to prove termination in Theorem 3.17.

In Section 3.3.3 we show that every Datulog’” query has a unique full-model, i.e.,

a unique fixpoint unrestricted relational database. We also show that what EVAL

returns is always some generalized output database (in gap-graph form) that is a finite

description of the full-model.

A closed-jbrm evaluation for Datalog queries 135

3.3.1. The query evaluation algorithm

At first we define what we mean by a gap-graph form.

Definition 3.15. Let Q be any Datalog<z query with program P and database d, and

let u be the largest and I the smallest constant in Q. We call the gap-graph form of Q the

query that is obtained by rewriting each generalized tuple of d into a semantically

equivalent disjunction of gap-graphs, and each rule of P with a conjunction of integer

order constraints into a semantically equivalent disjunction of rules with gap-graph

constraints, such that all the gap-graphs use the constants 1 and U, and gap-graphs

belonging to the same relation or rule also use the same set of vertices.

The gap-graph form described in Definition 3.15 can be obtained simply by using

Lemma 3.4.

Next we describe the query evaluation algorithm called EVAL. The input of the

query evaluation algorithm is a Datalog<” query in gap-graph form. The output of the

query evaluation algorithm is a generalized output database in gap-graph form. That

is, for each IDB predicate of the form R(xi, x,), the algorithm produces a set of

gap-graphs over vertices xi, xk, 1, u.

Query evaluation algorithm EVAL

WHILE can add a gap-graph to the database DO

BEGIN

Add a gap-graph to the database using a rule application for some rule of the form

Ao(x 1, x,):- A,(. ..). Ak(. ..). C in P, where Ao, Al, Ak are relation

symbols, C is a gap-graph, and the set of variables in the rule is S=

ix 1, . . . , x,, y,, . . . , y,}. A rule application consists of the following steps:

(1) Pick for each Ai, 1 ,<idk, a gap-graph from the database.

(2) Merge the gap-graphs picked in the first step and gap-graph C.

(3) Shortcut out vertices y,, . , y, to yield G.

(4) Check that G is consistent and does not subsume another gap-graph for A0 in

the database. If true, add G for A, to the database.

END

Let d be the output database. Suppose that G is a gap-graph over xi, . . , x,, 1, u that

is derived for A,(x, , . ..,a~,,,) by some rule application during the query evaluation.

Then G is a generalized tuple of the generalized output relation A,, in d. We denote this

as A,(G)Ed.

3.3.2. A termination proof for EVAL

To analyze better the termination of EVAL, we provide first a visual interpretation

of its operation. This visual interpretation maps each gap-graph in the database to

a point in some fixed-dimensional space. The spatial relations among the points will

provide important clues to the relations among the gap-graphs. We do this as follows.

136 P.Z. Revesz

c I

Fig. 7. Geometric interpretation of subsumption.

Let G be a gap-graph with m directed edges. Let 0 be an ordering of the directed

edges in G. Let B=(br, b,) be the m-dimensional tuple obtained by listing the gap

values in the labels of the directed edges in g order. Then we can map G to a point in

m-dimensional space.

Suppose that G1, . . . , G, have the same underlying graph with m directed edges. We

can map each Gi as a point Bi in m-dimensional space, using the same fixed ordering of

directed edges. We know that Gi subsumes Gj if and only if each coordinate of Bi is

3 the same coordinate of Bj.

For example, looking at two gap-graphs A and B over X, 1,u, where x is some

variable and 1 and u are constants, assume that there are two directed edges in both

A and B, namely, 1 -c4 x and x -C 5 u are edges in A and 1-c 3 x and x c2 u are edges in B.

Then we can map these gap-graphs to points in two dimensions as shown in Fig. 7.

There is a visual representation for the fact that A subsumes B, and so does any

gap-graph that is mapped to a point in the upper rightmost region bounded by the

dashed lines.

We will also use the following geometric lemma.

Lemma 3.16. In any fixed dimension, any sequence of distinct points with only natural-

number coordinates must be jinite, if no point subsumes any earlier point in the sequence.

Proof. We prove the theorem by induction on the dimension k of the space in which

the points lie. For k=O, the whole space is only a single point; hence, the theorem

holds. Now we assume that the theorem holds for k dimensions and show that it is

true for k+ 1 dimensions.

Let S be any arbitrary sequence of points in which no point subsumes any earlier

point Let x1, . . , xk + 1 be the coordinate axis of the (k + I)-dimensional space, and let

(a 1, . . . , ak+ 1) be the first point in S. By the requirement of nonsubsuming and

distinctness, for any later point (b, , . . , bk+l) for some i, O<i<k+l, it must be true

that bi <ai. This means that any point in the sequence after (a,, . .., ak+ 1) must be

A closed-form evaluation for Datalog queries 137

within one or more of the k-dimensional regions x1 =0 or x1 = 1 orxi =a1 or

. . . xk+i=Oor x,+,=1 or . ..~~+~=a~+~.

As we add points to each of these regions from S, no point can subsume any earlier

one within these regions. Therefore, by the induction hypothesis, only a finite number

of points from S can be placed into each of these k-dimensional regions. Since the

number of these regions is finite, S also must be finite. 0

Now we are ready to prove that EVAL terminates on all of its inputs, which means

that there is always a gap-graph closed form.

Theorem 3.17. Any Datalog’” query has a bottom-up evaluation that terminates in

a gap-graph closed form.

Proof. Suppose that we use algorithm EVAL to evaluate a query P. Let R(x,, . . . , xk)

be any IDB predicate in P. All database facts for R are gap-graphs over xi, . . , xk, 1, u.

Consider all the gap-graphs over these vertices. There is an infinite number of these

gap-graphs. However, the gap-graphs can have only qk+* underlying graphs. That is

because, between each distinct pair of vertices o and w, we may have no edge, o= w,

v< w, or v> ~1. For each of these underlying graphs, fix an ordering for the set of

directed edges. Also, for each underlying graph with m directed edges, create an

m-dimensional picture. We have only a finite number of pictures and each picture has

a finite dimension. After each rule application, if a gap-graph G is added to R, then

map G to a point in the picture that corresponds to the underlying graph of G, using

the fixed ordering. By Lemma 3.16, the mapping to each picture terminates. Since

there are a finite number of IDB predicates, reasoning similarly to R for each, we see

that the bottom-up evaluation described in EVAL terminates. 0

3.3.3 A model for Datalog queries with integer order
In the introduction we gave an unrestricted semantics to Datalog’” queries.

According to the unrestricted semantics, a generalized database d, with a finite

number of gap-graph tuples can be interpreted to be a finite description for some

unrestricted relational database d2 with a finite or infinite number of standard

relational database tuples. We call d2 the full version of dI We make this more precise

in the following definition.

Definition 3.18. Let d, be a generalized relational database with gap-graph tuples, and

let d2 be an unrestricted relational database. Then d2 is thefill version of dI if, for all

tuples t, A(t)Ed2 if and only if there exists G such that t I= G and A(G)E 0

The unrestricted semantics together with Tarski’s fixpoint theorem can be used to

show that Datalog<” queries have a unique unrestricted least model. However, the

unrestricted least model using the naive evaluation implied by Tarski’s fixpoint

theorem would take an infinite number of iterations to evaluate. In this section we

138 P.Z. Revesz

show that our query evaluation algorithm finds a finite description for the unrestric-

ted least model. By Theorem 3.17, we know that this description is always some

generalized database with gap-graph tuples, and it is evaluable in finite time.

Our query evaluation algorithm is nondeterministic, and it may return different

generalized databases with gap-graph tuples. That is no cause for alarm. It simply

means that there may be several finite descriptions for the same unrestricted least

model.

For example, think of an empty database input and a program with two rules:

Out(x):-10 c5 x and Out(~):--10~~. If we choose the first rule and then the second

rule, we have two gap-graphs for the Out database relation. If we choose the second

rule first, then we have only one, because the gap-graph 10 < 5 x subsumes 10 <x and

will not be added. Since we have in both cases the gap-graph 10 <x in the output, the

two different sets of gap-graph outputs have the same unrestricted least models.

Theorem 3.19. Let P be u DatalogcC query with generalized database d, in gap-graph

,form. Let d, be the full version of d,. If Mp(dI) is any output of EVAL on P and LP(d2)

is the output of the naive evaluation of P[d,/d,] (with input d, instead of d,) then

Lp(d2) is the full version of MP(dI).

Proof. ([f): Let ML (d,) denote the database after the ith rule application in EVAL.

We prove by induction in i that, for all tuples t, if there exists G such that t I=G and

A(G)E then A(t)ELp(d2). For i=O, Mg(dI)=d, and d2 c LP(d2); hence, the

claim holds. Now assume the claim for i and prove for i+ 1.

Suppose the (i+l)th rule application uses rule A,(x,,...,x,):-AA,(...), A,(...),

.‘., Ak(. ..). C of P, where C is a gap-graph, and let S = {x1, . ., x,, yl, . . ., y,} be the

variables in the rule. Suppose the application picks from Mb(dl) gap-graphs

G 1, . . . , Gk for AI, . , Ak. Let M be the merge of G1, . . . , G, and G the shortcut of

M over y1 , . . . , y,. Assume that G is consistent and that A,(G) is added to M v 1 (dI).

Note that M’,“(‘(dI) is also in gap-graph form.

Let t =(ao, . . , a,) be any tuple such that t + G. By Lemma 3.12, there exists

a .%9={a0 ,..., a,,bl ,..., b,} such that Bj=M. By Lemma 3.13, &+G1 ,..., gI=Gk,

and 98 /= C. Note that, for each 1% j 6 k, the jth projection of 98 generates a tuple tj

such that tj)= Gj. By the induction hypothesis, tji= Gj and Aj(Gj)EML(dl) implies

that Aj(tj)ELp(dZ). Then, by the naive evaluation, A,,(f)ELp(dZ) must be true. Rea-

soning similarly for each t, we see that, for all t, if t b G then A,(t)ELp(dZ). Since

A,(G) is the only fact added in the (it- 1)th application, the claim holds.

(Only if): Let Lb(d,) denote the database after the ith rule application is the naive

evaluation. We prove by induction on i that, for all tuple t, if A(t)ELip(dZ), then there

exists G such that t /=G and A(G)EMp(dI). For i=O, L:(d2)=d2 and d, c M,(d,);

hence, the claim holds. Now assume the claim for i and prove for i + 1.

Suppose the (i+ 1)th rule application uses rule Ao(xI, IX,,,):-AA,(. ..). Az(...),

. . . . Ak(...),C of P, where C is a gap-graph and let S={x, ,..., xm,yl ,..., yn} be the

A closed-form evaluation for Datalog queries 139

variables in the rule. To perform the (i+ 1)th rule application in the naive evaluation,

assume that some assignment 9#={ui,a.,br, . . . , b, > is chosen for the values of the

variables in the rule. Each substitution of 98 into A 1, . . . , Ak yields a relational tuple

Ai(. . . , Ak(tk). Suppose that these are all present in L$.(d,) and that 6? + C; hence,

A,,(t), where t=(a, ,..,, a,), is added to Lp1(d2).
By the induction hypothesis there must be gap-graphs G1, Gk such that

tl)=G1 ,..., t,)=GkandA,(G,) ,..., Ak(Gk) Hence, with the necessary restric-

tions, 99 I= Gi, . . . , 98 + Gk, and 98 I= C. Let M be the gap-graph obtained by merging

the extensions of G i, . . . , Gk and C. By Lemma 3.13, M exists and 5? (= M. Let G be the

gap-graph obtained by shortcutting over vertices y,, y, in M. By Lemma 3.12,

G exists and &? + G. Clearly, G is consistent. If G does not subsume another gap-graph

for A, in MP(dl) then, by the generalized evaluation, AO(G)gMp(dI) must be true. If

G subsumes another gap-graph G’ for A0 in MP(dl) then, by Lemma 3.14, 99 + G’.

Hence, either t +G and AO(G)~Mp(dd) or t I= G’and A,(G’)EM,(~,), as required. By

reasoning similarly for each t, we see that the claim holds. 0

Corollary 3.20. Let P be any generalized database logic program with generalized

database d. Let M 1 (d) and Mz (d) be the outputs of two difSerent sequences of executions
ofEVAL. Thenfor all tuple t, exists gap-graph G, such that t I=G1 and A(G, if

and only if there exists gap-graph G2 such that t I=G2 and A(G2)EM2(d).

We call each finite description output a gap-model of the Datalog<” query P. We

also call the unrestricted least model the full-model &Yp of P because it is the set of

relational tuples that satisfy any generalized relational tuple in any gap-model.

Corollary 3.20 is another way of seeing that MP is unique even though the gap-models

are not.

4. The recognition problem

In this section we present an efficient tuple recognition algorithm called TEST. By

tuple recognition we mean checking whether a given standard relational database

tuple is in =MP, where J%!‘~ is the full-model of a given Datalog<” query (program with

database) P. We saw in the previous section that AP is a unique unrestricted (finite or

infinite) set of standard relational tuples. Therefore, the tuple recognition problem is

well-defined. For a fixed Datalogdn program P and any generalized input database d,
the complexity of performing the tuple recognition check in terms of the size of d we
call the generalized data complexity of P (see also the definition in Section 2).

The tuple recognition problem is motivated by several reasons. For example, if

tuples in a database describe pairs of cities between which there is an airplane flight,

a user may want to know only whether the tuple which describes a connection

between two particular cities is in the model of the query.

140 P.Z. Revesz

Algorithm TEST is a modification of algorithm EVAL of Section 3. Suppose that

we are given a tuple t to be tested. Then let 1 be the largest and u the smallest constant

in t or the generalized database, which we assume is given in gap-graph form. The first

observation is the following. Each gap-graph is composed of three main parts: first,

those vertices which are less than 1; second, those vertices which are between 1 and u;

and third, those vertices which are greater than u. Of course, some gap-graphs may

have parts other than the three just mentioned, for example, they may have isolated

vertices that are indeterminate with respect to I and u. The definition of (1, u)-gruphs

(see Definition 4.1) is used to eliminate these other parts from consideration and to

simplify the reasoning in this section.

The second observation is that the precise gap values are necessary to keep only for

the vertices and edges in the second group. Note that t itself will have only vertices

between I and u. Hence, for the tuple recognition problem it is enough to test whether

t satisfies any gap-graph G in the full-model, which has only vertices between I and U.

For all the other gap-graphs in the generalized input and output databases instead of

the precise gap values for the edges in the first and the third groups, it is enough that

we keep the directions only. We call these simplified gap-graphs the partial gruphs (see

Definition 4.2). Each of the partial graphs serves as a representative of a set of

gap-graphs which are exchangeable as far as recognizing t is concerned.

Algorithm TEST will take as inputs and give as outputs partial graphs. This

simplification yields a well-defined upper bound on the size of the output database in

terms of the size of the query (see Definition 4.3 and Lemma 4.4). That is the main

intuition behind Theorem 4.7.

Definition 4.1. Let G be a gap-graph over x 1, . , x,, I, u with constants /CU. If, for

each vertex ?(i in G, Xi <s I, Xi = I, Xi = U, Xi >s u is an edge, or 1 <s x and Xi <,, u are both

edges in G for some g, ha0, then G is called an (1, u)-graph.

For example, the gap-graph (a) in Fig. 4, which has I= 2 and u= 18, is not a

(2, 18)-graph because, for vertex x 1, none of the five conditions listed in Definition 4.1

hold. However, if we added any one of the edges x1 Q,~ 2, x1 =2, or 2 <r x1, then we

would have a (2, 18)-graph.

Definition 4.2. Let G be an (1, u)-graph over x1, . , x,, 1, u with constants 1 -cu. We call

the graph obtained by deleting all gap values in G except on the edges that are on

a path from 1 to u in the compact graph of G the partial graph of G.

Suppose we added to gap-graph (a) (Fig. 4) the edge x1 ~~~2 to obtain a (2, 18)-

graph. To obtain a partial graph, we now have to delete the gap-value 99 on the edge

from x1 to 2.

Definition 4.3. Let ,4(x1, xk) be a relational atom and G, be the partial graph of

some consistent (1, u)-graph over x 1, . . , xk, 1, u. Then A(GP) is called a base.

A closed-form evaluation for Datalog queries 141

We call p-application the rule application with G replaced by the partial graph G, of

G and the subsumption check skipped in step (4). We call TEST the algorithm EVAL

with “gap-graph” replaced with “partial graph” and “application” replaced with

“p-application”.

Lemma 4.4. Let P be a generalized database logic program with m IDB predicates, each

with arity <k. Let 1 be the smallest and u the largest element of D. Then there are

m(u-1) 0tk2) bases, TEST terminates after at most that many iterations.

Proof. Let A(G,) be any base. Note that G, is consistent by Definition 4.3. Assume

that A has arity k. For k + 2 vertices, there are (k + 2) (k + I)/2 distinct pairs. For each

of these, we may have no edge, an = edge, a cs or a >s gap-order for some g. If the

edge does not lie on a path from 1 to u in the compact graph of G,, then the gap value

must be absent (or 0). It is does then, by consistency and Lemma 3.3, the gap value

g < II - 1. Therefore, for each <s and >s edge, there can be at most u - 1 different gap

values. This gives at most (2+2(~-1))‘~~~~~~+‘~~~ many choices for base A(Gp). We

can reason similarly for each of the m relational atoms. Since TEST derives always

bases, TEST terminates within that many iterations. c3

The key reason that using bases works is the limited interaction among the three

main parts of gap-graphs. As a result, we can show in Lemmas 4.5 and 4.6 that

a gap-graph G is derived by EVAL if and only if the partial graph G’ of G is derived by

TEST.

Lemma 4.5. Let AO:-AI, A,, C be a rule in a generalized database logic program

P, and let G1, Gkr C be (1, u)-graphs and G’, , Gh, C’ be their partial graphs. Then

a rule application derives A,(G) using AI (G,), . . . , Ak(Gk) and C if and only if a p-
application derives A,(G’) using AI (G;), .., A,(G;) and C’, where G’ is the partial

graph of G.

Proof. See Appendix. 0

Lemma 4.6. Let P be a generalized database logic program with a database dl that has
only (1, u)-graph constraints in the database. Let dz be the database which has exactly the

partial form of each (1, u)-graph in d, . Then algorithm EVAL derives A,(G) using d, as
input tf and only tf algorithm TEST derives A,(G’) using dz as input, where G’ is the

partial graph of G.

Proof. We can define generalized derivation trees. Structurally, the derivation tree for

any A,(G) in d, is the same as for any A,(G’) in dz, assuming that EVAL is run

subsumption-test-free. Then the proof is by induction on the depth of the derivation

trees using Lemma 4.5.

142 P.Z. Recesz

Suppose now that A,(G) is derived but not added to the database by EVAL

because there is already an A,(G”) such that G subsumes G”. By Lemma 3.14, there is

no t such that t + G and t F G”. By Theorem 3.19, P has the same full-model whether

we add (just this time) G to the database or not. Hence, by induction on the derivation

trees, EVAL finds the same full-model in a subsumption-test-free run as in a regular

run. 0

Theorem 4.1. Let t he any tuple. For any jixed generalized database logic program
P with a generalized database d, we can test whether A,(~)E,&,, in O(nk+’ +
(u_l)o(mk2)) time, where n is the size of d, k is the largest arity of a relation in P, u is the
largest and 1 is the smallest constant in either t or the query, and m is the maximum

number of relation symbols in a rule of P.

Proof. Transform the query into gap-graph form using Lemma 3.4. This takes

O(nk+ ‘) time and creates at most that many gap-graphs. Next transform each

gap-graph G over x 1, . , .xk, I, u in the query into a partial, (1, u)-graph.

First, transform G into an (l,u)-graph. For each Xi, select one of the constraints

xi < 1, xi = I, xi = u, Xi > U, or I < Xi and xi < u, and add that to G, unless there are equal

or stronger gap-order constraints already present in G. After the selected constraints

are added, we obtain an (1, u)-graph by Definition 4.1. We can make 5 k selections. For

these (1, u)-graphs the set of consistent assignments is disjoint. Since the size of G is

0(k 2), the total size of the set of (1, u)-graphs is O(jk k 2). Second, make all (1, u)-graphs

partial by deleting unnecessary gap values. Since many (1, u)-graphs may have the

same partial graph, this makes the size of the database only smaller. This step takes

O(k2) time for each (1, u)-graph and 0(5kk4) time for each gap-graph G. Hence, the

initialization requires 0(nk + ’) time.

Now run algorithm TEST. For gap-graphs with k vertices, each merge, shortcut

and rule application takes 0(k2) time, i.e., each takes constant time. To do one

iteration, we may need to pick from the database IPI bases, which is another constant.

Since there are, by Lemma 4.4, m(u-/)“‘k” many bases, the maximum number of

substitutions that need be tried is O((u - I) o(mk2)). Each iteration will take that much

time.

Lemma 4.4 also implies that TEST will terminate after m(u-I)“‘k” iterations

because that is the maximum number of times we may derive a new base. Since the

total running time of algorithm TEST is the product of the time to do one iteration

and the number of iterations, we have 0((u-l)“~“k’~)*m(u-l)0’k2)=

O((u- l)OCmk2)) total running time, not counting the initialization. When TEST

terminates, test, for each base A (G’), whether t I= G’. These tests require 0(k *), that is,

a constant time for each base and, hence, a total of m(u - /)“‘k” time. ,Therefore, the

total running time including the initialization and the model tests at the end is

O(nk+’ +(U-l)0(mk2)).
The correctness of the algorithm can be checked as follows. By Lemma 4.6, if A(G’)

is a base in the database, then G’ is the partial graph of some G such that .4(G) would

A closed$orm evaluation for Datalog queries 143

be in the database by running EVAL subsumption-test-free instead of TEST. Since G’

and G are (partial) (1, u)-graphs, for each vertex x of both G and G’, one of x cs 1, x = 1,

1 cs x <h u, x = u, or x >s u must be true for some y and h. Suppose that t l= G’. Since

t satisfies all gap-order constraints in G’ and all values within r are 31 or <u, the first

and the last cases cannot happen. Hence, every vertex is equal to I or u or lies on a path

from 1 to u in the compact graph of G’. Hence, every edge will lie on a path from 1 to u;

hence, G’ must be the same as G by Definition 4.2. Hence, t I= A(G) and, by Theorem

3.19, tE,Mp. 0

4.1. Piecewise linear programs

We can find another subset of queries for which the recognition test can be done

efficiently, namely, in NLOGSPACE data complexity. These are the piecewise linear

Datalog programs of Ullman and Van Gelder [29]. These queries have only one

recursive predicate in each rule (for the exact definition, see [29]).

Theorem 4.8. The recognition test for piecewise linear Datalog and generalized

databases with gap-graph tuples can be done in NLOGSPACE.

Proof. As in Lemma 4.6, it is enough to consider only subsumption-test-free deriv-

ations of algorithm EVAL. In piecewise linear recursive programs all derivations are

chains with possible sideway branches of length one. That is because at every rule

application we use a rule that has only one recursive predicate. The rule application

will find one IDB gap-graph for the predicate in the head of the rule, using only the

previously derived IDB gap-graph for the recursive predicate in the subgoals (the

main line of the chain) and one gap-graph from the input database for each of the

nonrecursive predicates in the subgoals (the length one branches).

It follows that, during any nondeterministic derivation, we need to store only as

many gap-graphs as is necessary for one rule evaluation. We store the last derived

IDB gap-graph and the gap-graphs form the database that we are considering for the

rule application. Since the program is fixed, the number of gap-graphs that we need to

store has a fixed constant upper bound which is exactly the maximum number of

predicates in any one of the rules of the program.

It is also easy to see that each gap-graph requires only O(log u) space to store, since

there are only a constant number of edges in any gap-graph ~ more precisely there are

O(k’) edges, where k is the maximum arity of a relation in the program - and the size

of the gap value on each of the edges is at most u-l.

Therefore, by guessing always correctly the rule to use and the substitutions from

the database, we can derive in NSPACE(log n) any given relational tuple A(t) that

is derivable. (Or derive a gap-graph G of size O(logu) for the relation A and verify

that t + G). As shown by Immerman [13] and Szelepcsenyi [27], NSPACE(logn)

is closed under complement. Hence, we can test in NSPACE(logn) whether A(t) is

derivable. 0

144 P.Z. Reoesz

5. Open problems

We list some open problems in conclusion:

(1) Establish a good bound on the maximum gap size used by EVAL.

(2) Develop more and better pruning methods for rule applications.

(3) Find complexity class lower bounds. For example, we could consider, instead of

tuple recognition, the problem of gap-graph recognition, i.e., tell whether all the

standard relational tuples implied by a gap-graph are in the model of a query. Would

the lower bound be NP-hard in this case?

(4) Is it possible to combine Datalog iZ queries with the results in [7, 15, 18]?

(5) Is it possible to add negation to Datalog< e in a safe way? Proposition 2.3 shows

only that stratified negation is not feasible.

Appendix

Proof of Lemma 3.4. At first, eliminate from C all constraints between two constants.

If any of these contraints is false, then C is also false. In this case we stop and do not

return any gap-graph. If all of these constraints are true, then simply delete them from

C. This simplification can be done in linear time in the size of C. If k = 0, that is, C has

no variables and is now empty, then we return the gap-graph with the single edge I < u

representing true. If ka 1, let s be the number of constants in the simplified formula

and continue as follows.

(1) Eliminate from C the # and < constraints that have only variables in them.

Replace in C all constraints of the form v # w by (v < w) v (w < u), and of the form v < w

by (0 < w) v (c = w), where u and w are both variables. Also eliminate from C the

<constraints that have one constant in them. For each variable v and constants c1

and c2 such that c1 < c2, if v f ci and v d c2, then delete v < c2. Similarly, if c1 d v and

c2 d v, then delete c1 d v. After the deletions, each variable will have at most one “d

upper bound” and at most one “< lower bound”. Replace each of the upper bounds

vbc by (r<c)v(v=c) and each of the lower bounds cdv by (c<v)v(c=v).

Between pairs of variables, there can be at most 2kZ number of # or < constraints

and replacements for them. Also, for k variables there can be only at most 2k number

of upper and lower bounds and replacements for them. Altogether, there are at most

2kZ + 2k replacements, each containing one v connective and two atomic constraints.

Next put C into disjunctive normal form (i.e., disjunction of conjunctions). Since we

choose always one atomic constraint from each replacement, the size of C will be at

most 22k2+2kn, and the size of each disjunct (i.e., conjunction of constraints) of C will

be at most n.

(2) Eliminate from each disjunct C’ of C the # constraints that have one constant

in them. For each variable v do the following. Order the constants that occur within

constraints of the form v #c (or c z v), where c is any constant. Let these constants be

A closed-form evaluation ,for Datalog queries 145

cr, c2, . . ., cp in increasing order. Then replace these # constraints by (u < ci v

(C1<UAU<C2)V...VCp<D).

Replacing the # constraints doubles the size of C’, because we use two < con-

straints for each # . There are k variables and k replacements. Since p <s, there are at

most s new v connectives in each replacement. Put C’ into disjunctive normal form.

The size of the disjunctive normal form of C’ will be at most (s + l)kn. The size of each

disjunct C” of C’ will be at most n. Note that this last step puts C again into

disjunctive normal form.

(3) After steps (1) and (2), the constraint C will be in disjunctive normal form, will

have only =, <, and cs constraints, and will have at most 22k2+2k(s+ l)kn size. We

create a gap-graph for each disjunct C’ of C as follows.

First replace constraints of the form u=c by ((c- 1 <u) A (a<~+ l)), where L: is

a variable and c is a constant, with 1 CC < u. Next replace each < constraint by a e.

gap-order constraint. We check now whether there are any constants or variables

v and w such that more than one of v = w, v cs w, and w <h v occur as constraints in C’

for some g and h. If there are, then C’ is clearly unsatisfiable; hence, we need not create

a gap-graph G for it. Otherwise, take each constraint in C’ in order.

If the constraint is xi=xj, then add xi=xj as edge to G.

If the constraint is Xi= 1 (or X~=U), then add Xi=1 (or Xi=U) as edge to G.

If the constraint is Xi<sXj for some g and it is the largest gap-value that occurs

between xi and xj, then add xi <sxj as edge to G.

If the constraint is c <,xi for some g and c, with l,<c<u, and this is the largest

gap-order lower bound on xi within C’, then add 1 <cc_r+gJxi as edge to G.

If the constraint is xi cs c for some g and c, with 1 d c d u, and this is the smallest

gap-order upper bound on Xi within C’, then add xi <(U-c+glu as edge to G.

It is easy to see that, for each C’, if this algorithm yields a gap-graph, then

the conjunction of the gap-order constraints within that gap-graph is equivalent to C’.

This proves condition (a) of the lemma. Clearly, steps (1) and (3) require only a linear

time in the size of the output. Sorting in step (2) requires O(nlogn) time.

As a preprocessing, we may produce a sorted list of the constants in C. Then the rest of

step (2) also requires a linear time in the size of the output. Hence, the total time

to produce the gap-graphs is 0(nlogn+22k’+2k(s+l)kn). Since s<n and k>l

is fixed, the gap-graphs can be created in O(nk+‘) time. This proves

condition (b). 0

Proof of Lemma 3.8. In this proof we use G, to denote the compact graph of G and the

function Ilp(v, w) for vertices v and w to denote the length of the longest path from v to

w in G,. We measure all path lengths in G,. At first assume that 1, UGD and that there is

no path from u to 1.
(If): Assume that the gap-graph G is acyclic and the longest path from 1 to u is less

than u-l. Let m be the length of the longest path in G,. Then we will make

a consistent assignment to vi, . . . , v, as follows.

146 P.Z. Reuesz

For each vertex u, with a path from I or u to u in G,, assign the maximum of values

I+ /lp(I, a)+ 1 and u + I/p(u, v)+ 1. For each leaf vertex (other than possibly I or U)

assign the value (1 -WI - 1). For each nonleaf vertex w, if there is no path from 1 or u to

w, assign the maximum of the values (I - m - 1) + max, IIp (x, w) + 1, where x is any leaf

node in the gap-graph.

This assignment satisfies all the gap-order constraints in G. The only potential

difficulty is in showing that all upper bounds are satisfied, involving u during the first

set of assignments and involving all first-group vertices during the second set of

assignments.

It is easy to see that the first group of vertices are assigned as low values as possible.

Let v be any vertex in the first group. If L‘ <,u is an edge in G, then value(u)=

1+ Ilp(1, r)+ 1 by our assignment and by acyclicity. Also, since Up(I, IA)< u- 1,

~alue(~)+g=/+Ilp(l,1;)+1+g~1+Ilp(I,u)<I+(u-1)=u.Hence,ualue(u)+g<u,as

required.

Similarly, the second group of nonleaf vertices are also assigned as low values as

possible. Let w be any vertex in the second group. If w cy u is an edge in G, with w in

the second group and 2: in the first group then, by our assignment,

value(NJ) = (l- m - 1) + max,llp (x, w) + 1, where x is any leaf node. Since, for each leaf

node x, lIp(x, v)dm, due(w)+g=(l-nz- l)+max,IIp(x,w)+ 1 +g<(/-m- 1)

+ m = I- I < z;alue(u). Hence, value(tv) + g < aalue(r), as required.

(Only if): If G, has a cycle, the length of the longest path from I to u is 3(u - I), or

there is path from u to I, then clearly there is no consistent assignment.

When I= - SC or u = + a and there is a directed edge (u, I) =(II, - CD) or

(u, u) = (+ 30, L)), then clearly there is no consistent assignment. Otherwise, we simply

treat G as having no I or u in it, and carry out the above proof with the necessary

simplifications. 0

Proof of Lemma 3.12. (If): Assume that G’ exists and assignment d’=

{a r, . . . , a,} /= G’. Within G, let ur cy, y, u2 csz y, . . , U, cs, y be the edges incident on

y with a gap-order label that constraints y from below, where the u’s are vertices. Also,

within G, let y cfI wr, y cfz w2, . . . , y cs, w, be the edges incident on y with a gap-

order label that constraints y from above, where the w’s are vertices.

We want to find an assignment .d = { aO, . , a,,) for the vertices in G that satisfies all

the gap-order constraints in the edges. Take assignment .d’ as a substitution for all

the vertices save for y. Then find k for which nk + gk is maximum and p for which wll-f,

is minimum.

To obtain G’ from G by a shortcut operation over y, we added in case 4 a constraint

between each ui and wj, 1~ i < m and 1 <j < n. In particular, we added the constraint

uk < 4k +fp + 1 wp. Clearly, it is sufficient and necessary to choose a value a0 for y such

that tc,+g,<u, < w,-f, to satisfy all lower and upper bounds on y within G.

Since .d’ + G’, there are at least gk+fp+ 1 integers between uk and wp after the

assignment. Therefore, it is always possible to pick an integer a0 such that there are at

least gk integers between uk and a, and at least f, integers between a0 and wp. If there is

A closed-form evaluation for Datalog queries 147

no Vi such that y=vi is a constraint in G, then pick any such ao. Then SZZ b G.

Zf y= ui for some Vi in G, then let a0 =ai. TO obtain G’ from G by a shortcut

operation over y, we added in cases 2 and 3 as constraints u1 <s, Ui,u2 <92 Vi,

. . .) %I 57, vi and Vi <fl w 1, vi <f2 ~2, . . , Vi csn w,. Therefore, a, satisfies all the lower

and upper bounds on y. If any other Vj=y, then by case 1 of the shortcut, we know

that vi = vj is a constraint in G’; hence, ai = aj. Therefore, our choice for a0 satisfies all

constraints on y. Hence, ~2 /= G.

(Only if): Let &={~~,a~,..., a,} be an integer assignment to the variables of G,

such that ,r4 /= G. Clearly, for all 0 < i, j < PZ + 2, if Vi = Y and Y = 01, then Vi = Uj holds, if

vi = y and Y <s vj, then vi <s Vj holds, if vi <s Y and JJ= Uj, then vi <s vj holds, and if

vi c8,y and Y <sj uj, then vi cg,fg,+ 1 J v. holds. Note that the shortcut operation adds

only these types of constraints in the first step. Therefore, z$’ is a consistent assignment

to the graph after the first step. The deletions in the second step leave between each vi

and vj possibly one gap-order vi = vj (if there was one), possibly one gap-order vi <s, Uj

(if there was any gap-order of the form Vi < 82 vj), and possibly one gap-order Vi >,,, Uj (if

there was any gap-order of the form Ui + Uj). If there were more than one edge

between any vi and vi, then the graph would be inconsistent and the shortcut

operation would fail. However, deleting constraints must leave the graph consistent;

hence, the shortcut operation cannot fail and it will return a gap-graph G’. Therefore,

&‘= { al, a,,) is an integer assignment to the variables in G’ such that

.d’ I=G’. 0

Proof of Lemma 3.13. (If): Assume that G exists and ,d)=G. By Definition 3.3,

& satisfies all gap-order constraints on the edges in G. We show that S! also satisfies

all gap-order constraints on the edges in G1 and G2.

Let Ui and vj be any pair of vertices. If vi = Uj in G1 then, by either case 2 or 3, the

merge operation adds Vi = t’j to G. If vi <s Vj in G1 then, by either case 2 or 4, the merge

operation adds vi ch uj to G for some h >g. If Vi >s uj in G1 then, by either case 2 or 5,

the merge operation adds vi >,, c’~ to G for some h >g. Hence, if there is a gap-order

constraint between any pair of vertices in GI, then there is an equal or stronger

constraint between that pair of vertices in G. Therefore, d (=G, must be true. By

symmetry, S? I= G, must also be true.

(Only if): Assume that S? + G1 and ~2 I= G2. Clearly if Vi = vj or vi <s Uj or Vi >,, Dj

in either G1 or G2, then Vi = Vj or vi <s Uj or Ui >hUj holds, if vi = Uj in G1 and Vi = Uj in

G2, then Oi=vj holds, if vi --z~, Uj in G1 and Ui <92 Uj in GZ, then vi <max(g,,92)~j holds, if

Vi >s, Vj in G1 and C’i >92 Uj in GZ, then Vi >max(g, ,yz) J u. holds. Note that cases 2-5 of the

merge operation add only these types of constraints to G. No d can satisfy more than

one of the gap-order constraints vi = vj, Vi <y vj, and vi >h Vj for any g, h > 0. Therefore,

the last case in Definition 3.10 cannot occur and the merge cannot fail. Therefore,

G exists and .d I= G must be true. 0

Proof of Lemma 4.5. Suppose that A,(G) is derived by a rule application. Then

G is consistent by the check in step 4 of the rule application. Let M be the merge

148 P.Z. Recesz

of the extensions of G1 , . . , Gk, and C. By Lemma 3.12. M is consistent and, by Lemma

3.13, G r, Gk and C are also consistent. By Lemma 3.3, they are all acyclic.

Since G 1, . . , Gk and C are (1, u)-graphs and every Ui appears in at least one of them,

vi <9 I, ui = 1, vi = u, vi >s U, or I <s Vi and ui <h u must be a constraint in at least one of

them, for some g and h. Therefore, M will also have one of those constraints for each

Vi. Hence, M will be an (1, u)-graph. Moreover, whenever Ui appears in any Gj, then ui

must have the same constraint on it as in M, ignoring gap values, because the five

cases are completely disjoint,

Let Ui <s Uj for some g be an edge on a path from 1 to u in the compact graph of M.

By acyclicity, Ui <s 1, Vi = U, and u <s Vi cannot be constraints in M for any g. Since M is

an (1, u)-graph, either 1= vi or I cy ui ch u must hold for some g and h. Similarly, either

1 <s Uj<h u or Uj=U must hold for some g and h. Hence, (I= Vi or l <g Ui <h u) and

(I<,, Uj<h’U or Uj=U) must be in each Gj that contains Ui and Uj. Therefore, if Gj has

a directed edge (Vi, Uj), then it lies on a path from I to u in the compact graph of Gj. By

reasoning similarly for each edge on a path from 1 to u, we see that they all preserve

their gap values in G> by Definition 4.2. Every other edge in G> loses its gap-value.

The merge operation takes the maximum of the gap values on each edge. Clearly,

M and the merge M’ have the same set of edges, ignoring gap values. The merge

operation takes the maximum of the gap values of each edge (vi, uj) from each Gj and

C for M and for each G$ and C’ for M’. Therefore, for each edge on a path from I to

u in M the gap value will be the same as for the same edge in M’, while all other edges

in M’ will have no gap value. Therefore, M’ is the partial graph of M.

The shortcut operation over a vertex y can only shorten paths between any two

other vertices, and it can neither create nor destroy a path between them. Hence, any

edge (Vi, Uj) that lies on a path from 1 to u in G must lie on a path from 1 to u in M or

there must be edges (vi, y) or Vi = y and (y, uj) or Vj = y in M that lie on a path from I to

u. Then the same edges with the same gap values are also in M’. Hence, (Ui, Uj) with the

same gap value will be in the shortcut G” of M’ as in G. Therefore, the longest path

from I to u is less than (U - I) in G if and only if it is true in G” if and only if it is true in

G’ the partial graph of G”. By Lemma 3.3, G is consistent if and only if G” is consistent

if and only if G’ is consistent. Hence, A,(G) is derived by a rule application if and only

if A,(G’) is derived by a p-application. 0

Acknowledgment

I thank Paris Kanellakis and Pascal Van Hentenryck for helpful comments on an

earlier draft of this paper.

References

[l] S. Abiteboul and V. Vianu, Procedural and declarative Database update languages, in: Proc. 7fh
ACM Symp. Principles of Database Systems (1988) 240-250.

A closed-form evaluation for Datalog queries 149

[2] A.K. Aylamazyan, M.M. Gilula, A.P. Stolboushkin and G.F. Schwartz, Reduction of the relational

model with infinite domain to the case of finite domains, Proc. USSR Acad. of Science (D&lady)

286(2) (1986) 308-311.

[3] E.F. Codd, A relational model for large shared data banks, Comm. ACM 13 (1970) 377-387.

[4] A. Colmerauer, An introduction to Prolog III, Comm. ACM 28 (1990) 412-418.

[S] A.K. Chandra and D. Harel, Computable queries for relational data bases, J. Comput. System Sci. 21

(1980) 156-178.

163 A.K. Chandra and D. Harel, Horn clause queries and generalizations, J. Logic Prog. 2 (1985) l-15.

[7] J. Chomicki and T. Imielinski, Relational specifications of infinite query answers, in: Proc. ACM

SIGMOD Internar. Conf: on Management of Data (1989) 174-183.

[S] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier, The Constraint

logic programming language CHIP, in: Proc. Sth Generation Computer .Sys/ems, Tokyo, Japan

(1988).

[9] J. Ferrante and J.R. Geiser, An efficient decision procedure for the theory of rational order, Theoret.

Comput. Sri. 4 (1977) 221-233.

[lo] J. Ferrante and C.W. Rackoff, The Computational Complexity of Logical Theories (Springer, Berlin,

1979).

[11] R. Hull and J. Su, Domain independence and the relational calculus. Tech. Report 88-64, University of

Southern California; Acta Infirm., submitted.

[12] N. Immerman, Relational queries computable in polynomial time. Inform. and ControL 68 (1986)

86-104.

[13] N. Immerman, Nondeterministic space is closed under complement, SIAM J. Comput. 17 (1988)

935-938.

1141 J. Jaffar, J.L. Lassez, Constraint logic programming, in: Proc. 14th ACM S~‘mp. Principles of

Programming Lunguuges (1987) 11 l-l 19.

[15] F. Kabanza, J.M. Stevenne and P. Wolper, Handling infinite temporal data, in: Proc. 9th ACM Symp.

on Principles of Database Sysrems (1990) 392-403.

[16] P.C. Kanellakis, Elements of relational Database theory, in: J. van Leeuwen, A.R. Meyer, N. Nivat,

MS. Paterson and D. Perrin, eds., Handbook of Theoretical Computer Science, Vol. B, Chapter 17

(North-Holland, Amsterdam, 1990).

[17] P.C. Kanellakis, G.M. Kuper and P.Z. Revesz, Constraint query languages, in: Proc. 9th ACMSymp.

on Principles of Database Sysfems (1990) 299-3 13.

[lS] P.C. Kanellakis and P.Z. Revesz, On the relationship of congruence closure and unification, J.

Symbolic Comput. 7 (1989) 427-444.

[19] M. Kifer, On safety, domain independence, and capturability of database queries, in Proc. Internat.

Conf on Databases and Knowledge Bases (1988).

[20] S.C. Kleene, General recursive functions on natural numbers, Math. Ann. 112 (1936) 727-742.

[21] P. Kolaitis and C.H. Papadimitriou, Why not negation by fixpoint? in: Proc. 7th ACM Symp. on

Principles of Database Systems (1988) 23 I-239.

[22] H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation (Prentice-Hall, Engle-

wood Cliffs, NJ, 1981).

[23] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, 1984).

[24] Y.N. Moschovakis, Elementary Induction on Abstract Srructures (North-Holland, Amsterdam, 1974).

[25] R. Ramakrishnan, Magic templates: A spellbinding approach to logic programs, in: Proc. 5th Internat.

Co& on Logic Programming (1988) 141-159.

[26] P.Z. Revesz, A closed form for Datalog queries with integer order, in: Proc. 3rd Internat. Conf. on

Database Theory (1990) 187-201.

1271 R. Szelepcstnyi, The method of forced enumeration for nondeterministic automata, Acta Inform. 26

(1988) 279-284.

[28] J.D. Ullman, Principles of Database Systems (Computer Science press, Rockville, MD, 2nd edn., 1982).

[29] J.D. Ullman and A. Van Gelder, Parallel complexity of logical query programs, Algorithmicu 3 (1988)

5-42.

[30] P. Van Hentenryck, Constraint Satisfaction in Logic Programming (MIT Press, Cambridge, 1989).

[31] M.Y. Vardi, The complexity of relational query languages, in: Proc. 14th ACM Symp. on Theory of

Computing (1982) 137-146.

