

SPATIAL AND TOPOLOGICAL DATA MODELS

Ying Deng and Peter Z. Revesz
Computer Science and Engineering Department

 University of Nebraska - Lincoln
revesz@cse.unl.edu

Abstract: Spatial and topological data models are increasingly important in business
applications such as urban development planning, transportation and traffic control,
decision support in agriculture, pollution and environment analysis, fire and flood
prevention, etc. that require handling spatial and topological data more efficiently and
more effectively than older models, for example the relational data model. In this survey
we compare several alternative spatial and topological data models: the Spaghetti Data
Model, the Vague Region Data Model, the Topological Data Model, Worboys’
Spatiotemporal Data Model and the Constraint Data Model. We first describe how
spatial and/or topological data are represented and give examples for each data model.
We also illustrate by examples the use of an appropriate query language for each data
model.

THE SPAGHETTI DATA MODEL

The Spaghetti data model (Laurini and Thompson, 1992) is a popular model for
representing spatial data that occur in for example Computer-Aided-Design (CAD)
(Kemper and Wallrath, 1987) and Geographical Information Systems (GIS) (Worboys,
1995; Zeiler, 1997) applications. The reason why this model is so popular is that there are
many efficient algorithms for detecting properties in this model (Preparata and Shamos,
1985). In addition, the Spaghetti model is simple to use and offers in most applications a
sufficient approximation to reality. There are several extensions of this model, for
example the parametric 2-spaghetti (Chomicki and Revesz, 1999) and the parametric
rectangles (Cai et al., 2000) models, which we do not review here.

Data Representation

In the Spaghetti model, the information in an n-dimensional space is represented using a
set of m-dimensional hyperspaces, with m < n. This means that in a two-dimensional
plane, we only consider polygons, the boundary of which contain line segments and
points. More concretely, we use here (Paredaens, 1995):

• Points, which are represented using their coordinates (x, y);
• Graphs, whose data structure is a finite set of pairs of points;
• Polylines, whose data structure is a finite sequence of points;

• Polygons that are represented by non-selfintersecting closed polylines.
• Complex polygons, that can contain holes, which are again complex polygons (up to

a finite level);
• Objects are sets of polygons, points or graphs.
Figure 1.1 shows a city with a park and a university and river that runs through it.

Figure 1.1: An example for Spaghetti model

In the Spaghetti model, the above figure can be represented by the relation in Table 1.1 as
follows.

ID (x, y)’s
University { (15, 14) }
River { (6, 20), (7, 17), (12, 8), (18, 5), (20, 2), (23, 2), (20, 8), (14, 11),

(10, 17), (10, 20), (6, 20) }
Park { (7, 4), (11, 4), (11, 7), (7, 7), (7, 4) }
City { (6, 2), (16, 2), (18, 5), (12, 8), (7, 17), (2, 14), (2, 7), (6, 2) }
City { (10, 17), (14, 11), (20, 8), (23, 15), (10, 17) }

Table 1.1: Spaghetti representation

Note that the polyline is represented by a sequence of points. Each of the polygons is
represented by a sequence of its corner points. To distinguish polylines and polygons the
first and the last points of a polygon are the same which means this is a closed polygon.

University

City

Park

0 5 10 15 20 25

5

10

15

20

River

ARC/INFO Queries

Database systems based on the Spaghetti data model usually provide queries that tell
whether two polygons overlap, whether a point lies in a polygon or on a line segment,
whether two line segments intersect, whether a polyline self-intersects, whether a
polygon is contained in another one, etc. The evaluations or implementations of all these
queries are solvable in polynomial time complexity (Preparata and Shamos, 1985).

ARC/INFO is currently the primary GIS system available from ESRI. It handles both
spatial information and descriptive information based on the spatial-relational data
model. The spatial information in ARC/INFO is represented through four classes of basic
data components: arcs, nodes, label points, and polygons.

ARC/INFO provides queries that retrieve its non-spatial attribute data as relational
databases do, and queries with spatial selection ability that traditional databases do not
have. There are three general methods for selecting geography features in ARC/INFO
(Zeiler, 1997).

Spatial selection. A user can use the mouse cursor to pick one or more geographic
features. The user can collect features within boxes, circles, and polygons interactively.
For example, the user can choose all the houses located within a certain polygon or circle.

Logical selection. A user can build simple or compound logical queries to select
geographic features. This kind of queries is based on non-spatial attributes, which is
expressed as traditional SQL queries. The results of logical selections can be connected
with spatial information through internal identifiers. An example would be “Find all the
buildings with an area greater than 3200 square feet.” The feature ‘area’ is one of the
attributes associated with the polygons that represent the buildings.

Overlap selection. A user can select geographic features such as contained within,
overlap, adjacent to, or within a buffer of a certain distance etc. For example, the
RESELECT and OVERLAP commands can be used to “select wells within 2000 feet of
a selected stream arc”. This query can be expressed as:

RESELECT WELLS POINTS OVERLAP STREAMS ARCS 2000

where STREAMS and WELLS are two existed relations in the database, POINTS and
ARCS are two feature classes predefined in the system. RESELECT and OVERLAP
are reserved key words of the system and 2000 indicates the distance.

THE VAGUE REGION DATA MODEL

Most spatial data models assume that the boundaries of spatial objects are sharply
delimited by points, lines and regions. This is not always a natural assumption, for
example when we need to consider a vague region like the region of regular customers of

a supermarket. A particular example of modeling spatial vagueness and querying vague
region data models is reviewed in this section based on the model of Erwig and Schneider
(1997). Several other proposals use fuzzy logic, for example (Edwards, 1994), that we do
not review here.

Data Representation and Operations

In the model proposed by Erwig and Schneider (1997) each vague region is a pair of
disjoint regions. The first region, called the kernel describes the determinate part of the
vague region, that is, the area, which is definite and always belongs to the vague region.
The second region, called the boundary, describes the vague part of the vague region, that
is, the area for which we cannot say with any certainty whether it or parts of it belong to
the vague region or not. Boundaries need not necessarily be one-dimensional structures
but can be regions. Kernels and boundaries may be adjacent, they may have holes which
themselves can contain a hierarchy of kernels and boundaries with holes.

We give an example shown as Figure 2.1. The region p denotes the areas of the Great
Plain in the mid-west of America, and the region b denotes the areas that birds usually
inhabit in the spring. The gray parts represent boundaries of these two classes of areas,
which means that it is not definite that they belong to the Great Plain or not and the birds
inhabit or not.

Figure 2.1: Kernels and boundaries of vague regions

Operations and SQL-like Queries

Let us denote the vague region v as a pair of disjoint regions (k, b) where k gives the
kernel of v and b gives the boundary of v. The notation vk = k and vb = b is employed and
the exterior of v is defined as ve = ¬(k+b) where ‘+’ is the union operation and ‘¬’ is the
complement operation in a general sense.

The following figure shows the operations of union, intersection, difference and
complement on two vague regions. A black circle represents a kernel, a gray circle
represents a boundary, and a white circle denotes the exterior. Each field of the tables
denotes a possible combination of kernel, boundary and exterior. The label in each field
specifies whether the corresponding operation result belongs to kernel, boundary or
exterior.

 p

 p

 b

 b
 b

difference K B O intersection K B O

K O B K K K B O
B O B B B B B O
O O O O O O O O

union K B O complement K B O

K K K K O B K
B K B B
O K B O

Figure 2.2: union, intersection, difference and complement operations on vague regions

In addition to the four basic spatial operations, the following operations are defined.
Boundary (v) : = (Ø, vb)
Kernel (v) : = (vk, Ø)
Invert (v): = (vb, vk)

When answering questions like “Does region u and v intersect?”, sometimes we can
neither return true nor false but maybe or unknown. Therefore, a three-valued logic is
used as the range of Boolean predicates. Figure 2.3 shows the definition of the logic
operators paralleling the definition of the operations for vague regions. T, F, and M are
used as abbreviations for true, false, and maybe.

and T M F or T M F not T M F

T T M F T T T T F M T

M M M F M T M M
F F F F F T M F

Figure 2.3: Three-valued logic operators

A number of numeric operations are defined based on the corresponding functions for
regions. The min-area of a vague region v is the area of the kernel of v. The max-area of
a vague region v is the area of the kernel and the boundary of v. Similarly the distance
between two vague regions is a vague value. The max-dist of two vague regions v and u
is the distance between the kernels of v and u. The min-dist of two vague regions v and u
is defined as the distance between the maximal extensions of v and u, taking kernel and
boundary into account.

By assuming a relational data model where tables may contain vague region objects, an
SQL-like query language is used to indicate how the operations can play as a part of a
spatial query language. We give some examples as follows.

First, let us look at a simple query: “Find all regions where lack of water is a problem for
cultivation.” The query can be expressed as

SELECT region FROM weather WHERE climate = dry

assuming a table weather exists having a column named region containing vague region
values for various climate conditions given by the column climate. A similar query would
ask for bad soil regions as a hindrance for cultivation. The result of both queries is a set
of vague regions.

If now we want to find out regions where cultivation is impossible due to either reason,
the query is then expressed using union operation as following:
(SELECT SUM(region) FROM weather WHERE climate = dry)
UNION
(SELECT SUM(region) FROM soil WHERE quality = bad)

where sum is a built-in function which aggregates a set of regions.

By prefixing that any predicate with maybe which causes the predicate to fail only if it
returns false, the query “Find out all areas where people are definitely or possibley
endangered by pollution.” can be expressed as

SELECT areas.name
FROM pollution, areas
WHERE areas.use = inhabited AND pollution.region MAYBE INTERSECTS
areas.region

This model is capable of describing many other aspects of vague spatial objects. Based
on the exact spatial modeling concepts, it allows a smooth migration from existing
models to vague concepts. Further extensions include modeling vague point and lines,
integration of vague regions into other data models and query languages.

THE TOPOLOGICAL DATA MODEL

Topology has been used for modeling spatial data and their composition for a long time.
Characteristic of topological properties is that they do not distinguish between two
databases that can be obtained from each other by a topological deformation. Such
databases are usually called topologically equivalent. Queries that only involve
topological properties are of interest in this class, such as adjacency, connectivity, and
containment. In recent years, there is a growing interest of the topological data model
among the spatial database community. In this section, we introduce the PCA-structure, a
topological data model based on labeled points, curves and areas.

Data Representation

Spatial databases concerning topological properties are expected to represent information
lossless, in the sense that two databases that are not topologically equivalent are
represented differently. In addition, topological invariance is desired in the sense that two
topologically equivalent databases are represented identically. (Kuijpers et al., 1995)
proposes a data structure, PCA-structure that gives an invariant and lossless
representation used to represent spatial data in the Euclidean plane R2.

Conceptually, a spatial database in the topological data model consists of a finite set of
labeled points, a finite set of labeled curves and a finite set of labeled areas. Each point
label is assigned to a distinct point in the Euclidean plane R2. Each curve label is
assigned to a distinct non-self-intersecting continuous curve in the plane that starts and
ends in a labeled point and does not contain any other labeled points except these. Two
curves only intersect in a labeled point. Each area label is assigned to a distinct area
formed by the labeled curves. We give an example of such a database as shown in Figure
3.1. Note that this definition allows curves to start and end in the same point, i.e., the
database may contain loops.

Figure 3.1: An example spatial database in the topological data model

A spatial database is represented by means of a classical database consisting of four
relations, R1, R2, R3, and R4, on the labels of points, lines, and areas as follows
(Kuijpers et al., 1997).

• R1 gives for every curve its two endpoints;
• R2 gives for every curve its two adjacent areas;
• R3 gives for each area its border of alternative curves and points;
• R4 gives for each point its neighborhood of alternative curves and areas.
R1 indicates that every line has exactly two end-points. R2 indicates that every line is the
border between exactly two areas. R3 says that every area is surrounded by an ordered
cycle of curves and points indicating the border of an area. R4 says that every point is
surrounded by an ordered cycle of curves and areas indicating the neighborhood of the
point. Different orders may be used to distinguish outer borders and holes in areas.
Neither the exact position of the cells nor their length or surface is given by this
representation, which is the general case in topological data models where only the

A B
C

E D u
v w

t

Y

X
Z

topological properties are determined. Figure 3.2 illustrates the relations for the depicted
spatial database.

Figure 3.2. The relations R1, R2, R3, and R4 illustrated

For each labeled point in such a spatial database, it is more convenient to make a circular
alternating list of area labels and curve labels rather than a set of tuples. The list
corresponds respectively to the areas and curves that an observer sees when he makes a
clockwise full turn and scans the environment of the point. The observation from an
object p is denoted by Obs(p). Figure 3.3 illustrates an example for the Obs()
representation. The alternating list for the point with label t is (X B X A Y A). Note that
a point which is isolated from the remainder of the database consists of one single area
label.

Figure 3.3: An observation of a database from point t

R1
A p q
A q p
B q r
B r q
C r s
C s r
D p s
D s p
E p r
E r p

R2
A α β
A β α
B α γ
B γ α
C α β
C β α
D α β
D β α
E β γ
E γ β

R3
α p A 1
α q B 2
α r C 3
α s D 4
β p E 1
β r C 2
β s D 3
γ p A 1
γ q B 2
γ r E 3

R4
p A γ
p E β
p D α
q B α
q A γ
r C β
r E γ
r B α
s C α
s D β

t

X

Y

w

B

A

p q A

B

C

D E

r s

α

β
γ

Now the PCA-structure is defined as follows. For a given database D, the PCA-structure
of D is the data structure (P, C, A, α∞, Obs()) if P is the set of point labels, C is the set of
curve labels, A is the set of area labels, α∞ is the name of the unbounded area and Obs() is
a function that associates with each element p of P, the observation of D from p. Clearly
the topological relations or properties can be reconstructed from the observations. The
PCA-structure is an invariance and lossless representation of a database (Kuijpers et al.,
1995), which allows users to concentrate only on the topological aspects of the spatial
data, and on all of them.

The LPCA Query Language

To query spatial databases in the PCA topological data model, the first-order language
LPCA is introduced in (Kuijpers et al., 1997). LPCA has three sorts of variables: lower-case
characters are used for point variables, such as p, q, r, …; capitals are used for curve
variables such as A, B, C, …; and Greek characters are used for area variables such as α,
β, γ, …. The language has one constant α∞, the label for the unbounded area. A term in
LPCA is

• p = q with p and q point variables;
• A = B with A and B curve variables;
• α = β with α and β are area variables;
• α = α∞ with α an area variable;
• AαB ⊂ Obs(p) with p a point variable, A and B curve variable and α an area variable

or the area constant α∞;
• αA β ⊂ Obs(p) with p a point variable, A a curve variable, α and β area variables or

the area constant α∞; or
• α = Obs(p) with p a point variable, α an area variable or the area constant α∞.
An expression in LPCA is
• a term;
• a combination of expressions using ∧ , ∨ , ¬, →; or
• (∃p)φ, (∃A)φ and (∃α)φ with φ an expression and p a point variable, A a curve

variable and α an area variable.
A query expressed in LPCA has the form
{(p1, …, pn, A1, …, Am, α1, …, αk) | φ(p1, …, pn, A1, …, Am, α1, …, αk)},
where φ(p1, …, pn, A1, …, Am, α1, …, αk) is an expression in LPCA with free point
variables p1, …, pn, free curve variables A1, …, Am and free area variables α1, …, αk.
Consider the query “Does the spatial database contain a loop?”. This is a simple Boolean
query with n = 0, m= 0, and k=0. It is expressed by the formula
(∃p)(∃α)(∃β)(∃A)¬α = β∧αAβ⊂Obs(p) ∧βAα⊂Obs(p).

WORBOYS’ SPATIOTEMPORAL DATA MODEL

The information, which is referred to space, is often related to time. Space, time and
process are closely connected. In recent years, there have been a large number of
researches on spatial-temporal databases (Snodgrass, 1992; Worboys, 1994; Chomicki
and Revesz, 1997). Generally, there are two classes of time to be handled in an
information system, the database time and the event time. The database time is the time
when transactions actually take place with the information system. The event time is the
time when the events actually occur in the application. Different systems provide
supports either to the database time or to the event time, or both. In this section, we
introduce a spatial-temporal data model which uses simplicial complexes to model pure
spatial information and two orthogonal dimensions to represent database time and event
time. A query algebra, similar in some respects to relational algebra is also presented.

Data Representation

The spatial-temporal model represents spatial data based on the simplicial model
developed by Worboys (Worboys, 1994) and Egenhofer (Egenhofer et al., 1989). Spatial
objects are classified according to their spatial dimension. For each dimension, a minimal
object exists, called simplex. For example, 0-simplex represents node, 1-simplex stands
for edge, 2-simplex stands for triangle. Any n-simplex is composed of (n+1)
geometrically independent simplices of dimension (n-1). For example, an edge, a 1-
simplex, is bounded by two 0-simplices (two nodes). A face of a simplex is any simplex
that contributes to the composition of the simplex. For instance, the bounding edges of a
triangle are faces of this triangle. The n-simplex is a face of itself. An ordered n-simplex
Sn is represented by its vertices in the form Sn = < x0, x1, ..., xn >. An orientation of a
simplex fixes the vertices to lie in a sequence and is defined through the associated
ordered simplices. A simplicial complex is a finite collection of simplices and their faces.
The dimension of a complex is taken to be the largest dimension of the simplices of this
complex. If the intersection between two simplices of this collection is not empty, then
the intersection is a simplex, which is a face of both simplices. The following Figure 4.1
shows an example in which the line segments represents the border of a piece of land and
the shaded area represents a building on this land.

Figure 4.1: Simplicial complex{ab,bc,cd,de,ef,fa,ghj,hij}

A bitemporal element or BTE is defined to be the union of a finite set of Cartesian
products of intervals of the form ID × IE, where ID is an interval of database time and IE is
an interval of event time. The semantics expressed by a BTE T are that (tD, tE) ∈ T if and

b

a

c d

e f

g

j i

h

only if at time tD there is information in the database that the object temporally referenced
by T exists as event time tE. Suppose that the information in Figure 4.1 is of year 1988. In
year 1990, the border of the land changed, as shown in Figure 4.2, and the database was
updated. The BTE associated with simplex ac is illustrated in Figure 4.3.

Figure 4.2: The changed simplicial complex Figure 4.3: An example of BTE

An ST-simplex is an ordered pair <S, T>, where S is a simplex and T is a BTE.
Intuitively, an ST-simplex is an elemental spatial objects (simplex) to which a bitemopral
reference is attached. The projection operator is defined as follows. Let the ST-simplex R
= <S, T>. Then πs(R) = S and πt(R) = T.

An ST-complex, C is a finite set of ST-simplexes satisfying the properties:

1. The spatial projections of ST-simplexes in C are pair wise disjoints. Taken together,
they form a spatial simplicial complex.

2. ∀ R, R’ ∈ C| πs(R) is a face of πs(R’) implies that πt(R) ≥ πt(R’).

The second condition, for example, ensures that the end points of a line segment are
always extant when the line segment itself extant.

Querying Spatial-Temporal Data

Worboys gives a query algebra on the spatial-temporal model. The possible operations on
ST-complexes include equals(=), subset(⊂), ST-union(∪), ST-intersection(∩), ST-
different(-), S-select(δs), T-select(δt), S-project(πs), T-project(πt), boundary(∂), ST-β-
product(× β) and so on. We discuss some of the above operations, which contribute to
our query examples.

The boundary operation upon an n-simplex Sn determines all (n-1)-faces of Sn. The
boundary of a simplicial complex can be determined as the sum of the boundaries of all
its simplices Sn. For ST-complex C, its boundary ∂C is defined as

∂C = {<S, T> ∈ C | S ∈ ∂ πs(C)}

For two ST-complexes, C and C’, we define C⊂C’ if and only if for each (x, y, z,
w)∈<S, T>∈C, there is <S’, T’>∈C’ such that (x, y, z, w)∈<S’, T’>.

a

c d

e f

g

j i

h

1988 1990
Database Time

1990

1988
 Ev

en
t T

im
e

Let C1 and C2 be two purely spatial simplicail complexes. A common refinement of C1
and C2 is a simplicial complex, which has the same planar embedding as the union of the
embeddings of C1 and C2. Let β be a Boolean set operation on BTEs. Let simplicial
complex R be a common refinement of πs(C1) and πs(C2). Then define C1 × β C2 to be
the smallest ST-complex (with respect to the ST-subset relation) which contains the set of
ST-simplexes {< S, Ts

1βTs
2> | S ∈ R} where Ts

1 and Ts
2 are the BTEs associated with the

spatially smallest faces of πs(C1) and πs(C2), respectively, which contains S. The ST-
intersection is defined as

C1 ∩C2 = C1 × ∩C2.

Let C be an ST-complex. Then the temporal selection operation δt Φ is defined to be the
smallest ST-complex containing the set of ST-complexes {<S, T> ∈ C | Φ(T)} where Φ
is a first-order formula on BTEs.

Suppose we have ST-complexes C1 and C2 representing a path and Jane’s house,
respectively. Now consider the query “Has Jane’s house ever shared a common boundary
with the path?”. The query can be expressed as

∂C1∩ ∂C = Ø

the query “Does the path currently pass through land that was part of Jane’s house?” then
can be expressed as

πs(δt t ⊇ now DB (C1)) ∩ πs(C2) = Ø

where now DB indicates a BTE with database time now and the intersection operator is
purely spatial intersection of spatial complexes.

It is not claimed that the spatial-temporal operations defined by Worboys (Worboys,
1994) are complete in any sense, just as there is complete list of purely spatial operators.

THE CONSTRAINT DATA MODEL

Constraint databases provide a powerful framework to model and retrieve spatial data. A
constraint database uses constraints on a specific decidable logical theory both to model
and retrieve data. At the data level, constraints are able to finitely represent possibly
infinite sets of relational tuples. With respect to data modeling, constraints serve as a
unifying data type for the (conceptual) representation of heterogeneous data. In
particular, the benefit of this approach is emphasized when complex knowledge (for
example, spatial or temporal data) has to be combined with some descriptive non-
structured information (such as name or figures), when several types of spatial objects
with different dimension (like points, lines, convex polygons and concave polygons) have
to be represented. At the query language level, constraints increase the expressive power
of simple relational languages by allowing mathematical computation and recursive

expressions. In this section, we review how constraint databases represent and query data
with constraints.

Data Representation

A framework for using constraint databases is presented in (Kanellakis et al., 1995). The
following three definitions are from (Kanellakis et al., 1995).

A generalized k-tuple is a quantifier-free conjunction of constraints on k variables
ranging over a domain D. Each generalized k-tuple represents in a finite way an infinite
set of regular k-tuple.

A generalized relation of arity k is a finite set of generalized k-tuples with each k-tuple
over the same variables. Suppose relation R contains the set of points on the line with
slope four. It is impossible for a relational database to enumerate all the points on the
line, however the line can be finitely represented by a generalized 2-tuple R(x, y):- y = 4x
in a natural sense. A generalized database is a finite set of generalized relations.

Constraint databases are parameterized by the type of constraint domains and constraints
used. Real polynomial inequality constraints, dense linear order inequality constraints,
Boolean equality constraints, and set constraints are typical types attracting a great deal
of interest (Revesz, 1998).

It is generally required that a spatial database contain an elegant framework to combine
geometric and thematic information, be as general as possible and not be designed for
one particular area of application, have a formally defined semantics that is closed under
set theoretic, geometric and topological operations, i.e. defined in terms of finite
representations and use efficient implementation techniques, especially for the operations
on n-dimensional objects.

The polynomial data model is well suited to model spatial objects, which require exact
geometrical and geographical information. The task of the spatial database is to store a
representation of some geographic areas, which are typically two-dimensional maps.
Such geographical information can be described precisely. Higher dimensional spatial
objects, unbounded and topologically non-closed geometric figures, which most other
models can not handle, can also be represented and manipulated with polynomial
inequality constraints. But practical constraint database systems (Brodsky et al., 1999;
Grumbach et al., 1998; Revesz et al., 2000) typically use linear constraints for which
efficient algorithms are available. For most problems with non-linear polynomial
constraints, there are no efficient solutions currently.

The linear data model approximates spatial objects using linear representable objects, e.g.
points, line segments, polygons, i.e. only linear inequality constraints are allowed. The
simplicity of linear data is very attractive to spatial data modeling and there also exist
efficient algorithms to implement the variety of operations on spatial data (Brodsky et al.,

1993; Brodsky and Kornatzky, 1995; Huynh et al., 1990; Lassez, 1990). Models with set
Boolean constraints also exist (Revesz, 1998).

Suppose we have the following town map as shown in Figure 5.1, which depicts the
border of the town and highways near the town.

Figure 5.1 the map of a town

The spatial information of this town can be represented using two relations in a constraint
database. One relation represents a town region and the other contains the highways
around the town. The two relations are as follows.

Name Geometry

The- Town x ≥ 3,x ≤18,y ≥13, y ≤19,7y-6x ≥ 49.

The-Town y ≥ 9, 7y-6x ≤ 49, x ≤ 18, y+2x ≥ 27, 2y-x ≤ 4, x+y ≤ 33.

Table 5.1: the Town relation

Name Geometry

HW-A y=17, x ≥ 2, x ≤ 20.

HW-B 10x+y=234, y ≥ 12, y ≤ 22.

HW-C y=7, x ≥ 3, x ≤ 20.

HW-D x=12, y ≥ 5, y ≤ 22.

Table 5.2: the Highway relation

The town region is the collection of all the point-sets that satisfy the constraints on the
Geometry attribute. All the (x, y) pairs that satisfy either of the two sets of constraints are
in relation Town. The Highway relation contains four constraint tuples, which together
represent the set of points lies on some highway in the map.

The Datalog Query Language

Datalog (Ullman, 1988), the primary example of a deductive query language, utilizes
logic as a way to represent knowledge and as a language for expressing operations on
relations. Datalog derives new relations from input relations using rules. Each Datalog
query consists of a finite set of rules of the form

R0(x1, …, xk) : - R1(x1,1 …, x1,k1), …, Rn(xn,1, …, xn,kn).

The x's are either variables or constants in the domain. If the variables on the right side
are substituted by constants, which make the right side true, then the left side must also
be true. In general, rules in Datalog define the true instances of certain predicates, with
R0 in the above form, in terms of certain other predicates, R1, …, Rn, where each Ri is
either an input relation name or a derived relation name.

The following query finds all the highways that pass through the town.

Qpassthrough(name):- Town(x, y), Highway(name, x, y).

The query Qconnect finds all the highways that are connected to the town directly or
indirectly (if intersecting any passing through highway).

Qconnect(name1):- Qpassthrough(name1), Highway(name1, x, y).

Qconnect(name):- Qconnect(name1), Highway(name1, x, y), Highway(name, x, y).

The relationship between relations with same relation names but different rule bodies, is
the logical OR. The comma symbols represent conjunctions between constraints. A query
is recursive is the body of any of its rules constraints a derived relation. Otherwise, the
relation is called non-recursive. For instance, the query Qpassthrough is a non-recursive
query and Qconnect is a recursive query.

Syntactically, Datalog is a fragment of predicate calculus extending relational calculus
with intentionally defined relations. In relational calculus each query defines a single
output relation which is not named explicitly and all other relations are input relations. In

Datalog, a query may define several output relations, which are referred to by names
within the query, that is, built-in relations are allowed in Datalog. There are expressions
in recursive Datalog, such as the Qconnect query that cannot be expressed in relational
algebra or relational calculus. The relational calculus underlying most commercial
relational query languages is a form a logic that can be obtained from a non-recursive
Datalog program with the substitution of logical OR of the rule bodies. Since most basic
operations of computational geometry can be described in Datalog with real polynomial
constraints, this implies the potential capability of constraint databases to be used in
spatial applications.

CONCLUSION

No one data model can be claimed satisfying all general requirements for a wide range of
applications. The Spaghetti data model and queries in the ARC/INFO system cannot
handle both spatial and temporal information. The vague region model is limited in
modeling regions exclusively. Moreover, the integration of vague concepts into existing
models might cause trouble and be tedious since it either requires a redefinition of the
data types or a redefinition of the operations. The topological data model overcomes the
problem of the finiteness of computers and their numbering systems, recording
topological properties explicitly and allows efficient queries on topological relations. But
it needs to be complemented by qualitative analysis of the semantics of the spatial objects
to provide intelligent spatial reasoning. In Worboys’ spatial-temporal data model, the
temporal and the spatial arguments are independent. Hence we cannot describe for
example the relationship that exists between time and the area covered by an incoming
tide (Chomicki and Revesz, 1999). The constraint data model uses constraints to model
and retrieve data, which has shown powerful expressiveness, strong abilities to handle
both spatial and temporal information and extend to n-dimensional space in a natural
sense.

It is necessary to examine tradeoffs utilizing a specific set of usage-based criteria so that
the overall quality or suitability of a specific data model can be evaluated within a
particular context. The general criteria include completeness, robustness, versatility,
efficiency and ease of generation. Current and anticipated spatial data volumes have
generated a two-faceted problem. The first one is that existing data structures are
inefficient and inflexible to meet current requirements. The second one is that format
conversions between different data structures to satisfy the current range of required
applications produces significant processing overhead. As the size of any database
becomes very large, several important problems rise which must be dealt with efficiency,
heterogeneity, accuracy, and security (Adam and Gangopadhyay, 1997; Floriani et al.,
1993; Peuquet, 1988). Further research to meet all these requirements is scientifically
exciting and commercially important.

REFERENCES
N. R. Adam, A. Gangopadhyay, Database Issues in Geographic Information Systems,
Kluwer Academic Publishers, 1997.
A. Brodsky, J. Jaffar, M. J. Maher. Toward Practical Constraint Databases. Proc. 19th
VLDB, pp. 322-331, 1993.
A. Brodsky, Y. Kornatzky. The Lyric Language: Querying Constraint Objects. Proc.
ACM SIGMOD, pp. 35-46, 1995.
A. Brodsky, V. E. Segal, J. Chen, P. A. Exarkhopoulo, The CCUBE Constraint Object-
Oriented Database System. Proc. ACM SIGMOD, pp.577-579, 1999.
M. Cai, D. Keshwani, P. Z. Revesz, Parametric Rectangles: A Model for Querying and
Animation of Spatiotemporal Databases, Proc. Seventh Conference on Extending
Database Technology, Springer LNCS 1777, pp. 430-444, 2000.
J. Chomicki, P. Z. Revesz, Constraint-based Interoperability of Spatiotemporal
Databases, Geoinformatica, vol. 3, no. 3, pp. 211-243, 1999.
G. Edwards, Characterizing and Maintaining Polygons with Fuzzy Boundaries in GIS.
6th Inter. Symp. on Spatial Data Handling, pp. 223-239, 1994.
M. J. Egenhofer, et al., a Topological Data Model for Spatial Databases, Springer LNCS
409, pp. 271-284, 1989.
M. J. Egenhofer, D. M. Mark, Modeling Conceptual Neighborhoods of Topological Line-
Region Relations, Inter. J. of GIS, vol. 9, no. 5, pp. 555-565, 1995.
M. Erwig, M. Schneider, Vague Regions, Advances in Spatial Databases, Springer
LNCS 1262, pp.298-320, 1997.
L. D. Floriani, et al., Spatial Queries and Data models, Spatial Information Theory,
Springer LNCS 716, 1993.
S. Grumbach, P. Rigaux, L. Segoufin, The DEDALE System for Complex Spatial
Queries. Proc. ACM SIGMOD, pp. 213-224, 1998.
T. Huynh, C. Lassez, J.-L. Lassez. Fourier Algorithm revisited. Springer LNCS 463, pp.
117-131, 1990.
P. C. Kanellakis, G. M. Kuper, P. Z. Revesz, Constraint Query Languages. Journal of
Computer and System Sciences, vol. 51, no. 1, pp. 26-52, 1995.
B. Kuijpers, J. Paredaens, J. Van den Bussche, Lossless Representation of Topological
Spatial Data, Springer LNCS 951, 1995.
B. Kuijpers, J. Paredaens, L. Vandeurzen, Semantics in Spatial Databases, Advances in
Spatial Databases, Springer LNCS 1262, pp. 114-135, 1997.
A. Kemper, M. Wallrath, An Analysis of Geometric Modeling in database systems, Proc.
ACM Computer Surveys, vol. 19, no. 1, 1987.
J.-L. Lassez, Querying Constraints, Proc. 9th ACM SIGACT-SIGMOD-SIGART Symp. on
Principles of Database systems, pp.288-298, 1990.

R. Laurini, D. Thompson, Fundamentals of Spatial Information Systems, Academic
Press, 1992.
J. Paredaens, Spatial Databases, The Final Frontier, International Conference on
Database Theory, Prague, Springer LNCS 893, 1995.
D. J. Peuquet, Issues Involved in Selecting Appropriate Data Models for Global
Databases, Building Databases for Global Science, 1988.
F. Preparata, M. Shamos, Computational Geometry: An Introduction, Springer, 1985.
P. Z. Revesz, The Evaluation and the Computational Complexity of Datalog Queries of
Boolean Constraint Databases, International Journal of Algebra and Computation, vol. 8,
no. 5, pp. 553-574, 1998.
P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, Y. Wang, The MLPQ/GIS Constraint
Database System, Proc. ACM SIGMOD, 2000.
R. T. Snodgrass, Temporal Databases, Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space, pp.22-64, Springer, Berlin, 1992.
J. D. Ullman, Database and Knowledge-Base Systems, volume I, Computer Science
Press, 1988.
M. F. Worboys, A Unified Model for Spatial and Temporal Information, The Computer
Journal, vol. 37, no. 1, pp.26-34, 1994.
M. F. Worboys, GIS: A Computing Perspective, Taylor & Francis, 1995.
M. Zeiler, Inside ARC/INFO (revised edition), Onword Press, 1997.

