
Extracting Topological Information from
 Spatial Constraint Databases

Shasha Wu
Department of Math, Physics, and Computer Science

Spring Arbor University
swu@arbor.edu

Peter Revesz
Department of Computer Science and Engineering

University of Nebraska-Lincoln
revesz@cse.unl.edu

Abstract

This paper presents an efficient topology information
extraction algorithm that is capable of extracting primary
topological relations, such as, interior, boundary, and
exterior from a single spatial or spatio-temporal object
stored in a linear constraint database. Any non-spatial
constraints will be preserved so that the input spatio-
temporal object’s temporal constraints will not be sacrificed
by the algorithm. Based on the three primary topological
relations, more topological relations between regions, lines,
and points can be defined in a constraint database for future
spatial analysis.

1. Introduction
Constraints are used to express many types of search
problems. The constraints given by the users are usually
specified in a simple, straightforward way. These
specification constraints need to be reformulated to allow
efficient query evaluation. The reformulation of the
constraints is done by a query processor or engine, which
includes formalization and optimization functions. One of
the fundamental concepts necessary for the analysis of
spatial and spatio-temporal data in a Geographic
Information System (GIS) is a formal understanding of the
geometric relationship among arbitrary spatial objects.

A critical task in querying a single spatial object is to
identify the interior, boundary, and exterior areas. With
these three primary topological relationships, the users can
define more complex topological relationships (Egenhofer
1991a, Clementini, Sharma, and Egenhofer 1994, Du et al.
2008) to improve the quality of the spatial data, detect and

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

correct topological errors, implement advanced spatial
queries naturally in the format of constraints (Egenhofer
1990, Egenhofer and Shariff 1998, Egenhofer 1990), and
model and construct topological relationships between
spatio-temporal objects and time (Bassiri and Alesheikh
2008).

Typical spatial queries, such as, “Find all fire stations
that are within two miles of a house that is on fire” or
“Find the part of the Yellowstone National Park that is
outside of Wyoming” cannot be expressed in relational
databases. The extension of relational databases and query
languages with spatial relations is an important problem
(Ben-Or, Kozen, and Reif 1986, Egenhofer 1992, Egenhofer
1991b, Egenhofer 1994).

The remainder of this paper is organized as follows.
Section 2 reviews the spatial constraint data model and
Datalog programs. Section 3 introduces the algorithms that
extract the interior, border, and exterior information from
the spatial object in constraint databases. Finally, Section 4
discusses future research activities based on these results.

2. Spatial Constraint Databases
Constraint databases (Kanellakis, Kuper, and Revesz 1995,
Revesz 2002, Revesz 2010) provide an extension of
relational databases by allowing constraint formulae as a
basic data type. Any constraint formula ! in free variables
x1, …, xn is interpreted as a set of tuples (a1, …, an) over
the schema x1, …, xn that satisfy !.

A spatial constraint database is a finite set of spatial
constraint relations. A spatial constraint relation is a finite
set of spatial constraint tuples, where each spatial
constraint tuple is a conjunction of atomic spatial
constraints using the same set of attribute variables

149

Proceedings of the Ninth Symposium on Abstraction, Reformulation and Approximation

(Revesz 2003). Hence, constraints are hidden inside the
constraint tables, and the users only need to understand the
logical meaning of the constraint tables as an infinite set of
constant tuples represented by the finite set of constraint
tuples. Typical atomic spatial constraints include rational
linear or real polynomial constraints (Revesz 2010).

The MLPQ system is a spatial constraint database
system that implements rational linear constraint databases,
supports both SQL and Datalog (Doets 1994, Lloyd 1987,
Ullman 1989) queries, and minimum/maximum
aggregation operators over linear objective functions
(Revesz et al. 2000). Other spatial constraint database
systems include DISCO (Byon and Revesz 1995), DEDALE
(Grumbach, Rigaux, and Segoufin 1998), CCUBE
(Brodsky et al, 1999) and CQA/CDB (Goldin et al. 2003).

Point set topology-based formal representations of
topological relations, called the 4-intersection and the 9-
intersection models, have been also developed (Egenhofer
1991a). The 9-intersection model is widely used to
describe binary topological spatial relations. In these
models, the topological relations between two entities A
and B are defined in terms of the intersections of A’s
boundary ("A), interior (A0) and exterior (A-) with B’s
boundary ("B), interior (B0) and exterior (B-) (Egenhofer
and Franzosa 1991). The ability to extract such basic
topological information seems a requirement for any
meaningful spatial analysis.

To simplify our future analysis and implementation, we
can make the following assumptions without loss of
generality:

Each spatial object is represented by a constraint
relation in a disjunctive normal form (DNF) as follows:

)()()(
),,(

'
,2,1,

'
2,22,21,2

'
1,12,11,1

21

21 mkmmmkk

m

prrrprrrprrr
pppyxR

m
$$$$%%$$$$%$$$$&

%%%&

!!!!
!!

Relation R is a union of a set of tuples. Each tuple t is
a set of conjunctive linear constraints that represent
one spatial object, which can be a convex polygon, a
line segment, a point, or any combination of them over
other variables.

We only deal with rational linear constraints in this
article because most spatial objects in the existing GIS
applications are 2-D objects and can be represented by
point, line, or polygon features. Rational linear
constraints can easily describe all of those features.
There is no need to use real polynomial constraints for
these features.

Variables x and y must be the first and second
variables of a 2D spatial relation R. Other variables
can be listed after these two variables.

All atomic spatial constraints can be divided into two
groups: the spatial constraints, which contain at least
one of the variables x, y; and the non-spatial
constraints, which contain no x and y variables. The
second group of constraints is represented as tuple '

kt
in the above representation because we will always
treat them as a whole unit in the future analysis.

3. Extracting Interior, Boundary and
Exterior Constraint Relations

3.1 Extracting the Interior of a Spatial Object
The interior of a spatial object can be represented by
constraint tuples with inequality constraints over x and y
coordinates. The algorithm can be displayed as follows:

Algorithm 1: Extract Interior Information from R

inR = new Relation(R) //Make a copy of relation R
for (i=0; i < m; i++) { //with m constraint tuples.

for (j = 0; j < inR.Tuples[i].length(); j++) {
 //iterate over all linear constraints of tuple i
 if (containsXorY(inR.Tuples[i].cons[j]))
 // If it is a spatial constraint, i.e., contains x or y,
 //remove the equal notation from the constraint
 {inR.Tuples[i].cons[j] = inEqual(inR.Tuples[i].cons [j]);}

}
}

The time complexity of Algorithm 1 is O(mk) where m
is the number of tuples and k is the maximum number of x-
y related linear constraints in any tuple. The result will
reserve any temporal or other relationships defined in the
original constraints to the new object.

Example 1: The following relation R represents a
triangle that changes its shape over time t. In constraint
databases, it is represented by the following tuple with five
linear constraints. Figure 1 shows the shapes of relation R
at two different times.

.10,0,10,,0:),,('(')((* ttyxtyxtyxR

150

a) t = 0

 b) t = 6

Figure 1. The spatio-temporal triangle R at times 0 and 6.

Applying Algorithm 1 on Example 1 we get the
following result:

.10,0,10,,0:),,('(+),,* ttyxtyxtyxinR

The shape of relation inR is basically the same as that of
relation R. The only difference is that inR does not include
any borders.

3.2 Extracting the Border of a Spatial Object
Each constraint tuple can only represent a convex polygon,
a line segment, or a point. For line segments and points,
their borders are the same as themselves. Hence in this
section we only discuss polygons as a nontrivial case. In
constraint databases, any concave polygon or polygon with
holes has to be divided and represented by multiple convex
polygons. We will first discuss a solution that extracts the
border of a convex polygon. Then we extended our
solution to address concave polygons and polygons with
one or more holes.

A convex polygon is represented by a conjunctive set of
linear inequality constraints over variables x and y. To
extract the border, we can convert each linear inequality
constraints to a corresponding linear equation. This way,
we first get all the edge lines. To reduce those edge lines to
the edge segments, we have to apply all the rest inequality

constraints for each line to reduce its length. The algorithm
can be displayed as follows:

Algorithm 2: Extract the border bR of a single convex
polygon R that has one tuple Rt, and Rt.length number of
atomic constraints.

bR = new Relation(); //Make a new relation bR
Rt = R.Tuples[0]; //Rt is the only tuple in R
for (i = 0; i < Rt.length(); i++) //iterate over constraints
{

if (containsXorY(Rt[i])) // if it contains x or y
{

t = new Tuple(Rt) //make a copy of Rt
 bR.add(t); //add tuple t to relation bR

}
}

for (j = 0; j < bR.Tuples.length() – 1; j++) {
t=bR.Tuples[j];

 //change the jth constraint of tuple j to equality constraint
t.cons[j] = makeEqual(t.cons [j]));

}

Figure 2 shows the border bR of relation R. Algorithm 2
extracts the shape of bR as follows.

.10,0,10,,0:),,(

.10,0,10,,0:),,(

.10,0,10,,0:),,(

'(&)((*
'(')&(*
'(')(&*

ttyxtyxtyxbR
ttyxtyxtyxbR
ttyxtyxtyxbR

For line or point spatial object, it will not change
anything in the original relation because the
makeEqual(t.cons[j]) function will not change anything
when constraint t.cons[j] is already an equality constraint.
Hence the algorithm also works for line and point objects.

a) t = 0 b) t = 6.

Figure 2. Border of relation R in Example 1

Concave polygons or polygons with holes can be split
into multiple convex polygons using several efficient
algorithms. For example, (Chazelle 1991) is a linear time
algorithm that decomposes a simple polygon into a set of
triangles. Constraint databases represent concave polygons

151

or polygons with holes in a decomposed form, where each
convex polygon is represented by one tuple. The union of
all tuples forms the constraint relation that represents the
original polygon. We can still apply Algorithm 2 to find
the border of each convex polygon and merge them to get
the border of the original polygon. The challenge is that
when we combine the borders, then the internal common
edges have to be removed so that the result only contains
the outer boundary of the original polygon. Since the
internal edges are always shared by more than one polygon,
they must appear at least twice in the result. We can sort all
result edges based on the vertices and remove any adjacent
edges that are identical. The modified algorithm is shown
as follows:

Algorithm 3: Extract the border bR of a set of convex
polygons stored in input relation R.

bR = new Relation(); //Make a new relation bR
for (k = 0; k < R.Tuples.length(); k++)
{

Rt = R.Tuples[k]; //Rt is kth convex polygon tuple
for (i = 0; i < Rt.length(); i++)
//iterate all linear constraint of tuple Rt
{

if (containsXorY(Rt[i])) // if it is spatial
{

 t = new Tuple(Rt); //make a copy of Rt
 bR.add(t); //add tuple t to relation bR

}
else

 break;
}

for (j = 0; j < bR.Tuples.length(); j++)
{

t=bR.Tuples[j];
//change the jth constraint of tuple j to equality constraint

t.cons[j] = makeEqual(t.cons [j]));
}

}
RemoveInternalEdges(bR);

Example 2: To represent in a constraint database the
spatio-temporal concave polygon shown in Figure 3, we
have to use two convex polygons as follows.

.10,0,10,22,0:),,(
.10,0,10,,0:),,(

'(')**'*'*
'(')((*

ttyxtyxxtyxR
ttyxtyxtyxR

a) t = 0

b) t = 6.

Figure 3. A spatio-temporal concave polygon R.

In this case, Algorithm 3 gives the following answer
before removing the internal edges.

.10,0,10,22,0:),,(.6

.10,0,10,22,0:),,(.5

.10,0,10,22,0:),,(.4
.10,0,10,,0:),,(.3
.10,0,10,,0:),,(.2
.10,0,10,,0:),,(.1

'(&)**'*'*
'(')**&*'*
'(')**'*&*

'(&)((*
'(')&(*
'(')(&*

ttyxtyxxtyxbR
ttyxtyxxtyxbR
ttyxtyxxtyxbR

ttyxtyxtyxbR
ttyxtyxtyxbR
ttyxtyxtyxbR

The edges represented by the 1st and the 4th rows are
common internal edges. Removing these, gives the
following border relation bR (see also Figure 4).

.10,0,10,22,0:),,(.6

.10,0,10,22,0:),,(.5
.10,0,10,,0:),,(.3
.10,0,10,,0:),,(.2

'(&)**'*'*
'(')**&*'*

'(&)((*
'(')&(*

ttyxtyxxtyxbR
ttyxtyxxtyxbR

ttyxtyxtyxbR
ttyxtyxtyxbR

a) t = 0

152

b) t = 6.

Figure 4. Border of relation R of Example 2

3.3 Extracting the Exterior of a Spatial Object
Extracting the exterior of a spatial object can be described
as the computation of the negation of a constraint relation
over x-y dimension. Assume R is a relation with linear
constraints over the rationals or polynomial constraints
over the reals. It is possible to find a constraint
representation of the complement of R that contains the
same type of constraints as the input relation. Assume p1,
p2, …, pm are tuples of R and every tuple consists of a set
of atomic constraints as follows:

1,12,1111 ,,, k, rrrp !& .
2,22,21,22 ,,, krrrp !& .

…
mkmmmm rrrp ,2,1, ,,, !& .

We can represent R as follows:

)(
)()(

,2,1,

,22,21,2,12,11,1

21

21

mkmmm

kk

m

rrr
rrrrrr

pppR

$$$%
%$$$%$$$&

%%%&

!!
!!

!

Then we can compute the complement as follows:

)()()(

)()()(

)()()(

)(

)()()(

)()()(

,,11,12,,1,11,,1,1

,2,11,12,2,11,11,2,11,1

,1,11,12,1,11,11,1,11,1

1
,

1

,1,1,,21,21,2,11,11,1

,2,1,,22,21,2,12,11,1

1111

11111

2211

21

mmmm

m

m

m

m

kmkmmkmkmkmk

kmmmmmm

kmmmmmm

ik

j
ji

m

i

mkmkmmkkkk

kmmmkk

mmmm

rrrrrrrrr

rrrrrrrrr

rrrrrrrrr

r

rrrrrrrrr

rrrrrrrrr

ppppppR

$$$%%$$$%$$$%

%

$$$%%$$$%$$$%

$$$%%$$$%$$$&

&

%%%$$%%%$%%%&

$$$$$$$$$$$$&

$$$&%%%&

*** ***

&&

**

!!!!
!

!!!!

!!!!

!!!!

!!!!

!!

"#

All ri,j in the formula are atomic constraints that contain
either x or y variable. Assume m is the number of tuples in

the relation R and k is the maximum number of atomic
constraints in any tuple of R. The space complexity of R is:
-
&

m

i
ik

1
= O(mk), while R will have up to .

&

m

i
ik

1
≤.

&

m

i
k

1
=

km tuples and every tuple has O(m) atomic constraints.
The space complexity of R is: .

&

m

i
ikm

1
 = O(mkm).

For a complex concave polygon, like the map of
Michigan in a 1,000,000:1 scale, m is over 100 and k is at
least 3. The time and space complexity is more than 3100!
Hence we cannot get an answer within a reasonable time
and space.

However, it is a completely different situation if the
input is a single convex polygon. To represent a single
convex polygon, one tuple is enough. In this case, we have
m=1 and the time and space complexity of the algorithm
becomes O(k). The direct negation algorithm can work
efficiently in this case. In the implementation (see
Algorithm 4), we restrict the input relation to have only
one tuple.

Algorithm 4: Extract complement information over x-y
variables from single convex polygon.

cR = new Relation(); //Make a new relation cR.
Rt = R.Tuples[0]; //Rt, the only tuple, is a convex polygon

for (i = 0; i < Rt.length(); i++)
//iterate all linear constraint of tuple Rt
{

tc = Rt.cons[i];
if (containsXorY(tc))

 // if the linear constraint contains x or y variable
{

 t = new Tuple(NOT(tc));
//flip the atomic constraint tc & add to the new tuple
 cR.add(t); //add the new tuple t to relation cR

}
else {

 stop = i;
//record the start location of non-spatial constraint
 break;
//finish the loop when the constraint has no x or y

}
}

for (i = 0; i < cR.Tuples.length(); i++)
for (j = stop; j < Rt.length(); j++)
{

cR.Tuples[i].append(Rt.cons[j]);
//add non-spatial constraints back to each tuple of cR

}
}
return cR; //return cR as the complement of R

153

Algorithm 4 cannot be applied to concave polygons or a
union of convex polygons. When there are multiple convex
polygons in the same constraint relation, the complement
of one convex polygon can be affected by the complements
of all the other convex polygons. If we can remove the
relationship among those complements, then the time and
space complexities can be reduced to polynomial functions.
The following is a high level description of Algorithm 5
that solves the complement problem in such a way with a
polynomial time complexity:

1. For the given concave polygon, travel through its
connected vertices and insert necessary edges to form
a simple convex polygon R’ that covers the original
polygon. Record all the extra edges added in this step.
The whole process can be done in a polynomial time.

2. Compute the negation of the R’ use the Algorithm 4.
Add the output tuples to the result. Since R’ is a
convex polygon, it has only one tuple in the relation.
That means m is 1 and the time and space complexity
is O(k).

3. Iterate every new edge Ei added in Step 1. Each Ei is
an edge of one internal polygon PEi that does not
belong to the original polygon R. Extract polygon PEi
and add it to the result. The time complexity of this
step is O(m).

4. If the original polygon contains holes, find all the
holes and add them to the results.

This algorithm works efficiently on single concave
polygon object with or without holes. However, if the input
relation represents the union of multiple polygons, this
algorithm turns back to NP-hard complexity.

Figure 5 illustrates the process of computing the
complement of the map of Michigan State, excluding the
upper-peninsula area, using Algorithm 5.

a) Michigan State (concave polygon R)

b) Convex polygon R’ that covers R

c) Complement of R’

d) Complement of R

Figure 5. Compute the complement of concave polygon.
(Yellow part represents the complement)

4. Conclusion and Future Work
We described polynomial time and space complexity
algorithms to extract the interior, border and exterior of
spatial objects represented in constraint databases. These
three relations can enable in the future the description and
analysis of more complex spatial and topological relations.
We plan to investigate and implement the following:
a general simplification function that detects and

removes redundant and overlapped constraints.
an efficient algorithm to split concave polygons and

polygons with holes into convex polygons.

154

topological relation constraints based on the functions
discussed in this paper to improve the quality of
spatial data stored in constraint databases.

References
Bassiri, A., and Alesheikh, A. A. 2008. Spatio-temporal
topological relationships based on rough set. In Proceedings of
7th IEEE International Conference on Cognitive Informatics, 175
- 180.
Ben-Or, M., Kozen, D., and Reif, J. 1986. The Complexity of
Elementary Algebra and Geometry. Journal of Computer and
System Sciences, 251-264.
Brodsky, A., Segal, V. E., Chen, J., and Exarkhop, P. A. 1999.
The CCUBE constraint object-oriented database system.
SIGMOD Conference.
Byon, J., and Revesz, P. 1995. DISCO: A Constraint Database
System with Sets. In Proceedings workshop on Constraint
Databases and Applications. 68-83. Springer-Verlag.
Chazelle, B. 1991. Triangulating a Simple Polygon in Linear
Time. Discrete & Computational Geometry, 6, 485–524.
Clementini, E., Sharma, J., and Egenhofer, M. 1994. Modeling
Topological Spatial Relations: Strategies for Query Processing.
Computers and Graphics, 815-822.
Doets, K. 1994. From Logic to Logic Programming. MIT Press.
Du, S., Qin, Q., Wang, Q., and Ma, H. 2008. Reasoning about
topological relations between regions with broad boundaries.
International Journal of Approximate Reasoning, 47(2), 219-232.
Egenhofer, M. 1990. Interaction with Geographic Information
Systems via Spatial Queries. Journal of Visual Languages and
Computing, 1(4), 389-413.
Egenhofer, M. 1991a. Reasoning about binary topological
relations. Proceedings of 2nd Symposium on Large Spatial
Databases. 143-160. Zurich: Springer-Verlag.
Egenhofer, M. 1991b. Extending SQL for Graphical Display.
Cartography and Geographic Information Systems, 230-245.
Egenhofer, M., and Franzosa, R. D. 1991. Point-set topological
spatial relations. International Journal of Geographical
Information Systems, 5:161-176.
Egenhofer, M. 1992. Why not SQL! International Journal of
Geographical Information Systems, 71-85.
Egenhofer, M. 1994. Spatial SQL: A Query and Presentation
Language. IEEE Transactions on Knowledge and Data
Engineering, 86-95.
Egenhofer, M., and Shariff, R. 1998. Metric Details for Natural-
Language Spatial Relations. ACM Transactions on Information
Systems, 295-321.
Goldin, D. Q., Kutlu, A., Song, M., and Yang, F. 2003. The
constraint database framework: lessons learned from CQA/CDB.
Proceedings of the International Conference on Data
Engineering.
Grumbach, S., Rigaux, P., and Segoufin, L. 1998. The DEDALE
system for complex spatial queries. Proceedings of the ACM
SIGMOD International Conference on Management of Data.
Kanellakis, P. C., Kuper, G. M., and Revesz, P. Z. 1995.
Constraint query languages. Journal of Computer and System
Sciences, 51(1).

Lloyd, J. W. 1987. Foundations of Logic Programming. Berlin:
Spring.
Revesz, P. 2002. Introduction to Constraint Databases. Springer.
Revesz, P. 2003. A Retrospective on Constraint Databases. ACM
PCK50, 12-27. ACM.
Revesz, P. 2010. Introduction to Databases: From Biological to
Spatio-Temporal. Springer.
Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., and Wang, Y.
2000. The MLPQ/GIS constraint database system. Proceedings of
the ACM SIGMOD International Conference on Management of
Data. ACM.
Ullman, J. D. 1989. Principles of Database and Knowledge-Base
Systems (Vol. 1&2). Computer Science Press.

155

