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ABSTRACT 
We propose a spatio-temporal data mining method based on 
support vector machines regression and spatio-temporal feature 
reduction by principal component analysis. We apply the spatio-
temporal data mining method to derive an automated controller 
for the reservoirs of the North Platte River. The automated 
controller opens and closes dams to efficiently and accurately 
control the reservoirs’ water levels.  
Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining, spatial databases and GIS. I.2.1 [Artificial Intelligence]: 
Applications and Expert Systems – industrial automation. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Spatio-temporal data mining, regression, water reservoir, 
classifiers and prediction. 

1. INTRODUCTION 
 Spatio-temporal data occur in a variety of forms [3,6,8,12] either 
as a series of discrete snapshots or as a continuous representation 
that is obtained by some interpolation method [9]. Spatio-
temporal objects include moving objects [1], epidemic regions 
[16], and numerous changing geographic features.   
 
River reservoir systems are complex spatio-temporal objects. 
River reservoir systems contain a number of dams that are opened 
or closed by human operators in order to lower or raise the 
reservoirs’ water levels. Even for a single reservoir, numerous 
interactions between the input and the output parameters must be 
considered to determine the optimal release value. For multiple 
reservoirs, the storage value dictated of a downstream reservoir is 
dependent on the release levels of the upstream reservoirs. 
 
River reservoir system spatio-temporal data mining aims to derive 
an expert system or an automated controller for the reservoirs’ 
operations. Most data mining employ some linear classifiers [14]  

and integrate data from different sources [13,15], but to provide a 
good fit, a spatio-temporal data model needs to capture the non-
linear relationship among the spatial and temporal variables.  
 
Earlier spatio-temporal data mining proposals include, Cao et al.’s 
[2] data miner for spatio-temporal events, Dong’s [5] wavelet 
transformations to develop efficient non-linear models, Mennis 
and Liu’s [10] association rule mining by concept hierarchies, 
Ohashi and Torgo’s [11] wind speed forecaster, and Tsoukatos 
and Gunopulos’ [18] DFS_MINE algorithm for identifying 
frequent spatio-temporal patterns in environmental data. Several 
hydrological optimization works employ artificial neural networks 
(ANNs). For example, Coulibaly et al. [4] present a dynamic 
ANN model to optimize reservoir inflow values. Glezakos et al. 
[7] implement a neural networks model on time series dataset 
created using evolutionary clustering. The heuristics learned 
during meta-learning are included in the training phase of the 
model to develop models for watershed management. Solomatine 
et al. [17] develop hydrodynamic models for reservoir and ground 
water control using ANN-based optimization.  
 
In this paper, we propose a new spatio-temporal data mining 
method, which combines support vector machines with regression 
analysis and principal component analysis feature selection. We 
apply the new spatio-temporal data mining method to the North 
Platte River reservoir system.   
 

2. SPATIO-TEMPORAL DATA MINING  
For the spatial model, the support vector machine (SVM)-based 
classifier takes as input the current (time t) values of the variables 
for each of the reservoirs. For the spatio-temporal data model, the 
values of the variables at previous time instances (t-1, t-2 and t-3) 
are also considered in addition to their current values. The SVM 
kernel function is the major bottleneck for performance. Our 
implementation of the SVM with regression employs a quadratic 
kernel function of the form: 
 

𝐾 𝑥, 𝑦 = (𝑥!𝑦 + 𝐶)!                                          (1) 
 
Data is usually split into two data sets: (a) training and (b) testing. 
The parameters of the data mining are estimated through the 
training phase. The estimated parameters are evaluated in the 
testing phase.  The testing data must not contain patterns from the 
training dataset.  The parameters of the data mining are updated 
until the testing phase maps the patterns to above the minimum 
acceptable performance limit. Including temporal information into 
the spatial data drastically increases the dimensions of the 
aggregated spatio-temporal data. The resulting situation is that 
there is a relatively large number of attributes but only no more 
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than hundreds of instances of the dataset. However, all of the 
input features do not necessarily have the same degree of 
descriptiveness. The target output feature might have a stronger 
degree of correlation with a definite set of the input features. 
Hence we employ a principal component analysis (PCA) for 
dimension reduction. Figure 1 shows the pseudo code.  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
  
 
 
Figure 1. The spatio-temporal data mining algorithm. 
 

Figure 2. Diagram of North Platte River reservoir system. 
 

3. NORTH PLATTE RIVER RESERVOIRS 
Fig. 2 shows the North Platte River, which is approximately 716 
miles (1,152 km) long and has a great impact on the agriculture 
and the general economy of Colorado, Nebraska and Wyoming. 
The North Platte River is joined by the Medicine Bow River in the 
Seminoe Reservoir formed by Seminoe Dam. About 50 miles 
(80 km) downstream the North Platte is joined by the Sweetwater 
River to form the Pathfinder Reservoir. The North Platte then 
flows east-southeast across the plains of eastern Wyoming and 
through the Glendo Reservoir. The Seminoe, Pathfinder and 
Glendo are the major reservoirs on the North Platte. As a case 
study, we apply our spatio-temporal data mining method to derive 
an automated controller for these reservoirs.  

3.1 Preprocessing 
Each of the reservoirs has a specific set of information associated 
with it. The water level and rainfall are prevalent in both upstream 
and the reservoir catchments. These data are recorded using 
telemetric recorders situated at strategic locations of the 
reservoirs. The data (in CVS format) was obtained from the U.S 
Department of Interior Bureau of Reclamation, which recorded at 
the beginning of each month from January 2000 to May 2011 for 
each of the reservoirs the following values:  
 

• Initial storage (It): The amount of water in the reservoir at 
the beginning of month t. 

• End Storage (St): The amount of water in the reservoir at the 
end of the month t. 

• Inflow (Ft): The amount of water that reaches the reservoir 
during month t.  

• Release (Rt): The amount of water released from the 
reservoir during month t. 

 
The spatio-temporal data mining algorithm finds functional 
relationship between the first three variables, which are the input 
variables, and the last variable, which is the target variable. This 
relationship can be expressed as follows: 
 

Rt    =    f(Ft, It, St) 
 

All of the upstream reservoirs values influence also the 
downstream reservoir release values. For example, the release 
value of the Seminoe reservoir influences the release of the 
Pathfinder reservoir, while the release of the Glendo reservoir has 
only a negligible effect on the release of the Pathfinder reservoir. 
Hence devising operational rules about a given object would 
require information about the other data objects and their value in 
the spatial framework.  

Data mining has been carried out in JAVA using the WEKA, a 
commonly used open source machine learning and data mining 
software. The SMOReg classifier was applied for both the spatial 
and spatio-temporal dataset. The performance of the quadratic 
kernel function is compared with the RBF kernel, the Pearson 
universal kernel and the normalized quadratic kernel. 70% of the 
data is used for training and the remaining 30% for testing.  
Principal component analysis was used to reduce the 
dimensionality to a much lower number to enhance execution 
time during the training and testing phase. We have employed 
MATLAB to generate the PCA components for the spatio-
temporal data. Depending on the value of the explained variance, 
the reduced dimension data is generated.  

Read(Data); 
A = transpose(Data); 
[n, m] = size(A); 
Amean = mean(A); 
AStd = standard deviation(A); 
--Covariance matrix of input database--  
V = covariance(A); 
B = calculate zscore(A); 
 
-- PCA from covariance-- 
[coeff,score,latent] = princomp(B); 
-- Principal components analysis-- 
PC = coeff; 
 
---Explained variance-- 
explainedvar=cumsum(variance(score))/sum(variance(score); 
Input variance value k 
J = length(k) 
for i = 1 to J 
       if explainedvar(i) <= K 
           count = i; 
      end 
end 
---PCA component selection— 
Selected PC components=PC(:,1:count); 
Z1=(((B *selected_PC ) *  selected_PC')* epmat(AStd,[n,1]))  
         + repmat(Amean,[n, 1]); 
Data_set=transpose(Z1); 
return explainedvar(count); 
return number of components; 



4. EXPERIMENTAL RESULTS 
We examined the effectiveness of the spatio-temporal data mining 
using SMOReg classifier. In addition, we also studied the 
capability of different kernel types. We measured the performance 

efficiency of the classifier using the correlation coefficient and the 
root mean square error (RMSE) values.  

The efficiency in predicting the release values for the Seminoe, 
Glendo and Pathfinder reservoirs were recorded. Fig. 3 shows that 
for the Seminoe reservoir, the best fit was observed with the 
quadratic and the normalized quadratic kernels. The release values 
predicted by the model are shown in red and the original recorded 
release values in blue. The quadratic kernel displays the least 
prediction errors for the Seminoe reservoir with the reported 
correlation coefficient value as high as 0.9879 and an RMSE 
value 3416.91, indicating that it can easily map the input features 
to result in useful prediction rules. By examining the graphs for 
the quadratic kernel, it can be stated that in the spatio-temporal 
model the actual and predicted lines almost overlap. This shows 
that it is an effective model for the Seminoe reservoir operations. 
Next reservoir along the river is the Pathfinder Reservoir, for 
which the quadratic kernel again demonstrates an improvement. 
The correlation coefficient value was 0.9088 and the RMSE value 
6489. The next best fit was observed for the RBF kernel-based 
data model.  
 
Employing quadratic kernel in the SVR data model for the Glendo 
Reservoir reports an improvement in performance; increase in 
correlation coefficient value from 0.9426 to 0.963. However, the 
best fit is reported for the Glendo reservoi using the RBF kernel 
with a correlation coefficient of 0.97 and an RMSE value of 

10008.9 thus demonstrating improvements with Spatio-Temporal 
over Spatial Data model  
 
Employing quadratic kernel for the SMOReg classifier reports an 
improvement in performance, more precisely, an increase in the 

correlation coefficient value from 0.9426 to 0.963 and decrease in 
the RMSE value from 17308.9 to 15440.7. The fact that the 
quadratic kernel gives a better fit for all the Seminoe and the 
Pathfinder Reservoirs indicates that the true function of the input 
data vectors can be approximated well by a quadratic function. 
Therefore, a parametric quadratic model can be concluded as the 
best fit for predictive spatio-temporal data mining for the Seminoe 
and the Pathfinder Reservoirs. However, there exists a more 
complex relationship between the input vectors for the Glendo 
Reservoir. For the Glendo Reservoir, the model developed with 
RBF kernel provides the best fit for predicting the release values. 
That may be due to the fact that the RBF kernel works well for the 
normalization of the data taking into account the fact that the 
variability can be reduced by the RBF kernel function, which 
employs a logarithmic or an exponential transformation of the 
data such that the resulting data has a normal distribution. Hence, 
it can be concluded that the quadratic kernel works well when the 
variance is comparatively high whereas the RBF kernel is more 
suitable when the variance is relatively small. However, this point 
needs to be validated with data pertaining to other reservoir 
systems. Another interesting observation is that there is a high 
level of compliance between the predicted and the actual values 
when the release values were typically high and a good 
compliance between the predicted and the actual when the 
demand–meeting release values were relatively low. These results 
show that the support vector regression model performs well. 

Figure.3. Performance of the Pathfinder Reservoir: quadratic kernel spatial data (top left), quadratic kernel spatio-temporal 
data (top right), normalized quadratic kernel spatial data (bottom left), and normalized quadratic kernel spatio-temporal data 
(bottom right). 



Figure 4. Performance comparison of spatial and spatio-
temporal data mining for the Seminoe Reservoir. 
 

4.1 Experiments with Reduced Feature Sets 
The aim of PCA is to explain as much of the variance of the 
observed variables as possible using few composite variables 
(usually referred to as components), thereby resulting in feature 
space reduction. For the reservoir dataset, a total of 39 principal 
components were generated. If 100% of the variance in the 
correlation matrix were accounted for, then all of the 39 
components would need to be retained. However, this would lead 
to over fitting and would be counter-productive. This prompted 
the use of explained variance. The performance of the data model 
for variance between 0.95 and 0.98 is evaluated. The variance 
values of 0.95 and 0.98 had a set of 4 and 6 principal components, 
respectively. The data model developed for the Seminoe reservoir 
with these reduced feature set reported best results with the 
quadratic kernel based regression model. The RMSE was 22475.2 
and the correlation coefficient was 0.93 for variance value of 0.95. 
Figure 4 shows a comparative evaluation of the predicted and the 
actual release values. For the Pathfinder Reservoir the same 
conclusion can be derived, and the best performance was achieved 
when variance was 0.95. The best fit for the Glendo Reservoir 
was reported for variance value of 0.98 with correlation 
coefficient of 0.9456 and RMSE 23497.3. 
 

5.  CONCLUSION 
Spatio-temporal applications have numerous interactions among 
the spatial and temporal variables, which must be efficiently 
modeled for a fully functional data model. In this case study, 
decision on reservoir water release was investigated for efficient 
reservoir operation. In this study support vector regression-based 
data mining technique that employed a quadratic kernel function 
was applied. 
The model performed better on a high-dimensional spatio-
temporal data model in comparison with a spatial model. The 
method was enhanced by reduced-feature support vector 
regression model with principal component analysis (RF-SVR). 
The best kernel function and the variance value suitable for a 
particular reservoir were then carefully determined. For most 
cases, the quadratic kernel function was able to almost perfectly 
capture the variable dependency especially in the SVR model 
except for one case where the RBF kernel reported better results. 
In the case of the RF-SVR model, the quadratic kernel function 
proved to be efficient in capturing the relationship to predict the 
release values. The evaluation results of the RF-SVR data model 
suggest that dimension reduction with PCA does not drastically 
decrease the efficiency of SVR-based data models. Though it has 
some tradeoffs, the RF-SVR proves to be a frontrunner algorithm 
for modeling spatio-temporal applications. 
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