MLPQ/GIS: A GIS using Linear Constraint
Databases™

Pradip Kanjamala, Peter Z. Revesz, Yonghui Wang
Department of Computer Science and Engineering
University of Nebraska, Lincoln, NE 68588, USA

{kpradip,revesz,wangyh}@cse.unl.edu

Abstract: This paper presents MLPQ/GIS, a GIS database system that allows powerful and
easy querying via a graphical user interface. The internal data representation of MLPQ/GIS is
based on linear constraint databases, which can describe geo-spatio-temporal data, allow efficient
conjunctive query evaluation, and facilitate data integration and database interoperability.

Keywords: Geographic information systems, graphical user interface, constraint databases,
spatial databases, spatio-temporal databases, linear programming, linear constraints.

1 Introduction

In the Millennium 2000, the World Wide Web will provide increased access to various types of
databases all around the world. However, the incompatibility of different data models and formats
used at different sites may hamper us in taking full advantage of the World Wide Web. It is,
for example, difficult to integrate geographic data stored in an ARC/INFO GIS system [12] with
temporal data stored in a TSQL temporal database system. Recently, Chomicki and Revesz [5]
proposed to use constraint databases [10] as a common basis for various spatial, temporal and GIS
data. The main motivation behind that proposal is the recognition that most already proposed
spatial, temporal and GIS data models can be viewed as subcases of constraint databases restricted
to an appropriate type of constraints.

In this paper we describe a GIS system built on top of the MLP(Q constraint database system [14].
MLPQ (short for Management of Linear Programming Queries) allows constraint relations with any
number of attributes, which may be spatial, temporal etc., to be constrained using linear constraints
over the rational numbers. MLPQ was not built for geographic data and had no graphical user
interface. The extension MLPQ/GIS is intended for easy, convenient geo-spatio-temporal data
querying using a graphical user interface.

The potential of using linear constraint databases for GIS was recognized by several other re-
searchers, (eg., Brodsky et al. [3], Frank and Wallace [7], Paredaens et al. [13], Grumbach et al. [8]).
The MLPQ/GIS system has a unique implementation strategy that is based on the MLPQ system
and goes beyond other proposals in integrating aggregate functions into the system that were not
considered by other systems in current development (Section 3 will give examples).

The goal of our system was to build a graphical user interface GUI for MLPQ that allows users
to do more and easier GIS queries than in other systems. We distinguish between beginning users

*This work was supported by NSF grant TRI-9625055.

GUI Conjunctive Algebraic

. . Trandati . Tranglation .
Basic Queries ransation Queries Queries

Figure 1: MLPQ/GIS Query Evaluation

and advanced users. For beginning users, a purely icon-based querying is provided. We call this
basic queries. For advanced users a more general querying using conjunctive queries [16] is also
allowed. As shown in Figure 1 in MLPQ/GIS the basic queries are translated into conjunctive
queries. Conjunctive queries are translated into a procedural algebraic language, which is optimized
using algebraic optimization and then evaluated based on efficient implementations of constraint
database versions of selection, projection, join, union, and intersection operators.

The rest of the paper is organized as follows. Section 2 deals with how GIS data is input to
the system. Section 3.1 describes basic queries, and Section 3.2 describes general queries. Section 4
compares this system with some other GIS systems currently being used. Section 5 discusses further
implementations in the future and how data interoperability facilities will be added to MLPQ/GIS.

2 Entering Data

In MLPQ/GIS the data is stored in a constraint database format [10], which facilitates efficient data
manipulation using linear constraint solving, including linear programming [2, 4, 6, 9, 11, 15].

It is however important to mention that the user need not be concerned with the constraint data
storage, but only with its visual display. This is because the user has many options of entering into
MLPQ/GIS a linear constraint database indirectly. Below we list some of these options.

Drawing: The system allows the end user to draw pieces of land in the form of lines, rectangles
or general polygons. The first four icons in Figure 2 shows the drawing tools that the system
provides.

Buying: Much of the data of the GIS could come from a data provider. For example, the data
provider could provide the blue print of a house or data about land use in the required form
of a constraint database.

Image Scanning: Certain image data can be scanned in and automatically translated into a linear
constraint database.

Translation: By calling built-in translation routines (which are currently being implemented) data
provided in other data formats, such as an ARC/INFO GIS database, will be converted into
to a consraint database.

Constraint Database: The user would be able to specify directly linear constraints on the data.
This method can be used if the other methods fail.

Any way the data is entered, the system will store a constraint database representation of the

data entered. We give a few examples of constraint databases used in the internal representation of
MLPQ/GIS.

Example 2.1 A piece of land is sprayed with pesticide and this information is provided. The data
comes in the form of a two relations, Pesticide_A and Pesticide_B with the following attributes: id,
z and y. For example, the 37th piece of land sprayed with pesticide A can be represented in the
linear constraint database as:
pesticide_A(37,z,y) :— z—y>—18,
2z + 3y < 104,
4 — Ty < =78,
T+ 2y < 48.
Each data item is provided with an id. This id serves as an index in the relational database in
which the non-spatial attributes are stored.

Example 2.2 A data provider has information about ownership of a piece of land. This ownership
information could be stored in a linear constraint database as a relation Land with the following
attributes: id, z, y, t and owner. For example, the 5th piece of land as well as the information that
it belongs to Adam between 1980 and 1990 can be represented by the following constraint database
tuple:
Land(5,z,y,t,” Adam”) :— x>0,

y >0,

y <9,

5z — 3y < 10,

1.67z + 2y < 13.34,

t < 1990,

t > 1980.

MLPQ/GIS wuses linear constraint databases as the input representation allowing expression
of any linear relationships between the spatial and the temporal attributes. In addition, linear
constraint databases also have an advantage over traditional relational databases in being able to
represent incomplete information with ease. Example 2.3 illustrates how incomplete information
could be stored in a linear constraint database.

Example 2.3 Let us assume a plane departing from (0,0) would go east between 490 to 580 miles,
and go north between 400 to 440 miles in one hour. Another plane’s departure location is not
certain, but it is known that it could take off from some location between a 1000 to 1120 miles of
west and between 690 and 750 north of the first plane. After one hour, it will go west at least 590
miles and at most 650 miles. It will also go south between 300 miles to 340 miles. Three relations
are used to represent this incomplete information in constraint format. Note that there is no way
this kind of information could be stored and used in a traditional relational database in a format
that is convenient to query. The relation Begin has three attributes, namely id, z and y to store
information about the beginning location of the plane. For example the initial location of the second
plane could be represented as:
Begin(2,z,y) :— x>1000,z < 1120,
y > 690,y < 750.

Relation Plane2 represents the possible final destination of the second plane using attributes id,
z and y. For example, expressing the location of the second plane in constraint format would look
like:

Plane2(2,z,y) :— 590 <z — 0,z — 20 < 650,
300 <y —y0,y — y0 < 340,
Begin(2,z0,y0).

3 Querying in MLPQ/GIS

The queries that the system supports can be broadly classified into two types, namely basic queries
for beginning users and general queries for intermediate to advanced users.

3.1 Basic Queries

Basic queries are those queries that can be specified using only the icons available in the GUIL. Some
of these queries may need some parameters to be specified, and these parameters are usually specified
through an input dialog box that prompts the user with simple questions when necessary. The GUI
contains the following icons for querying purposes:

I-I Intersection Dialog box prompts for the name of the new relation generated that will contain
the intersection of the relations selected using the mouse.

I—I Union. Similar to “Intersection”.

T Area Dialog box prompts user for the name of the new relation generated, the left and the
right bound and the step sizes. For example, for a 100 x 100 area picture, a specification of 0 for
the the left and 100 for the right bound and 50 for the step size finds the total area falling within
the left and the total area falling within the right half of the picture for the selected relation. A
finer step size is useful for getting various aggregate information for different bands of land.

'E:} Buffer Dialog box prompts user for the name of the new relation generated, which contains
the surrounding region of a selected spatial object. The dialog box also prompts for the distance d.
Any point in the buffer region will be < d distance from at least one point of the spatial object.

M Max Dialog box prompts user for the name of the new relation generated, the objective
function to be maximized, and a constraint relation.

Min Min Similar to “Max”.

We illustrate the use of these icons for some basic querying in the following examples.

3.1.1 Pesticide Example:

Suppose we have a database as in Example 2.1, with information about a farmland in which two
types of pesticides, say A and B have been applied.

Query: Find the regions in which both pesticides were applied and the area of that region.

To implement the query using the GUI interface, we select the relations pesticide_A and pesti-
cide_B and then click on the intersection icon. A dialog box would appear in which the user could
enter the name of the new relation that is to be generated. By typing in “pesticide_A_and_B”, a
new relation with that name is created. The area of the region could be computed by selecting
the relation pesticide_A_and_B and then clicking the area icon. Like before, a dialog box pops up
in which the name of the new relation could be entered. The computed value could be seen by
inspecting the new relation generated.

- MLPOQ - [pesticide] =] E3
File Edit %iew *indow Help — =] =]

' =|~]o]] nju] =]a|@] Hedm]

(12222, -2.397) [[| o

Figure 2: Pesticide Example

3.1.2 Tracking Problem

A person travelling through the US mid-west finds his current locations using an up-link to a satellite
that beams to him his current X and Y coordinates. His current location is then put in a linear
constraint database. The database also has information about the mid-western part of the United
States.

Query: Which state is he currently in?

Suppose that the map of each state is stored in a relation with its name (eg. Colorado, Nebraska,
etc.) while the current location of the user is stored in the relation Current_Location. For answering
this query simply click on the state names and then on Current_Location. Whatever Current_Location
contains will be overlayed on the already displayed states. Hence we can conclude by looking at
Figure 3 that the person is in Colorado State.

3.1.3 Incomplete Information Query

We are given incomplete information about the starting point of two planes and incomplete infor-
mation about their final position after one hour of flight as given in Example 2.3.

Query: Is it possible that the two plane meet each other after one hour?

The query can be answered by testing whether there could be an intersection between the final
positions of the two planes. Since relations Planel and Plane2 store the information about the
possible final locations of the two planes respectively, the query can be answered by selecting these
relations and then visually checking whether they intersect. From Figure 4, it is obvious that the
two regions intersect, and hence we could say that the planes could meet each other after an hour.

3.1.4 Buffer Query

A person is headed westward on a national highway and is using a GPS (Global Point System) to
keep track of his direction and surrounding. We assume that the GPS system would provide the
Linear Constraint Database the relation Current_Pos with attributes z and y. This relation gives

;&} MLPAQ - [tracking] _ (O] =]
File Edit “iew ‘window Help =] x|

E= S =1 = el = = (e S
DIfir’“IEII & 'iIEnI 22| =[] Al |« [»]]

atris[es] K | _"lll

[161.451, 110.232) [] I Y

Figure 3: Tracking Example

,&}_ MLFQ - [incomplete_info]

[Ele Edt View Window Help == =]

v cx]ol 2] nju] s=]o|G] e
] = e N e O 2 A

3,1 At

| | [Plane2' Arity: 3,1 matrix

[119.874, 347.634) | | |

Figure 4: Incomplete Information query

++ MLPQ - [buffer] (_ [O] =
File Edit “iew Window Help _|E‘|£|

IS N =1 = i = ks e Y S
] 2= e = =) S 3 I R

‘Current_Paos'

‘Foad' Aty

* Hotel' Aty 3, 5 mat
Mearest_Exit' Arity: 3

BRI Bui_Mearest_Ewit' Ar . -
Conwvenient_Hotel &1 | ¢ | 2

(607.092, 234.355) | | A

Figure 5: Buffer Example

the current location of the person. Relation Road with attributes highwayld,z and y has information
of the highway the person is on while relation Ezit has information of all the exits on the highways.
The relation Ezit has attributes ezitld,z and y. The relation Hotel with attributes HotelName, x
and y stores information of all hotels in the region.

Query: Which is the closest exit on the highway in his direction?

From Figure 5 we notice that the relation road is a piece-wise linear function of z. To answer
the first query, click the Min icon and create a new relation Nearest_Exit with attributes z and y.
We find the minimum value of z in the relation represented in Datalog as Current_Pos(z0,y0),
Road(highld,z,y), Exit(exitld,z,y), x > 0 where z0 is the current position of person.

Query: The name of the hotels that are 500 meters from the nearest exit.

For the second query, the buffer icon is used to create a relation, say Buf Nearest_FEzxit, that
creates a 500 meter buffer around the x and y coordinates of the Nearest_Ezit relation. Using
the intersection icon, find the intersection of relation Hotel and Buf-Nearest_Ezit and lets call this
relation Convenient_Hotel. The Hotel Name attribute of this relation gives the name of the hotels
we were looking for in query 2.

3.2 General Queries

A linear constraint database representation of GIS information brings with it the advantage of using
simple Datalog rules to implement queries that are not possible to implement using standard SQL.
To enable the user to be able to tap this querying power and to define new relations (maps) the
system provides a mechanism by which the user can enter queries at run-time by entering Datalog
rules in a query dialog box. We illustrate the general query capabilities of MLPQ/GIS system in

<1~ MLPQ - [midwest] =10 x|
File Edit “iew ‘wWindow Help -2 x|

I ol 2] nlu] =] o|G el
OS] &R E(2| =|a] &)] «]|»]«]id]r]

Same_Timeltil - Route Ak s1.01], Stateli, ©1.41]. :I Ok, F
[Foute_B[rs2 2], Stateli,x2.p2).

Cancel

k& _F'_J—'
1.

Ready T | |

Figure 6: Mid-West Problem

the following examples.

3.2.1 Mid-West Problem

We are given the map of the mid-western United States represented using a linear constraint
database. The database also contains information about the route and itinerary of two persons,
A and B who are travelling across the mid-west.

Query: When are the two people in the same state at the same time?

To answer this query, we read in the mid-western states one by one, and then create a relation
called State from their union using the union icon. Next, we call a query dialog box and enter a
Datalog query as shown in Figure 6. This query says to return all pair of time and state pairs(t, i)
such that at time t person A is at a location (z1,y1) and person B is at location (z2,y2) and both
the locations are in the same state i.

Inzert Helation

Land_Ewe_wned(id, x,] - Land(id. = v t. 'Ewve]. :I aF. I
Eancell
= _'*I_I

Figure 7: Land Owner Problem

3.2.2 Land Owner

Suppose that information about ownership of a plot of land is stored in the relation Land, which
has attributes id, z, y, time, and owner in that order. An example of such a tuple can be found in
Example 2.2.

Query: What parts of the land belonged to Eve at some point in time?

To solve the first query, we open a query dialog box by clicking on the query icon. We write a
simple Datalog query as shown in Figure 7. The query selects all those tuples from relation Land
that have owner attribute equal to Eve.

Query: Which parts of the land belonged once to Adam and later to Eve?

@' landowner
‘Land' Antw: 5, 7 matrixes

4

Inzert Relation | x| |

Adams_Land_later_Eves(x, y] - Land(id1, =, v, £1, ‘Adam’], :I ak.
Land(idZ, =, v, 2. 'Eve'].
<2

Cancel

« | LILI _*ILI

Figure 8: Land Owner Problem: Adam and Eve

For the second query, we have to find the intersection of all parts of the land that both Adam
and Eve owned while ensuring that that only those tuples in the intersection be in the result, such
that the land was first owned by Adam and later by Eve. The Datalog query that implements this
query is shown in Figure 8.

4 Comparison with ARC/INFO

ARC/INFO is one of today’s most successful GIS systems that is based on the geo-relational
model [17]. In systems following this model, the spatial and the non-spatial data are kept separate.
In ARC/INFO, the spatial data handling is done in a package called ARC, while the non-spatial data
is handled using the INFO package. There is an automatic set-up of a one-to-one correspondence
between the spatial and the non-spatial tables using internally generated ids.

ARC can represent only spatial information. If temporal data is used, it must be handled
separately by the INFO part. Because of this separate handling of spatial and temporal data,
ARC/INFO cannot represent (linear) dependencies between spatial and temporal attributes.

In contrast, MLPQ/GIS is a constraint database system, which allows any number of attributes
to be used within a relation and each MLPQ tuple can represent a complex relationship among all
the attributes. For example, in a single MLPQ relation the three spatial dimensions, the time, the
precipitation, and the price could all be attributes that are inter-constrained by each other using
complex linear relationships.

For some specialized queries, ARC/INFO provides a good optimized performace. It also allows
ready-built software packages to be added to the system, providing one way of extending its basic
query language. However, it is difficult to improvise new queries and express them in ARC/INFO.

MLPQ/GIS does not provide the optimization on two dimensional spatial data that ARC/INFO
provides. However, it has a much more flexible query language, integrated into the graphical user
interface. Hence it is easier to improvise queries and express them in MLPQ/GIS. The advantage
of higher expressive power is highlighted by the summary provided in Table 1 below.

| Query | ARC/INFO | MLPQ/GIS |
Pesticide 3 ARC/INFO commands | Intersection and area icons
Tracking 1 ARC/INFO command | Overlay diplays
Incomplete Info. No valid input database | Overlay displays
Nearest Exit (Buffer 1.) | Not expressible Min icon
Hotels Close (Buffer 2.) | 2 ARC/INFO commands | Buffer icon
Midwest Not expressible 1 Conjunctive Query
Land Owner 1 2 ARC/INFO commands | 1 Conjunctive Query
Land Owner 2 Not expressible 1 Conjunctive Query

Table 1: Comparison of ARC/INFO and MLPQ/GIS Queries

5 Future Work

5.1 Interoperability of MLPQ/GIS with other Systems

We plan to make MLPQ/GIS useful in the real world applications. So it is important to get
real world data for MLPQ/GIS. We are currently doing research on database interoperability [5]

between ARC/INFO and MLPQ/GIS. Now, the importing of ARC/INFQO’s polygon and temporal
information into MLPQ/GIS ’s constraint data has already been implemented. In fact, the data for
the land owner example is obtained from ARC/INFO. By doing queries on the constraint data, we
were able to obtain answers to queries that were not expressible in the basic langauge of ARC/INFO.
The next step is translating the query result back into ARC/INFO data. So we can also use
MLPQ/GIS as an intermediate layer that enhance the query ability for ARC/INFO by constraint
query language. Based on MLPQ/GIS’s constraint data model, we will extend our research on
database interoperability to other commercial GIS systems.

Because MLPQ/GIS can deal with spatio-temporal information, we will also do research on
the animation of dynamic spatial information that change with time. Using MLPQ/GIS, we can
store maps of different times(land owner example) into one constraint relation without any data
redundancy. It’s easy to get the map of any time using the projection query provided by MLPQ/GIS.

5.2 New Applications

Now, we are also using MLPQ/GIS to solve the crops planting arrangement problem and harvesting
problem in University of Nebraska-Lincoln’s Agricultural Research and Development Center. By
using the linear programming algorithms embedded in MLPQ/GIS, we have already got satisfying
result.

References

[1] M. Berkelaar. The Lp_Solve Linear Programming Software Package., At:
ftp://ftp.es.ele.tue.nl/pub/lp solve/.

[2] R.G. Bland, D. Goldfarb and M.J. Todd, The Ellipsoid Method: A Survey, Operations
Research 29:1039-1091, 1981

[3] A. Brodsky, Y. Kornatzky. The Lyric Language: Querying Constraint Objects. In: Proc.
ACM SIGMOD Conf on Management of Data., San Jose, CA, p. 35-46, 1995.

[4] V. Chandru. Variable Elimination in Linear Constraints, The Computer Journal 36:
463-472, 1993.

[5] J. Chomicki and P.Z.Revesz, Constraint-Based Interoperability of Spatiotemporal
Databases, In: Proc. 5th International Symposium on Spatial Databases, Berlin, Ger-
many, 1997.

[6] V. Chvatal, Linear programming. W.H. Freeman, New York, 1983.

[7] A.U. Frank and M. Wallace, Constraint based modeling in a GIS: Road design as a case
study, In: Proc. Twelfth International Symposium on Computer- Assisted Cartography,
4:177-186, 1995.

[8] S. Grumbach, P. Rigaux, L. Segoufin. The DEDALE System for Complex Spatial Queries.
In: Proc. ACM SIGMOD International Conference on Management of Data, Seattle,
USA, p. 213-224, 1998.

[9] J.-L. Imbert, Linear Constraint Solving in CLP-Languages, Lecture Notes in Computer
Science, vol. 910, 1995.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

P.C Kanellakis, G.M. Kuper and P.Z. Revesz, Constariant Query Language, Journal of
Computer and System Sciences, 51(1):26-52, August, 1995.

N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming. Combina-
torica, 4, p.- 373-395, 1984.

S. Morehouse. The Architecture of ARC/INFO. In: Proc. International Symposium on
Computer-Assisted Cartography, p. 266-277, 1989.

J. Paredaens, J.V.D. Bussche, D.V. Gucht. Towards A Theory of Spatial Database
Queries. In: Proc. 18h ACM Symp. on Principles of Database Systems, 279-288, 1994.

P. Z. Revesz and Yiming Li, MLPQ: A Linear Constraint Database System with Aggre-
gate Operations. In: Proc. International Database Engineering and Applications Sympo-
sium, Montreal, Canada, 1997.

D. Srivastava, Subsumption and Indexing in Constraint Query Languages with Linear
Arithmetic Constraints, Annals of Mathematics and Artificial Intelligence, 8:315-343,
1993.

J.D. Ullman. Databases and Knowledge Base Systems. Computer Science Press, 1988.

T.C. Waugh and R. Healey, The GEOVIEW design. A relational database approach to
geographic data handling, International Journal of GIS, 1, 101-118, 1987.

