Reformulation and Approximation in Model
Checking*

Peter Z. Revesz

University of Nebraska-Lincoln, Lincoln, NE 68588, USA
revesz@Qcse.unl.edu
http://cse.unl.edu/~revesz

Abstract. Symbolic model checking of various important properties like
reachability, containment and equivalence of constraint automata could
be unsolvable problems in general. This paper identifies several classes of
constraint automata for which these properties can be guaranteed to be
solvable by reformulating them as the evaluation problem of solvable or
approximately solvable classes of constraint logic problems. The paper
also presents rewrite rules to simplify constraint automata and illustrates
the techniques on several example control systems.

1 Introduction

Several types of constraint automata are used in a natural way to model the op-
eration of systems and processes. Some of the early types of constraint automata
include counter machines with increment and decrement by one operators and
comparison operators as guard constraints [20, 21] and Petri nets that are equiv-
alent to vector addition systems [22, 24]. Other types of constraint automata
with more complex guard constraints are applied to the design of control sys-
tems [2, 6, 7, 8, 10, 15]. In this paper we use a particular type of constraint
automata that contains read operators and existentially quantified variables in
guard constraints (see the definition in Section 2.1).

While the ease of modeling by constraint automata is useful for the descrip-
tion of systems, symbolic model checking, i,e, answering several natural questions
about constraint automata, is unsolvable in general [19]. In fact, even counter
machines are theoretically as expressive as Turing machines [20, 21], which means
that reachability, i.e., checking whether the system will ever reach some given
configuration, is undecidable. For Petri nets the reachability problems is decid-
able [16, 18], but some other natural problems like the equivalence between two
Petri nets is undecidable.

The potential of reformulating symbolic model checking problems as decid-
ability problems of various questions about the model of constraint logic pro-
grams [12] or constraint query languages [13, 14] was noticed by many authors.
However, the model of constraint logic programs is not computable in general,

* This research was supported in part by NSF grant TRI-9625055 and a Gallup Re-
search Professorship.

B.Y. Choueiry and T. Walsh (Eds.): SARA 2000, LNAI 1864, pp. 202-218, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Reformulation and Approximation in Model Checking 203

hence many model checking proposals that use this approach yield possibly non-
terminating procedures.

In contrast, in this paper, we aim at guarantees of termination. We do that
in two steps, first, if possible, then we simplify the constraint automata by some
rewriting rules. Second, we rewrite the simplified constraint automata into solv-
able classes of constraint logic programs, in particular, Datalog programs with
the following classes of constraints: (1) gap-order constraints, (2) gap-order and
positive linear inequality constraints, (3) gap-order and negative linear inequal-
ity constraints. In each of these cases, we can use the constraint logic program
to find (in a constraint database form) the set of reachable configurations of the
original constraint automata, that is, the set of states and state values that a
constraint automaton can enter [27, 25]. This leads to a decidability of both the
reachability and the containment and equivalence problems.

For constraint automata for which such reformulation of the original prob-
lem does not lead to a solution, some form of approximation can be used. For
example, approximation methods for analyzing automata with linear constraints
are presented in [15, 8]. Both of these approximation methods yield an upper
bound on the set of state configurations by relaxing some of the constraints
(in fact, [8] relaxes them to gap-order constraints). However, in many cases of
these approaches the upper bound is quite loose. We present an approximation
method that derives arbitrarily tight upper and lower bounds for those constraint
automata that can be expressed as Datalog with difference constraint programs.

The rest of the paper is organized as follows. Section 2.1 defines and gives
several examples for constraint automata. Section 2.2 defines Datalog programs
with constraints and several main classes of constraints. Section 2.3 reviews
approximate evaluation methods for Datalog with difference constraints. Sec-
tion 3 presents some reduction rules that can be used to rewrite the constraint
automata into equivalent constraint automata. Section 4 presents a method of
analyzing the reachable configurations of constraint automata by expressing the
constraint automata in Datalog with constraints. Section 5 discusses some more
related work. Finally, Section 6 gives some conclusions and directions for further
work.

2 Basic Concepts

2.1 Constraint Automata

A constraint automaton consists of a set of states, a set of state variables, tran-
sitions between states, an initial state and the domain and initial values of the
state variables. Each transition consists of a set of constraints, called the guard
constraints, followed by a set of assignment statements. The guard constraints of
a constraint automaton can contain relations. In constraint automata the guards
are followed by question marks, and the assignment statements are shown using
the symbol :=.

A constraint automaton can move from one state to another state if there is
a transition whose guard constraints are satisfied by the current values of the

204 Peter Z. Revesz

state variables. The transitions of a constraint automaton may contain variables
in addition to the state variables. These variables are said to be existentially
quantified variables. Their meaning is that some values for these variables can
be found such that the guard constraints are satisfied.

A constraint automaton can interact with its environment by sensing the
current value of a variable. This is expressed by a read(z) command on a tran-
sition between states, where x is any variable. This command updates the value
of x to a new value. The read command can appear either before or after the
guard constraints.

Each constraint automaton can be drawn as a graph in which each vertex
represents a state and each directed edge represents a transition.

Drawing a constraint automata can be a good way to design a control system.
The next is a real-life example (from [10]) of a subway train control system.

Example 2.1 A subway train speed regulation system is defined as follows.
Each train detects beacons that are placed along the track, and receives a “sec-

ond” signal from a central clock.
m b-s>172,s++

STOPPED

b-s=1?,s++

=<9, b++

b-s<-12, b++

b-s=-1?2,b++

bs=9?btt,d:=0

b-s=-92,s++

bs>1%s++ d<9?, b+, d++

b-s<9 2, b+t b-s>-9 2, s++

Fig. 1. The Subway Train Control System

Let b and s be counter variables for number of beacons and second signals
received. Further, let d be a counter variable that describes how long the train
is applying its brake. The goal of the speed regulation system is to keep | b — s |
small while the train is running. The speed of the train is adjusted as follows:

Reformulation and Approximation in Model Checking 205

When s + 10 < b, then the train notices its early and applies the brake as
long as b > s. Continuously braking causes the train to stop before encountering
10 beacons.

When b+ 10 < s the train is late, and will be considered late as long as b < s.
As long as any train is late, the central clock will not emit the second signal.

The subway speed regulation system can be drawn as a constraint automaton
shown in Figure 1 where x 4+ + and o — — are abbreviations for := x + 1 and
x := x — 1, respectively, for any variable x.

2.2 Datalog with Constraints

In this section we review some simple cases of constraint logic programs [12]
and constraint query languages [13, 14] that are based on a simplified version
of Prolog called Datalog, which is a common query language within database
systems [1, 23].

Syntax: Each Datalog program with constraints consists of a finite set of rules
of the form

Ro(xl, [N ,Ik) e Rl('rl,17 .o '7'1:1,]61)7 .o .,Rn(xnyl, e 7In,kn)-

where each R; is a relation name or a constraint, and the xs are either variables
or constants. The relation names among Ry, ..., R, are not necessarily distinct.
The rule above is read “Ry is true if Ry and ...and R,, are all true”.

If each R; is a constraint, then we call Ry a constraint fact. In this paper we
will be interested in the following types of constraints:

Order Constraint: Order constraints are constraints of the form ufv where u
and v are variables or constants over a domain, and 6 is one of the operators
in {=, <, >, <, >}. If the domain is Z or @) we talk of integer order constraints
or rational order constraints, respectively.

Gap-order Constraint: Gap-order constraints are constraints of the form u—
v > ¢ where u, v are variables or constants and c is a non-negative constant
over either the domain Z or Q. Note that each order constraint is also a
(conjunction of) gap-order constraints.

Difference Constraint: Difference constraints are constraints of the form u —
v > ¢ where u,v are variables or constants and c is a constant over either
the domain Z or Q. Note that difference constraints are more general than
gap-order constraints.

Linear Inequality Constraint: This constraint is of the form cizy + ... +
cnTn > b where each ¢; and b is a constant and each z; is a variable over
some domain. We call b the bound of the linear constraint.

Negative Linear Inequality Constraint: We call linear inequality con-
straints in which each coefficient c¢; is negative or zero a negative linear
inequality constraints.

Positive Linear Inequality Constraint: We call linear inequality con-
straints in which each coefficient ¢; is positive or zero we call them posi-
tive linear inequality constraints.

206 Peter Z. Revesz

Example 2.2 The following Datalog program with gap-order constraints de-
fines the Travel(z,y,t) relation, which is true if it is possible to travel from city
x to city y in time ¢. (Note that one can always travel slower than a maximum
possible speed. For example, if the fastest possible travel within two cities is 60
minutes, then the actual time could be anything > 60 minutes.)

Travel(z,y,t) — Go(r,0,y,t).
Travel(z,y,t) — Travel(z, z,t1), Go(z,t1,y, t).
Go(“Omaha’ ,t1,” Lincoln” ts) — tg — t1 > 60.

Go(“Lincoln” t1,” KansasCity" t3) :— to — t; > 150.

Semantics: The proof-based semantics of Datalog programs views the facts as
a set of axioms and the rules of the program as a set of inference rules to prove
that specific tuples are in some relation. We define this more precisely below.

We call an instantiation of a rule, the substitution of each variable in it by
constants from the proper domain. (For example, the domain may be the set of
character strings, the set of integers, or the set of rational numbers.)

Let II be a program, aq,...,a; constants and R a relation name or a con-
straint. We say that R(aq,...,ax) has a proof using I1, written as k7 R(aq, ..
ay), if and only if for some rule or fact in IT there is a rule instantiation

)

R(Ch7 . .,ak) — Rl(al,l, . .,a17k1)7 .. .7Rn(an,1, . .,amkn).

where R;(a;1,...,aik) is true if R; is a constraint or Fr7 Ri(a;1,...,a: k) for
each 1 <1 <n.

The proof-based semantics of each Datalog program II with constraints is a
set of relation-name and relation pairs, namely for each relation name R the
relation {(a1,...,ax) : Fmg R(ay,...,ar)}.

Example 2.3 Let us prove using the query in Example 2.2 that one can travel
from Omaha to Kansas City in 180 minutes. We only show the derived tuples
without mentioning the instantiations used.

i Go(“Omaha”,0,” Lincoln” ,60) using the first fact.

Fir Go(“Lincoln”,60,” KansasCity”,210) using the second fact.

Fir Travel(“Omaha”,” Lincoln”,60) applying the first rule.

Fi Travel(“Omaha”,” KansasCity”,210) applying the second rule.

Closed-Form Evaluation: If the semantics of Datalog programs with X-type
of constraints can be always evaluated and described in a form such that each
relation is a finite set of facts with the same X-type of constraints, then we say
that the class of Datalog programs with X-type of constraints has a closed-form
evaluation.

Theorem 2.1 The least fixed point model of the following types of constraint
logic programs can be always evaluated in closed-form in finite time:

Reformulation and Approximation in Model Checking 207

(1) Datalog with gap-order constraint programs [27].

(2) Datalog with gap-order and positive linear constraint programs [25].

(3) Datalog with gap-order and negative linear constraint programs [25]. a
In this paper we omit the details about how the evaluation can be done and

only give a simple example of a closed-form.

Example 2.4 Since the program in Example 2.2 is a Datalog program with
gap-order constraints, by Theorem 2.1 it has a closed-form evaluation. Indeed,
one can give as a description of the semantics of the T'ravel relation the following:

Travel(“Omaha”,” Lincoln” ,t) —t > 60.
Travel(“Lincoln”) KansasCity",t) :— t > 150.
Travel(“Omaha”,” KansasCity",t) :— t > 210.

2.3 Approximate Evaluation

The approximation of Datalog programs with difference constraints is studied
in [26]. The following is a summary of the main results from [26].

Let us consider a constraint fact with a difference constraint of the form
x —y > c. It may be that the value of ¢ is so small that we may not care too
much about it. This leads to the idea of placing a limit [on the allowed smallest
bound. To avoid smaller bounds than I, we may do two different modifications.
Modification 1: Change in each constraint fact the value of any bound ¢ to be
max(c,).

Modification 2: Delete from each constraint fact any constraint with a bound
that is less than [.

No matter what evaluation strategy one chooses to derive constraint facts and
add it to the database, one can always apply either of the above two modifications
to any derived fact. In this way, we obtain modified rule evaluations.

Let sem(II) denote the proof-theoretic semantics of Datalog with difference
constraints program II. Given a fixed constant [, let sem(II); and sem(II)"
denote the output of the first and the second modified evaluation algorithms,
respectively. We can show the following.

Theorem 2.2 For any Datalog with difference constraint program I7, input
database D and constant [, the following is true:

sem(IT); C sem(IT) C sem(IT)!

Further, sem(IT); and sem(II)! can be evaluated in finite time. O
We can also get better and better approximations using smaller and smaller
values as bounds. In particular,

Theorem 2.3 For any Datalog with difference constraints program II, input
database D and constants [; and [y such that I; <3, the following hold.

sem(II);, C sem(IT);, and sem(II)"" C sem(II)'* O

208 Peter Z. Revesz

Example 2.5 Suppose that we want to find a lower approximation of the output
of Travel using | = 100, that is, when in the input program and after the deriva-
tion of any new constraint fact we change each bound c¢ to be the maximum of
100 and c. The evaluation technique in [26] would yield in this case the following.

Travel(“Omaha”,” Lincoln” ,t) :—t > 100.
Travel(“Lincoln”)” KansasCity”,t) —t > 150.
Travel(“Omaha”,” KansasCity",t) — t > 250.

Note that the output will be a lower approximation of the semantics of T'ravel
because each possible solution of the returned constraint facts is in the semantics
of the original program. It is also easy to see that the lower approximation will
not contain for example Travel(“Omaha”)” KansasCity”,210), which as we
saw in Example 2.3 is in the semantics of the original program.

3 Reformulation and Simplifications of Constraint
Automata

For the constraint automaton in Figure 1 a correct design would require that
b — s is at least some constant ¢; and at most some constant cy. The value of
b — s may be unbounded in case of an incorrect design. Testing whether b — s is
within [c1, ¢2] or is unbounded is an example of a model checking problem. For
this problem both [10, 8] give approximate solutions, which may not be correct
for some values of ¢; and cz. We will give a solution that finds all possible values
of b — s precisely.

Variable change: The constraint automaton in Figure 1 is more complex than
necessary because we are only concerned with the difference of the two variables
b and s instead of the exact values of these two. Therefore, the constraint au-
tomaton can be simplified for the purpose of our model checking problem. Let’s
rewrite Figure 1 by using variable x instead of the value (b—s)—20 and y instead
of d. This change of variables yields the automaton shown in Figure 2.

Now we can make some observations of equivalences between automata. We
call these equivalences reduction rules. Reduction rules allow us to either rewrite
complex constraints into simpler ones (like rules one and two below) or eliminate
some transitions from the constraint automaton (like rule three below).

Moving increment after self-loop: This reduction rule is shown in Figure 3.
This rule can be applied when no other arcs are ending at state S. This rule
says that if there is only one self-loop at S and it can decrement repeatedly a
variable while it is greater than ¢, then the x + + before it can be brought after
it, if we replace ¢ by ¢—1 in the guard condition of the self-loop. It is easy to see
that this is a valid transformation for any initial value of x. We give an example
later of the use of this reduction rule.

Elimination of increment /decrement from self-loops: This reduction rule
is shown in Figure 4. There are two variations of this rule shown on the top and

Reformulation and Approximation in Model Checking 209
m x>197,x-

STOPPED

y<=97 xt+

x<-21?, x++

X=-112, x4+, y:=0
BRAKE

X>192% % y<9Y x4, Y+

x<-11 2, x++ X>-29 7 x-

Fig. 2. The Subway System after Changing Variables

x>c¢? x> (c-1)?
X-- X --

Fig. 3. Rule 1: Moving Increment after Self-Loop

the bottom, depending on whether the variable is incremented or decremented.
The top variation says that if a variable is decremented one or more times us-
ing a self-loop until a guard condition = > c¢ is satisfied, then the repetition is
equivalent to a self-loop which just picks some value z’ greater than equal to ¢
and less than the initial value of z and assigns z’ to x. The bottom variation is
explained similarly. Note that both reduction rules eliminate the need to repeat-
edly execute the transition. That is, any repetition of the transitions on the left
hand side is equivalent to a single execution of the transition on the right hand
side.

210 Peter Z. Revesz

x>c? x> c<=x"<x?
X -- X =X’

x<c? Nx” x<x’<=c¢?
X ++ X :=x’

Fig. 4. Rule 2: Elimination of Increment/Decrement from Self-Loops

Elimination of increment/decrement from a pair of self-loops: This
reduction rule is shown in Figure 5. This rule can be applied when ¢; < a and
b < cg and no other arcs end at S. Clearly the repetitions of the double increment
loop alone, will keep y — x = (b — a) because both y and x are incremented by
the same amount. The incrementing applies between co > y > b. However, the
double increment loop may be interleaved with one or more single decrement
rule that can decrease x down to c¢;. The net effect will be that the condition
' > 1,00 >y > by —a’ > (b—a) must be true after any sequence of the two
self-loop transitions.

X -- X ++ Xy’
b —
y ++ X' >= [

¢,>=y >=b
y-x">= (b-a)?
Xx:=x

y:=y

Fig. 5. Rule 3: Elimination of Increment/Decrement from Pairs of Self-Loops

Reformulation and Approximation in Model Checking 211

Now let’s see how the above reduction rules can be applied to the constraint
automaton in Figure 2. Applying the first rule brings = + + after the self-loop
over state Stopped. Then it is trivial to note that “increment x, test whether it is
—19 and if yes decrement z” is the same as “test whether x = —20”. Hence we
can further simplify the constraint automaton as shown in the top of Figure 6.

Now after applying the second rule with the self-loops over the states Late,
Ontime and Stopped and the third rule over the state Brake we obtain the con-
straint automaton shown in the bottom of Figure 6.

4 Analysis of Reachable Configurations

Each combination of a state name with values for the state variables is a con-
figuration. Often, it is important to know what is the set of configurations that
a constraint automaton may move to. This set is called the set of reachable
configurations.

The set of reachable configurations can be found by translating the constraint
automaton into a Datalog program. The Datalog program will use a separate
relation for representing each state. Each relation will have the set of state
variables as its attributes. Each transition of the constraint automaton will be
translated to a Datalog rule. We give a few examples of translations.

Analysis of Example 1: We saw in Section 3 that the constraint automaton
of Example 1 can be simplified to the one shown in Figure 6. The set of reachable
configurations of the constraint automaton shown in Figure 6 can be expressed
in Datalog as follows.

Brake(—10,0) — Ontime(—11,y).
Brake(x',y’) :— Brake(z,y), 2’ > —19, 9>y >0, v — 2’ > 10.

Initial(—20,0).

Late(—30,y) :— Ontime(—29,y).
Late(z',y) :— Late(x,y), x <z’ < -21.
Ontime(x,y) — Initial(z,y).

,y) — Stopped(—20, y).
Ontime(x’,y) — Ontime(z,y), x <2’ < —11.
)

Ontime(z',y) — Ontime(z,y), —29 <z’ < x.
Stopped(z',y) :— Stopped(x,y), —20 <z’ < x.
Stopped(xz,y) :— Brake(x,y), y <9.

This Datalog program contains only gap-order constraints. Therefore by The-
orem 2.1 its least fixpoint model can be found in finite time. In fact, we evaluated
this Datalog program using the DISCO constraint database system [3], which

212 Peter Z. Revesz

m x> 207 x--

STOPPED

y<=9?

x<-21? x++

x=-117 x+4,y:=0
e 1 BRAKE

x=-19? x-

X>-197 x- y<9? xHh yH

mLx’ 20<=x"<x? x:= X’

STOPPED

X<-11? x++ x>-297 X

y<=9?

0x’ x<=x"<-21? x:=x’

x=-21? x++ x=-117 x++,y:=0

X’ x<=x"<-11? [x’ -29<=x"<x?

x’,y’

x:i=x x:i=x X’ >=-19
9>=y’>=0
y-x'>=10?
x:=x

y=y

Fig. 6. The Subway System after Rules 1 (above) 1-3 (below)

Reformulation and Approximation in Model Checking 213

includes an implementation of integer gap-order constraints, and found that in
each tuple x is within —30 and 0. Therefore, s — d is always within —10 and 20.

4.1 The Cafeteria Constraint Automaton

The following is an example of a constraint automaton in which the guards
contain relations and negative linear inequality constraints.

Example 4.1 A cafeteria has three queues where choices for salad, main dishes,
and drinks can be made. A customer has a coupon for $10. He first picks a
selection. His selection must include a main dish and a salad, but drink may be
skipped if the salad costs more than $3. If the total cost of the selection is less
than $8 then he may go back to make a new choice for salad or drink.

0s,x 0my
salad(s, x”) main(m, y’)

X >=X y=0
X'+y+z<=10? xty'+2 <= 107
x=x MAIN y=y

y>0?

ndz
drink(d, z’)

7' >=17
x+y+z’ <=10?
z:=7

X+y+z < 8?7

X+y+z < 87

Fig. 7. The Cafeteria Constraint Automaton

Let salad, main and drink be three binary relations in which the first argu-
ment is the name of a salad, main dish, or drink, and the second argument is its
price. The constraint automaton in Figure 7 expresses this problem.

Analysis of Example 4.1: Assume that in Example 4.1 each main dish
costs between five and nine dollars, and each salad and drink costs between two
and four dollars. The set of reachable configurations of the constraint automaton
shown in Figure 7 can be expressed in Datalog as follows.

214 Peter Z. Revesz

Drink_Queue(z,y’, z) :— Main_Queue(z,y,z), 5 <y’ <9,
y=0, —z—y —2z>-10.
Drink_Queue(z,y, z) :— Pay-Queue(z,y,z), —x —y—z > —T.

Main_Queue(z',y, z) :— Salad-Queue(z,y, z), 2 <z’ <4,
>z, —12 —y—2z>-10.

Pay_Queue(z,y,z’) :— Drink_Queue(z,y,z), 2 < 2/ <4,
2>z, —x—y—2 >-10.

Pay Queue(z,y,z) :— Drink_Queue(z,y,z), x > 3.

Pay_Queuve(z,y,z) :— Main_Queue(z,y,z), y > 0.

Salad_Queuve(z,y,z) — Pay -Queue(x,y,z), —x—y—2z > —T.

Salad_Queue(0,0,0).

This Datalog program contains only gap-order and negative linear inequality
constraints. Therefore by Theorem 2.1 its least fixpoint model can be found in
finite time. We ran this also in the DISCO constraint database system, which
returned the least fixpoint model represented as 20 different constraint facts.

4.2 The Account Balances Constraint Automaton

Let’s look at a case of a constraint automaton that can be expressed as a Datalog
program whose least fixpoint can be evaluated approximately.

Example 4.2 Three accounts have initially the same balance amounts. Only
deposits are made to the first account and only withdrawals are made to the
second account, while neither withdrawal nor deposit is made to the third ac-
count. Transactions always come in pairs, namely, each time a deposit is made to
the first account, a withdrawal is made from the second account. Each deposit
is at most $200, and each withdrawal is at least $300. What are the possible
values of the three accounts?

Let x,y, z denote the amounts on the three accounts, respectively. The con-
straint automaton in this case is shown in Figure 8.

Here the transition rule says that if at some time the current values of the
three accounts are x,y and z, then after a sequence of transactions the new
account balances are z’, which greater than or equal to x but is less than or
equal to x + 200 because at most $200 is deposited, 3, which is less than or
equal to y — 300 because at least $300 is withdrawn, and z which does not
change. The initialization which sets the initial balances on the three accounts
to be the same is not shown.

Analysis of Example 4.2: The set of reachable configurations of the con-
straint automaton shown in Figure 8 can be expressed in Datalog with differ-
ence constraints as follows. (In the Datalog program we rewrote some of the
constraints to make clear that they are difference constraints.)

Reformulation and Approximation in Model Checking 215

0 x
X >=X
BALANCES <> e x 4200
y <= y-300 ?
X=X
y=y

Fig. 8. The Account Balances Constraint Automaton

Balance(z,y,z) —ax=y,y=z.
Balance(z',y', z) :— Balance(z,y,z), ' —x > 0,
xz—12' > -200, y —y' > 300.

This Datalog program contains only difference constraints. Therefore by The-
orem 2.2 its least fixpoint model can be found in finite time approximately. Before
discussing the approximation, let’s note that in this case the least fixpoint of the
Datalog program can be expressed as the relation

{(z,y,2) : Tk > 2,z —x > —200k, z — y > 300k}

This relation is not expressible as a finite set of gap-order constraint facts.
However, we can express for each fixed [< —200 the relation

{(z,y,2) : Ik x> 2,z —x > max(l,—200k), z —y > 300k}

as a finite set of gap-order constraint facts. This would be a lower bound of
the semantics of the Balance relation. We can also express the relation

) x> z,z—x > —200k,z—y > 300k if -200k > [
{(z.y,2) = 3k {sz,zyZZ%OOk otherwise }}

as a finite set of gap-order constraint facts. This would be an upper bound
of the semantics of the Balance relation.

The approximation could be used for example to decide some reachability
problems. For example, consider the question: Is it possible that the account
balances are at any time x = 1500,y = 200 and z = 10007 When we use an
approximate evaluation with | = —1000, we see that is it not in the upper
bound of the semantics of the Balance relation. Hence it cannot be possible.

5 Related Work

Most of the model checkers operate only on bounded models, not unbounded
ones like we did in this paper. For example, the representation of binary decision
diagrams or BDDs [19] captures a finite set of states of boolean variables and

216 Peter Z. Revesz

cannot be used to represent the set of states of our constraint automata. The
HyTech system developed by Henzinger et al. [11] is a model checker for hybrid
automata that model both discrete and continuous change and represent infinite
states. Although this system has been useful for some applications, the system
cannot be proven to always yield an answer, that is, it may not terminate unlike
our system.

An interesting problem that occurs in debugging is to automate the genera-
tion of abstract models from software programs. Lowry and Subramaniam [17]
extend program slicing techniques to abstract state-based programs for the pur-
pose of model checking. Program slicing is a software engineering technique that
extracts a partial program equivalent to an original program over a subset of
the program variables [5]. Program slicing algorithms work backwards from the
program end-point by keeping all statements that effect in any way the desig-
nated variables and removing all other statements. Lowry and Subramanian [17]
propose semantic slicing which is done with respect to state predicates instead
of state variables. That is, programs are sliced with respect to state predicates
starting from a statement that contains the operations which are required to
only be executed in particular states. [17] and [9] also propose performing data
abstractions using weakest preconditions to compute an abstract model. The
property of the abstract model is that whenever an invariant property is true in
the abstract model then it is true in the concrete model, but not vice versa. In
other words, the abstract model could lead to false negatives except in special
cases when the property is expressible in restricted temporal logics like CTL.
Therefore in general an abstract model counterexample to the property verified
has to be still checked on the concrete model. Note that all our reformulations of
constraint automata preserve all properties being verified, because we are inter-
ested in the computing in a finite representation the exact set models for each
state.

Another interesting use of model checking occurs in planning. Cimatti at
al. [4] observe that a planning search problem can be articulated as the problem
of achieving a goal state starting from some initial state through a sequence of
operator applications, where each operator is applicable on certain preconditions
and specifies a change in the environment (variables), and this search can be
easily expressed as a model checking problem. However, the difficulty is again lies
in the abstractions that many model checkers use. The abstract plan generated
using model checking may not be refinable to a correct ground solution, i.e.,
executable by a concrete sequence of operator applications.

6 Conclusion and Further Work

As our examples illustrate, constraint automata can be often expressed in Data-
log programs that contain only specific types of constraints (gap-order, positive
or negative linear inequality, difference). These Datalog programs that define
the set of reachable configurations of the constraint automata, can be always
evaluate or approximately evaluated with any desired precision. That leads to

Reformulation and Approximation in Model Checking 217

solutions to model checking problems like reachability, containment and equiv-
alence. One can also test any of a number of more complex conditions on the
model as we have done for the subway train control system.

It remains as an interesting further work to find other classes of constraints
for which at least an approximate closed-form evaluation can be guaranteed.
We have given rewrite rules for the case of gap-order and increment/decrement
constraints. It is also an interesting task to find rewrite rules in the case of other
types of constraints.

It is also an important challenge to see whether constraint automata could
be applied to some of the software debugging problems [9, 17], especially for
concurrent software algorithms, and for other applications like planning [4].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc.
Conf. on Computer-Aided Verification, pages 55—67, 1994.

[3] J.-H. Byon and P.Z. Revesz. DISCO: A constraint database system with sets.
In Proc. Workshop on Constraint Databases and Applications, number 1034 in
LNCS, pages 68-83. Springer-Verlag, September 1995.

[4] A. Cimatti, F. Giunchiglia, and M. Roveri. Abstraction in planning via model
checking. In Proc. Symposium on Abstraction, Reformulation and Approzimation,
pages 37-41, 1998.

[5] J. J. Comuzzi and J. M. Hart. Program slicing using weakest precondition. In
Proc. Industrial Benefit and Advances in Formal Methods, number 1051 in LNCS.
Springer-Verlag, 1996.

[6] G. Delzanno and A. Podelski. Model checking in clp. In Second International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer LNCS, 1999.

[7] L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-
points of datalog programs with z-counters. Constraints, 3-4:305-336, 1997.

[8] L. Fribourg and J.D.C. Richardson. Symbolic verification with gap-order con-
straints. In Prof. LOPSTR, 1996.

[9] S. Graf and H. Saidi. Constructing abstract graphs using pvs. In Proc. Computer
Aided Verification, number 1102 in LNCS. Springer-Verlag, 1996.

[10] N. Halbwachs. Delay analysis in synchronous programs. In Proc. Conf. on
Computer-Aided Verification, pages 333-346, 1993.

[11] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In Proc. Computer Aided Verification, number 1254 in LNCS, pages
460-463. Springer-Verlag, 1997.

[12] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. 14th ACM
POPL, pages 111-119, 1987.

[13] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. In
Proc. of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 299-313, New York, 1990. ACM Press.

[14] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-
nal of Computer and System Sciences, 51:26-52, 1995.

218

[15]
[16]

[17]

[18]

[19]
[20]

[26]

[27]

Peter Z. Revesz

A. Kerbrat. Reachable state space analysis of lotos specifications. In Proc. 7th
International Conference on Formal Description Techniques, pages 161-176, 1994.
R. Kosaraju. Decidability of reachability in vector addition systems. In Proc. of
the 14th Annual ACM Symposium on Theory of Computing, pages 267-280, 1982.
M. Lowry and M. Subramaniam. Abstraction for analytic verification of concur-
rent software systems. In Proc. Symposium on Abstraction, Reformulation and
Approximation, pages 85-94, 1998.

E. Mayr. An algorithm for the general petri net reachability problem. In Proc. of
the 13th Annual ACM Symposium on Theory of Computing, pages 238-246, 1981.
K. McMillan. Symbolic Model Checking. Kluwer, 1993.

M. L. Minsky. Recursive unsolvability of post’s problem of ’tag’ and other topics
in the theory of turing machines. Annals of Mathematics, T74(3):437-455, 1961.
M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
J. Peterson. Petri Net Theory and Modeling of Systems. Prentice-Hall,Inc., 1981.
R. Ramakrishnan. Database Management Systems. McGraw-Hill, 1998.

P. Z. Revesz. Safe datalog queries with linear constraints. In M. Maher and J.-F.
Puget, editors, Proc. Fourth International Conference on Principles and Practice
of Constraint Programming, number 1520 in LNCS. Springer-Verlag, 1998.

P. Z. Revesz. Datalog programs with difference constraints. In Proc. Twelfth
International Conference on Applications of Prolog, pages 69-76, September 1999.
P.Z. Revesz. A closed-form evaluation for Datalog queries with integer (gap)-order
constraints. Theoretical Computer Science, 116:117-149, 1993.

