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Abstract

This paper presents an efficient topology information 
extraction algorithm that is capable of extracting primary 
topological relations, such as, interior, boundary, and 
exterior from a single spatial or spatio-temporal object 
stored in a linear constraint database. Any non-spatial 
constraints will be preserved so that the input spatio-
temporal object’s temporal constraints will not be sacrificed 
by the algorithm. Based on the three primary topological 
relations, more topological relations between regions, lines, 
and points can be defined in a constraint database for future 
spatial analysis.

1. Introduction   
Constraints are used to express many types of search 
problems. The constraints given by the users are usually 
specified in a simple, straightforward way. These 
specification constraints need to be reformulated to allow 
efficient query evaluation. The reformulation of the 
constraints is done by a query processor or engine, which 
includes formalization and optimization functions. One of 
the fundamental concepts necessary for the analysis of 
spatial and spatio-temporal data in a Geographic 
Information System (GIS) is a formal understanding of the 
geometric relationship among arbitrary spatial objects.  

A critical task in querying a single spatial object is to 
identify the interior, boundary, and exterior areas. With 
these three primary topological relationships, the users can 
define more complex topological relationships  (Egenhofer 
1991a, Clementini, Sharma, and Egenhofer 1994, Du et al. 
2008) to improve the quality of the spatial data, detect and 
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correct topological errors, implement advanced spatial 
queries naturally in the format of constraints  (Egenhofer 
1990, Egenhofer and Shariff 1998, Egenhofer 1990), and 
model and construct topological relationships between 
spatio-temporal objects and time (Bassiri and Alesheikh 
2008). 

Typical spatial queries, such as, “Find all fire stations 
that are within two miles of a house that is on fire” or 
“Find the part of the Yellowstone National Park that is 
outside of Wyoming” cannot be expressed in relational 
databases. The extension of relational databases and query 
languages with spatial relations is an important problem 
(Ben-Or, Kozen, and Reif 1986, Egenhofer 1992, Egenhofer 
1991b, Egenhofer 1994).

The remainder of this paper is organized as follows. 
Section 2 reviews the spatial constraint data model and 
Datalog programs. Section 3 introduces the algorithms that 
extract the interior, border, and exterior information from 
the spatial object in constraint databases. Finally, Section 4 
discusses future research activities based on these results. 

2. Spatial Constraint Databases 
Constraint databases (Kanellakis, Kuper, and Revesz 1995, 
Revesz 2002, Revesz 2010) provide an extension of 
relational databases by allowing constraint formulae as a 
basic data type. Any constraint formula ! in free variables 
x1, …, xn is interpreted as a set of tuples (a1, …, an) over 
the schema x1, …, xn that satisfy !.

A spatial constraint database is a finite set of spatial 
constraint relations. A spatial constraint relation is a finite 
set of spatial constraint tuples, where each spatial 
constraint tuple is a conjunction of atomic spatial 
constraints using the same set of attribute variables 
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(Revesz 2003). Hence, constraints are hidden inside the 
constraint tables, and the users only need to understand the 
logical meaning of the constraint tables as an infinite set of 
constant tuples represented by the finite set of constraint 
tuples. Typical atomic spatial constraints include rational 
linear or real polynomial constraints (Revesz 2010).  

The MLPQ system is a spatial constraint database 
system that implements rational linear constraint databases, 
supports both SQL and Datalog  (Doets 1994, Lloyd 1987,
Ullman 1989) queries, and minimum/maximum 
aggregation operators over linear objective functions 
(Revesz et al. 2000).  Other spatial constraint database 
systems include DISCO (Byon and Revesz 1995), DEDALE 
(Grumbach, Rigaux, and Segoufin 1998), CCUBE 
(Brodsky et al, 1999) and CQA/CDB (Goldin et al. 2003). 

Point set topology-based formal representations of 
topological relations, called the 4-intersection and the 9-
intersection models, have been also developed (Egenhofer 
1991a). The 9-intersection model is widely used to 
describe binary topological spatial relations. In these 
models, the topological relations between two entities A 
and B are defined in terms of the intersections of A’s 
boundary ("A), interior (A0) and exterior (A-) with B’s 
boundary ("B), interior (B0) and exterior (B-) (Egenhofer 
and Franzosa 1991). The ability to extract such basic 
topological information seems a requirement for any 
meaningful spatial analysis.

To simplify our future analysis and implementation, we 
can make the following assumptions without loss of 
generality: 

# Each spatial object is represented by a constraint 
relation in a disjunctive normal form (DNF) as follows:  
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# Relation R is a union of a set of tuples. Each tuple t is 
a set of conjunctive linear constraints that represent 
one spatial object, which can be a convex polygon, a 
line segment, a point, or any combination of them over 
other variables. 

# We only deal with rational linear constraints in this 
article because most spatial objects in the existing GIS 
applications are 2-D objects and can be represented by 
point, line, or polygon features. Rational linear 
constraints can easily describe all of those features.
There is no need to use real polynomial constraints for 
these features. 

# Variables x and y must be the first and second 
variables of a 2D spatial relation R.  Other variables 
can be listed after these two variables.

# All atomic spatial constraints can be divided into two 
groups: the spatial constraints, which contain at least 
one of the variables x, y; and the non-spatial 
constraints, which contain no x and y variables. The 
second group of constraints is represented as tuple '

kt
in the above representation because we will always 
treat them as a whole unit in the future analysis. 

3. Extracting Interior, Boundary and 
Exterior Constraint Relations 

3.1 Extracting the Interior of a Spatial Object 
The interior of a spatial object can be represented by 
constraint tuples with inequality constraints over x and y
coordinates. The algorithm can be displayed as follows: 

Algorithm 1: Extract Interior Information from R

inR = new Relation(R)             //Make a copy of relation R
for  (i=0; i < m; i++) {           //with m constraint tuples.

for  (j = 0; j < inR.Tuples[i].length(); j++) {
           //iterate over all linear constraints of tuple i
            if (containsXorY(inR.Tuples[i].cons[j]))        
                 // If it is a spatial constraint, i.e., contains x or y,
                 //remove the equal notation from the constraint
             {inR.Tuples[i].cons[j] = inEqual(inR.Tuples[i].cons [j]);}

}
}

The time complexity of Algorithm 1 is O(mk) where m
is the number of tuples and k is the maximum number of x-
y related linear constraints in any tuple. The result will 
reserve any temporal or other relationships defined in the 
original constraints to the new object. 

Example 1: The following relation R represents a 
triangle that changes its shape over time t. In constraint 
databases, it is represented by the following tuple with five 
linear constraints. Figure 1 shows the shapes of relation R 
at two different times. 

.10,0,10,,0:),,( '(')((* ttyxtyxtyxR
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a) t = 0 

                                   b)   t = 6 

Figure 1. The spatio-temporal triangle R at times 0 and 6. 

Applying Algorithm 1 on Example 1 we get the 
following result: 

.10,0,10,,0:),,( '(+),,* ttyxtyxtyxinR

The shape of relation inR is basically the same as that of 
relation R. The only difference is that inR does not include 
any borders.  

3.2 Extracting the Border of a Spatial Object 
Each constraint tuple can only represent a convex polygon, 
a line segment, or a point. For line segments and points, 
their borders are the same as themselves. Hence in this 
section we only discuss polygons as a nontrivial case.  In 
constraint databases, any concave polygon or polygon with 
holes has to be divided and represented by multiple convex 
polygons. We will first discuss a solution that extracts the 
border of a convex polygon. Then we extended our 
solution to address concave polygons and polygons with 
one or more holes.

A convex polygon is represented by a conjunctive set of 
linear inequality constraints over variables x and y. To 
extract the border, we can convert each linear inequality
constraints to a corresponding linear equation. This way, 
we first get all the edge lines. To reduce those edge lines to 
the edge segments, we have to apply all the rest inequality 

constraints for each line to reduce its length. The algorithm 
can be displayed as follows: 

Algorithm 2: Extract the border bR of a single convex 
polygon R that has one tuple Rt, and Rt.length number of 
atomic constraints.

bR = new Relation();                //Make a new relation bR
Rt = R.Tuples[0];                      //Rt is the only tuple in R
for  (i = 0;   i < Rt.length(); i++) //iterate over constraints
{

if (containsXorY(Rt[i]))   // if it contains x or y
{

t = new Tuple(Rt)         //make a copy of Rt
          bR.add(t);                     //add tuple t to relation bR

}
}

for (j = 0; j < bR.Tuples.length() – 1; j++) {
t=bR.Tuples[j];

     //change the jth constraint of tuple j to equality constraint
t.cons[j] = makeEqual(t.cons [j]));

}

Figure 2 shows the border bR of relation R. Algorithm 2 
extracts the shape of bR as follows. 

.10,0,10,,0:),,(

.10,0,10,,0:),,(

.10,0,10,,0:),,(

'(&)((*
'(')&(*
'(')(&*

ttyxtyxtyxbR
ttyxtyxtyxbR
ttyxtyxtyxbR

For line or point spatial object, it will not change 
anything in the original relation because the 
makeEqual(t.cons[j]) function will not change anything 
when constraint t.cons[j] is already an equality constraint. 
Hence the algorithm also works for line and point objects.

a) t = 0   b) t = 6. 

Figure 2. Border of relation R in Example 1 

Concave polygons or polygons with holes can be split 
into multiple convex polygons using several efficient 
algorithms. For example, (Chazelle 1991) is a linear time 
algorithm that decomposes a simple polygon into a set of 
triangles. Constraint databases represent concave polygons 
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or polygons with holes in a decomposed form, where each 
convex polygon is represented by one tuple. The union of 
all tuples forms the constraint relation that represents the 
original polygon. We can still apply Algorithm 2 to find 
the border of each convex polygon and merge them to get 
the border of the original polygon. The challenge is that 
when we combine the borders, then the internal common 
edges have to be removed so that the result only contains 
the outer boundary of the original polygon. Since the 
internal edges are always shared by more than one polygon, 
they must appear at least twice in the result. We can sort all 
result edges based on the vertices and remove any adjacent 
edges that are identical. The modified algorithm is shown 
as follows:

Algorithm 3: Extract the border bR of a set of convex 
polygons stored in input relation R. 

bR = new Relation();                //Make a new relation bR
for (k = 0;  k < R.Tuples.length();  k++)
{

Rt = R.Tuples[k];    //Rt is kth convex polygon tuple
for  (i = 0;   i < Rt.length(); i++) 
//iterate all linear constraint of tuple Rt
{

if (containsXorY(Rt[i]))         // if it is spatial
{

          t = new Tuple(Rt); //make a copy of Rt
          bR.add(t);               //add tuple t to relation bR

}
else 

          break;
}

for (j = 0; j < bR.Tuples.length(); j++)
{

t=bR.Tuples[j];
//change the jth constraint of tuple j to equality constraint

t.cons[j] = makeEqual(t.cons [j])); 
}

}
RemoveInternalEdges(bR);

Example 2: To represent in a constraint database the
spatio-temporal concave polygon shown in Figure 3, we 
have to use two convex polygons as follows. 

.10,0,10,22,0:),,(
.10,0,10,,0:),,(

'(')**'*'*
'(')((*

ttyxtyxxtyxR
ttyxtyxtyxR

a) t = 0 

b) t = 6. 

Figure 3. A spatio-temporal concave polygon R. 

In this case, Algorithm 3 gives the following answer 
before removing the internal edges.  

.10,0,10,22,0:),,(.6

.10,0,10,22,0:),,(.5
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The edges represented by the 1st and the 4th rows are 
common internal edges. Removing these, gives the 
following border relation bR (see also Figure 4). 

.10,0,10,22,0:),,(.6
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a) t = 0 
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b) t = 6. 

Figure 4. Border of relation R of Example 2 

3.3 Extracting the Exterior of a Spatial Object 
Extracting the exterior of a spatial object can be described 
as the computation of the negation of a constraint relation 
over x-y dimension. Assume R is a relation with linear 
constraints over the rationals or polynomial constraints 
over the reals. It is possible to find a constraint 
representation of the complement of R that contains the 
same type of constraints as the input relation. Assume p1,
p2, …,  pm are tuples of R and every tuple consists of a set 
of atomic constraints as follows:

1,12,1111 ,,, k, rrrp !& . 
2,22,21,22 ,,, krrrp !& . 

…
mkmmmm rrrp ,2,1, ,,, !& . 

We can represent R as follows: 
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Then we can compute the complement as follows: 
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All ri,j in the formula are atomic constraints that contain 
either x or y variable. Assume m is the number of tuples in 

the relation R and k is the maximum number of atomic 
constraints in any tuple of R. The space complexity of R is:  
-
&

m

i
ik

1
= O(mk), while R  will have up to .
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km tuples and every tuple has O(m) atomic constraints. 
The space complexity of R  is: .

&

m

i
ikm

1
 = O(mkm).  

For a complex concave polygon, like the map of 
Michigan in a 1,000,000:1 scale, m is over 100 and k is at 
least 3. The time and space complexity is more than 3100! 
Hence we cannot get an answer within a reasonable time 
and space. 

However, it is a completely different situation if the 
input is a single convex polygon. To represent a single 
convex polygon, one tuple is enough. In this case, we have 
m=1 and the time and space complexity of the algorithm 
becomes O(k). The direct negation algorithm can work 
efficiently in this case. In the implementation (see 
Algorithm 4), we restrict the input relation to have only 
one tuple. 

Algorithm 4: Extract complement information over x-y
variables from single convex polygon.

cR = new Relation();                //Make a new relation cR.
Rt = R.Tuples[0];  //Rt, the only tuple, is a convex polygon

for  (i = 0;   i < Rt.length(); i++) 
//iterate all linear constraint of tuple Rt
{

tc = Rt.cons[i];
if (containsXorY(tc))        

       // if the linear constraint contains x or y variable
{

          t = new Tuple(NOT(tc));
//flip the atomic constraint tc & add to the new tuple
          cR.add(t);     //add the new tuple t to relation cR

}
else {

          stop = i; 
//record the start location of non-spatial constraint
          break;
//finish the loop when the constraint has no x or y

}
}

for (i = 0; i < cR.Tuples.length(); i++)
for (j = stop; j < Rt.length(); j++)
{

cR.Tuples[i].append(Rt.cons[j]);    
//add non-spatial constraints back to each tuple of cR

}
}
return cR;               //return cR as the complement of R
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Algorithm 4 cannot be applied to concave polygons or a
union of convex polygons. When there are multiple convex 
polygons in the same constraint relation, the complement 
of one convex polygon can be affected by the complements 
of all the other convex polygons. If we can remove the 
relationship among those complements, then the time and 
space complexities can be reduced to polynomial functions.
The following is a high level description of Algorithm 5
that solves the complement problem in such a way with a 
polynomial time complexity: 

1. For the given concave polygon, travel through its 
connected vertices and insert necessary edges to form 
a simple convex polygon R’ that covers the original 
polygon. Record all the extra edges added in this step. 
The whole process can be done in a polynomial time.  

2. Compute the negation of the R’ use the Algorithm 4.
Add the output tuples to the result. Since R’ is a 
convex polygon, it has only one tuple in the relation.
That means m is 1 and the time and space complexity 
is O(k).

3. Iterate every new edge Ei added in Step 1. Each Ei is 
an edge of one internal polygon PEi that does not 
belong to the original polygon R. Extract polygon PEi
and add it to the result. The time complexity of this 
step is O(m).

4. If the original polygon contains holes, find all the 
holes and add them to the results.  

This algorithm works efficiently on single concave 
polygon object with or without holes. However, if the input 
relation represents the union of multiple polygons, this 
algorithm turns back to NP-hard complexity.

Figure 5 illustrates the process of computing the 
complement of the map of Michigan State, excluding the 
upper-peninsula area, using Algorithm 5. 

a) Michigan State (concave polygon R) 

b) Convex polygon R’ that covers R

c) Complement of R’

d) Complement of R 

Figure 5. Compute the complement of concave polygon. 
(Yellow part represents the complement) 

4. Conclusion and Future Work 
We described polynomial time and space complexity 
algorithms to extract the interior, border and exterior of 
spatial objects represented in constraint databases. These 
three relations can enable in the future the description and 
analysis of more complex spatial and topological relations.
We plan to investigate and implement the following: 
# a general simplification function that detects and 

removes redundant and overlapped constraints. 
# an efficient algorithm to split concave polygons and 

polygons with holes into convex polygons.  
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# topological relation constraints based on the functions 
discussed in this paper to improve the quality of 
spatial data stored in constraint databases. 
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