
Journal of Computer and System Sciences � SS1454

journal of computer and system sciences 54, 98�112 (1997)

Knowledgebase Transformations*

Go� sta Grahne-

Department of Computer Science, University of Helsinki, Teollisuuskatu 23, SF-00510, Helsinki, Finland

Alberto O. Mendelzon�

Department of Computer Science, University of Toronto, Toronto, Canada, M5S 1A4

and

Peter Z. Revesz9

Department of Computer Science, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

Received May 8, 1996

We propose a language that expresses uniformly queries and updates
on knowledgebases consisting of finite sets of relational structures. The
language contains an operator that ``inserts'' arbitrary first-order sen-
tences into a knowledgebase. The semantics of the insertion is based
on the notion of update formalized by Katsuno and Mendelzon in the
context of belief revision theory. Our language can express, among
other things, hypothetical queries and queries on recursively indefinite
databases. The expressive power of our language lies between existen-
tial second-order and general second-order queries. The data com-
plexity is in general within polynomial space, although it can be
lowered to co-NP and to polynomial time by restricting the form of
queries and updates.] 1997 Academic Press

1. INTRODUCTION

It is a fact in database theory that as soon as the data
model becomes slightly more general than a simple rela-
tional structure��for example, if one allows views in addi-
tion to stored relations��it becomes difficult to give mean-
ing to updates [BS81, FUV83, FKUV86]. For a typical
example, suppose the database is represented by the theory
[A, B, A 7 B � C]. Let the update request be the ``inser-
tion'' of the sentence cC. Then simply adding cC to the
theory results in inconsistency. Reasonable ways to incor-
porate the request could result in [A, A 7 B � C, cC],

[B, A 7B � C, cC], [A, B, cC], or the disjunction of
the three.

The update problem is not unique to database theory.
One also encounters it in artificial intelligence [Rei92] and
in belief revision theory [Mak85, Ga� r88]. The common
fundamental question is: What should be the result of
changing a theory T with a sentence ,? The departure
point of belief revision theory is the rationality postulates
proposed by Alchourro� n, Ga� rdenfors and Makinson
[AGM85], and colloquially known as the AGM postulates.
These are principles that every adequate belief revision
operator should be expected to satisfy. For example: the
new fact , must be a consequence of the revised theory. And:
if the new fact , is consistent with T, then the result should
be logically equivalent to T _ [,].

However, Katsuno and Mendelzon point out in
[KM91a] that all of these postulates are not universally
desirable for all kinds of belief revision applications. In par-
ticular, Katsuno and Mendelzon distinguish two kinds of
theory change operations, update and revision. Update
consists of bringing the knowledgebase up to date when the
world described by it changes. For example, most database
updates are of this variety, e.g. ``increase Joe's salary by
50.'' The second type of modification, revision, is used
when new information is obtained about a static world. We
may for instance be trying to diagnose a faulty circuit and
wanting to incorporate into the knowledgebase the results
of successive tests, where newer results may contradict old
ones. The following is an example of revision:

Example 1.1. Suppose two robot vehicles V and W are
orbiting Venus. We have received the message ``I have
landed,'' but due to noise we could not determine whether

article no. SS971454

980022-0000�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* This work was supported by the Institute for Robotics and Intelligent
Systems and the Natural Sciences and Engineering Council of Canada. A
preliminary version of this paper appears in [GMR92].

- E-mail: grahne�cs.helsinki.fi. Work partially performed while visiting
the Department of Computer Science, University of Toronto.

� E-mail: mendel�db.toronto.edu.
9 E-mail: revesz�cse.unl.edu. Work partially performed while visiting

the Department of Computer Science, University of Toronto.

it came from V or W. Let v be the proposition ``V has
landed'' and w ``W has landed.'' After receiving the message,
the knowledgebase T is the theory [(v 7 cw) 6 (cv 7 w)].
Suppose we now send the command ``Land immediately'' to
V, and then V replies ``I have landed.'' This change can be
modeled by incorporating the sentence v into T. Since v is
consistent with T, the AGM postulate cited above says the
result should be equivalent T _ [v], which is equivalent to
[v 7 cw]. But upon reflection it becomes clear that this
is incorrect. After V has landed, all we know is that V has
landed; there is no reason to conclude that W has not. The
correct answer should be [v].

The authors of [KM91a] came to the conclusion that the
AGM postulates describe only revision, and gave a modified
set of postulates that characterize update operators (the
KM postulates).

Suppose now we want to define a language for expressing
updates to databases. It seems that in defining such a
language we have first to decide whether to use update or
revision, or both. But, as it turns out, Ga� rdenfors [Ga� r88]
has shown that if a logic has a semantics built upon Boolean
algebra, then there is no way of defining a language based
on revision that does not lead to triviality. On the other
hand, Grahne [Gra91] has axiomatized a nontrivial logic
in which update is an operator in the object language.

We shall therefore choose update as the notion of change.
The KM postulates do not prescribe any particular update
operator; they characterize a class of acceptable operators.
As Katsuno and Mendelzon show, an operator satisfies the
postulates if and only if it has the following behavior. For
each model M of the theory to be changed, find the set of
models of the sentence to be inserted that are ``closest'' to M.
The theory that describes all models obtained in this way is
the result of the change operation. Choosing an update
operator then reduces to choosing a notion of closeness of
models. In this paper, we adopt Winslett's possible models
approach [Win89]. Loosely speaking, a relational database
D1 is closer than another database D2 to the initial database
D under the Winslett ordering if every tuple that must be
inserted or deleted into D to make it identical with D1 must
also be inserted or deleted to make D identical with D2 .

Note that we are talking about comparing databases
rather than theories, equating databases with models of a
theory. This is in fact our data model: we define a database
to be a finite relational structure, and a knowledgebase to be
a finite set of databases on the same schema. We follow the
closed world assumption: only the facts that are explicitly
stored are true in a database [Rei78].

Having settled on a data model and a notion of update,
we propose a language that will allow both queries and
updates to be expressed uniformly. In fact, in our language
there is no formal distinction between queries and updates;
they are both regarded as transformations. The language

contains an operator that ``inserts'' arbitrary first-order
sentences into a knowledgebase, producting a new knowl-
edgebase.

Example 1.2. Suppose that we have in our knowledge-
base a relation containing all the direct flight paths from
cities to cities and would like to ask the following query
``which cities are reachably directly or indirectly from
Toronto via Air Canada?''. This query is expressed by inser-
ting into the knowledgebase a sentence that defines a new
relation containing exactly these cities, i.e., the sentence that
defines the transitive closure of the given relation. (In the
first example of Section 3 we elaborate further on the transi-
tive closure query.) For expressing the update ``delete flight
AC902'' it is enough to insert into the knowledgebase the
sentence that denies the existence of this flight.

Note that, for example, positive existential relational
calculus formulas are already expressive enough to for-
mulate updates that can have multiple results. As observed
in [AbG85], updates with multiple results are the source of
indefiniteness in databases. Considerable expressive power
is achieved by the combination of first-order logic and the
minimization operator implicit in the KM notion of update
and the Winslett order. It turns out that, for example, all
fixpoint queries [CH82] are expressible in our transforma-
tion language. It is well-known that ``inserting'' a datalog
program into an ``extensional database'' produces a unique
minimal model, which model also can be characterized as a
least fixpoint of the program. In case a formula has the syn-
tax of a datalog program, or, more generally, is monotone,
our update operator also produces that least fixpoint.

The major results of the paper are the following: (1)
definition of a simple and versatile first-order knowledge-
base update language (2) proof that the basic update
operator in this language satisfies the Katsuno�Mendelzon
postulates for updates (3) an analysis of the computational
complexity and expressive power of the knowledgebase
update language.

In Section 2 of this paper we lay the foundation of
knowledgebase transformations. In Section 3 some exam-
ples of transformations are exhibited. The computational
complexity of transformations is the subject of Section 4,
and expressive power is discussed in Section 5.

2. THE FRAMEWORK

As a notational convenience, the symbol | denotes the
set of all natural numbers, while the symbol � denotes
the symmetric set difference operation, that is, A�B=
(A"B) _ (B"A).

Consider a first-order function free language L built from
the following components: A set A=[ai : i # |] of domain
elements, a set X=[xi : i # |] of variables, a set R=
[Ri : i # |] of relation symbols, 7 (and), c (negation),

99KNOWLEDGEBASE TRANSFORMATIONS

_ (existential quantifier), = (equality), and the parenthesis
symbols.

With each relation symbol Ri # R we associate the arity
:(i). A k-ary term is a tuple with k components, each in
A _ X. An automic formula is an expression of the form
Ri (x) where Ri is in R and x is an :(i)-ary term, or an
expression of the form xi=xj , or an expression of the form
xi=aj , where [xi , xj]�X, and ai # A.

The set of all well formed formulas of L is defined in the
usual way, and it is denoted 8$. The subset of sentences in
8$ is denoted 8. If , is a formula where variable xi occurs
free, then ,(xi �aj) denotes the formula , with each free
occurrence of xi substituted by aj .

A database db is a sequence (ri1 , ..., rin) of relations,
where each rij is a finite subset of A:(ij). Then the schema of
db is _(db)=[Ri1 , ..., Rin].

For , # 8, define the schema _(,) to be the set of all
relation symbols appearing in ,.

The set of all databases is denoted DB. By DBs we mean
the set of all databases on schema s. Furthermore, if B is a
subset of the domain A, then DBB

s denotes the set of all
databases on schema s containing only values in B.

Let db1 and db2 be databases. Then we say that _(db2)
dominates _(db1), if _(db1) is a subset of _(db2).

The following is a key definition in this paper. It defines
a partial order relation � with respect to a given database.
Intuitively, this relation is used to rank the desirability of
including a database withing the updated knowledgebase.

Definition 2.1. Let db1=(si1 , ..., sin) and db2=
(ui1 , ..., uin) be databases, where _(db1)=_(db2), and let db
be such that _(db1) dominates _(db).

Then define a relation �db over DB_(db1) , such that
db1�db db2 if and only if either

sij �rij�uij �rij , (1)

for all rij , sij , and uij , whose schemas occur in all three
databases, or

sij �rij=uij �rij , (2)

for all rij , sij , and uij , whose schemas occur in all three
databases, and

sik �<�uik �<, (3)

hold for the rest of the relations sik and uik in db1 and db2 .

We give an example of partial order. Let db1=([R(a1a2),
S(a1a4)]) and db2=([R(a1 a2), S(a1 a4), S(a2a3)])
and db=([R(a1a2)])].1 Here _(db1)=_(db2)=[R, S]

and _(db)=[R]. Since all three relations agree in R, and S
in db1 is a strict subset of S in db2 , we have that db1�db db2 .

From this example, it can be easily seen that �db is a
partial order.

This partial order compares the databases in DB_(db1)

with respect to their closeness to the database db. If _(db)=
(db1)=(db2), then we have db1�db db2 if and only if the
symmetric difference between db1 and db is included in the
symmetric difference between db2 and db, where the sym-
metric difference is taken componentwise. This corresponds
to the way interpretations are compared in Winslett's
possible models approach [Win89]. If the schemas of db1

and db2 are proper supersets of db, the comparison will
proceed in two stages. First, we try to keep the relations in
db invariant. Since r�r=<, for any relation r, condition
(1) will guarantee that the databases where the relations in
db are invariant will be closer to db than other databases.
These other databases will be ordered in two stages: First,
smaller changes to the relations in the db are favored (condi-
tion (1)). If two databases have the same changes to these
relations (condition (2)), then the other relations are com-
pared w.r.t. the empty set, since these relations are not pre-
sent in db (condition (3)). Since r�<=r, for any relation
r, databases with smaller relations will be favored in the
order.

A knowledgebase kb is a finite set of db's with the same
schema. This schema is also the schema of the knowledge-
base. The set of all knowledgebases is denoted KB.

The interpretation of a sentence , # 8 w.r.t. a database db
is a relation < on DB_8 defined for db and , if and
only if _(db) dominates _(,), in which case the recursive
definition is

db < (ai=aj) if i= j (4)

db < Ri (x) iff x # ri (5)

db < (, 7 �) iff db < , and db < � (6)

db < (c,) iff not db < , (7)

db < (_xi ,) iff db < ,(xi �aj)

for some aj # A (8)

By �,� we mean the set of all databases such that <(db, ,)
is true. We call �,� the models of ,. We say that , finitely
implies �, if �,�����.

If s is a schema and B is a subset of the domain A, then
�,�B

s denotes the set �,� & DBB
s .

Let DB�DB, and [db, db1]�DB. Then we say that db1

is �db -minimal in DB, if db1 is in DB, and if db2 # DB and
db2�db db1 entails db2=db1 .

Now consider the function + : 8_DB � KB, defined as

+(,, db)=[db$ # DBB
s : db$ is �db-minimal in �,� B

s], (9)

100 GRAHNE, MENDELZON, AND REVESZ

1 In this example, we indicated which tuple belongs to which relation by
explicitly writing out ``R'' and ``S'', in some examples later when the schema
is a singleton we will drop the relation symbol.

where B is the smallest subset of the domain A, such that B
contains all values that appear in db and ,, and s is the
schema _(db) _ _(,).

The function + thus picks the models of , that are closest
to db among the databases that have no other relations than
those in db and those mentioned in the sentence ,, and no
other values than those appearing in db or in ,.

Next, consider the (partial) transformation functions
{ : 8_KB � KB, � : KB � KB, � : KB � KB, and
?i1 , ..., ik : KB � KB, where

{,(kb)= .
db # kb

+(,, db). (10)

and � (kb) is the componentwise intersection of the data-
bases in kb, i.e. the glb of kb w.r.t. to the Cartesian
generalization of subset inclusion. Likewise, � (kb) is the
componentwise union of lub. As an example, let kb=
[([a1a2 , a1a4]) , ([a1a4 , a2a3])]. Here the knowledge-
base contains two databases with the same schema. The
value of � (kb)) is [([a1a4])] and the value of � (kb)) is
[([a1a2 , a2a3 , a1a4])].

A function ? maps a kb to the kb that is obtained by
projecting each db in the input to the components whose
indices appear in the subscript of ?.

The function { can be seen as an update function, in that
{,(kb) ``inserts'' , into kb, producing a new kb. In the
space example in Section 1, the knowledgebase T would be
kb=[([v]) , ([w])], where v is a tuple corresponding to
the proposition ``V has landed,'' and likewise for w. Let these
tuples be over schema R1 . When we learn that V has landed
we perform the update

{R1(v)(kb)=[([v]) , ([v, w])].

Note. We do not need to express the traditional projec-
tion operator, because it can be expressed by the above
more general projection and the transformation operators.
For example, suppose that we have a knowledgebase with
schema [R] where R is a binary relation symbol and that
the knowledgebase contains a single database in it. Suppose
that we want to express the regular projection operation
onto the first column of R. This can be accomplished by
inserting the sentence.

?R . 1{R1(x) � R(x, y)(kb).

The output relation R1 will be the projection as desired. It
similarly can be checked that the standard selection opera-
tion is also expressible in our transformation language. In
general, it turns out that the following properties, corre-
sponding to the KM-postulates [KM91a] for update, hold.

Theorem 2.1. For all schema-wise appropriate db, kb,
kb1 , and kb2 :

(i) {,(kb)��,�

(ii) If kb��,�, then {,(kb)=kb

(iii) If kb{< and �,� B
s{<, then {,(kb){<

(iv) If �,�=���, then {,(kb)={�(kb)

(v) {,(kb) & ����{, 7 �(kb)

(vi) If {,(kb)����, and {�(kb)��,�, then {,(kb)=
{�(kb)

(vii) {,([db]) & {�([db])�{, 6 �([db])

(viii) {,(kb1 _ kb2)={,(kb1) _ {,(kb2)

Proof. (i) Let db # {,(kb). From (9) it follows that
db # �,� B

s . Since �,� B
s��,�, the claim follows.

(ii) Let db$ # {,(kb). Then there is a db # kb, such that
db$ is �db -minimal in �,� B

s . Since kb��,�, we have
db # �,� B

s . Now db is the unique �db-minimal element in
�,�B

s . Thus db$=db, and consequently {,(kb)�kb.
For inclusion in the other direction, let db # kb. Since

kb��,�, db is the unique �db-minimal element in �,� B
s .

Therefore db # {,(kb).

(iii), (iv), and (viii) These are immediate consequences
of definitions (9) and (10).

(v) Let db$ # {,(kb) & ���{<. Then there is a db # kb,
such that db$ # +(,, db), and db$ # �, 7 �� B

_(db) _ _(,) , where
B is the set of values appearing in db or ,. Suppose now
towards a contradiction that db$ is not in +(, 7 �, db). Then
there must be some database, say db", such that db"�db db$,
db"{db$, and db" # �, 7 �� B$

_(db) _ _(,) . Here B$ is the set of
values appearing in db, ,, or �. It now follows that db" also
is in �,� B

_(db) _ _(,) . Thus we have a contradiction to the fact
that db$ # +(,, db).

(vi) We show that, given the assumptions, {,(kb)�
{�(kb). Let db$ # {,(kb). Then there is a db # kb, such that
db$ # +(,, db). We claim that db$ # +(�, db). Suppose the
contrary. We can assume w.l.o.g. that _(,)=_(�), and that
the values appearing in , and � are the same. Let B be the
set of values in db and ,. Since db$ # ��� B

_(db) _ _(�) , the set
+(�, db) must be nonempty. Let therefore db" # +(�, db).
Then it must be that db"�db db$, and db"{db$. But this is
not possible, since db$ # �,� B

_(db) _ _(,) , thus yielding a con-
tradiction to the fact that db$ # +(,, db). The argument for
inclusion in the other direction is symmetrical.

(vii) Let db$ # +(,, db) & +(�, db). Again, can assume
w.l.o.g. that _(,)=_(�). Let B be the set of values appearing
in db or _, and B$ the set of those appearing in db or �.
From the assumption it follows that +(, 6�, db){<. If
db$ � +(, 6 �, db), there must be a db" # +(, 6 �, db), such
that db"�db db$, and db"{db$. It now follows that db" is in
�,�B

_(db) _ _(,) , or in ��� B$
_(db) _ _(�) . In the first case we have a

101KNOWLEDGEBASE TRANSFORMATIONS

contradiction to the fact that db$ # +(,, db), and in the
second case to the fact that db$ # +(�, db). K

The next lemma illustrates an elementary property of the
transformation language. It shows that update does not
commute with glb and lub.

Lemma 2.1. There are knowledgebases and sentences
such that � ({,(kb)){{,(� (kb)), and � ({,(kb)){
{,(� (kb)).

Proof. Let kb=[([a1a2a3]) , ([a1a2 a4])], that is,
two databases, each with a single tuple over schema, say,
R1 . Then the value of

; ({\x1x2R1x1 a2x2 � R2x1
(kb))

is [(<, [a1])], where the second relation is on schema R2 .
On the other hand, commuting � and { produces [(<, <)].

For the second part of the lemma, let kb=[([a1a2]) ,
([a2a3])], with schema R3 . Then the value of

{\x1 x2 x3 (R3x1x3) 6 (R3x1x2 7 R3x2x3) � R4 x1x3 \' (kb)+
is [([a1a2 , a2a3], [a1a2 , a2a3 , a1a3])], while commuting
the operators results in [([a1a2 , a2a3], [a1a2 , a2a3])]. K

By composing the transformation functions in the
obvious way, and by using schemas as parameters, trans-
formation expressions can be formed. For example,
?1({�(� ({,(R1 , R2)))) is a transformation expression. The
value of this expression, when applied to a knowledgebase,
say [(r1 , r2) , (s1 , s2)], is the value of the transformation
obtained by substituting the parameters by the knowledge-
base, that is ?1(?�(� ({,([(r1 , r2), (s1 , s2)])))). Trans-
formation expressions will be denoted by %, %$, ..., while 3
denotes the set of all transformation expressions. In the
sequel we shall leave out extra parenthesis symbols when-
ever there is no risk of confusion.

2.1. Comparison with Related Work

At this point it is possible to compare our approach with
some previous work on update languages.

Abiteboul and Vianu [AV87, AV88] define a class of
non-deterministic transformations on databases that they
call updates. This class is similar to our transformations in
that it includes queries and modifications of the database
state as special cases. They define an update as a relation
between instances of a fixed schema s and another fixed
schema t that is recursively enumerable and C-generic for
some finite C. (Recall that a binary relation r/A_B is
C-generic, for C a subset of A _ B, if for every bijection \
over A _ B which is the identity on C, (i, j) # r if and only
if (\(i), \(j)) # r.) If we restrict our attention to the case

where the input knowledgebases are singletons, i.e. data-
bases, it is clear that the tranformations defined by 3
expressions are updates in the sense of Abiteboul and Vianu.
In fact, they are within the subclass that they call finitely
nondeterministic updates, those in which the set of all output
databases related to each input database is finite. They also
consider deterministic updates, in which the relation is a
function. In Section 5, we consider a class of 3 expressions
that falls within this subclass: those expressible by a trans-
formation on the form (?b{ _ ?{)*, where each b is one of
� or �.

The work of Fagin et al. [FUV83, FKUV86] con-
siders updates of logical databases, where the database
is described by a set of sentences. The essential idea in
[FUV83] is to consider all maximal subsets of the set of
sentences in the database that is consistent with the sentence
that is inserted. Although this definition seems intuitive, we
do not follow this because it does not satisfy the Katsuno�
Mendelzon postulates for updates. The essential problem is
that it does not satisfy the principle of the irrelevance of syn-
tax, i.e., the results of the update should not depend on the
exact syntax of the set of sentences in the knowledgebase,
but only on their semantics. This is in fact one of the harder
postulates to satisfy and in [KM91a, KM91b] it is shown
that several other update operator proposals also do not
satisfy this principle. Another difference between the update
operator in [FUV83] and in this paper is that in the former
priorities, that is integer numbers, are assigned to sentences
and these are also taken into account in the definition of
maximum consistent subset. Furthermore, [FUV83] con-
sidered inserting only a single sentence into the database.
This limitation was removed by [FKUV86] that defined
the flock semantics for updates that allows insertion of a
group of sentences. Our update operator also allows the
simultaneous insertion of a group of sentences by treating
each group of sentences as the conjunction of the sentences.

It is well-known that if the Horn clause form of logic
programs is relaxed, then there might be several least
fixpoints of a program. In this case our update operator
produces all least fixpoints w.r.t. a generalization of the
usual subset inclusion into the partial order based on
Boolean sum. This is in contrast to the more common
approach to designate one of the models, or some other
relational structure, as the ``intended model'' of the
program. As is demonstrated in [IN88] such intended
models might force the programmer to express his or her
intentions in a cumbersome way. We do however note that
the iterative fixpoint [ABW88] of a stratified program can
be obtained in our language by sequentially updating the
database with the strata of the program in their hierarchical
order.

It is also interesting to note that hypothetical queries
[Bon88, Gab85] and queries on recursivley indefinite
databases [Mey90] can be expressed through updates. The

102 GRAHNE, MENDELZON, AND REVESZ

connection between hypothetical queries and updates is
explored in [GM95].

3. SAMPLE TRANSFORMATION

In this section we present seven example transformations.
First we show that the common queries of transitive closure
(Example 1) and parity (Example 6) can be expressed. We
also show that the robots query described in the introduc-
tion can also be expressed (Example 4). The remaining
examples express increasingly harder queries on graphs. In
particular transformations for transitive reductions (Exam-
ple 2), edges belonging to every transitive reduction (Exam-
ple 3), monochromatic triangle (Example 5), and maximal
clique (Example 7) are given. Since the harder graph queries
build on the results of the earlier ones, the examples used
here also illustrate the high degree of modularity inherent
in our transformation language. In the presentation, the
examples are ordered in increasing level of difficulty.

Example 1. Let r be a relation such that _(r)=R1 , and
let , be the sentence

\x1 x2x3
: (R2x1x2 7R1 x2x3) 6 R1x1 x3 � R2 x1x3 .

Explanation. ?2{,([(r)]) = [(s)], where s is the
transitive closure of r, and _(s)=R2 . To see that this is
indeed the case, note that by definition (10), the databases
returned by {, are models of sentence ,. For a database to
be a model, it has to satisfy both of the conditions
\x1 x2x3

R1x1x3 � R2 x1x3 and \x1x2x3
(R2x1 x2 7 R1x2x3) �

R2x1 x3 . By the first condition, s must contain r. By the
second condition, for any path in r, that is, any set of tuples
[a1a2 , ..., ak&1ak]�r, there must be an edge a1ak # s. This
ca be proven by induction. Hence, the relation s must con-
tain also the transitive closure of r. By definition (9), the
relation that results from applying the transformation must
be minimal. In addition, the definition of minimality ensures
that the argument relation r is not altered while an s can
be found such that (r, s) is a model of ,. Clearly, for any
r we can always find a transitive closure s, hence r will never
need to be changed according to the minimality condition.
Therefore, after the projection operation, the result will be
exactly the transitive closure of r.

Example 2. To transform a directed graph r1 into the
set of its transitive reductions, let � be the following sen-
tence:

\x1 x2
: R2 x1 x2 � R1 x1x2 .

Also, let / be the conjunction of sentences

\x1x2x3
: (R3x1x2 7 R1 x2x3) 6 R1x1 x3 W R3 x1x3 ,

\x1x2x3
: (R3x1x2 7 R2 x1x3) 6 R2x1 x3 W R3 x1x3 .

Explanation. ?2{� 7 /([(r1)])=[(r21
), ..., (r2k)],

where each r2i is a transitive reduct of r1 . Recall that a
binary relation r2 is a transitive reduction of r1 if and only
if r2 is an antitransitive subset of r1 , and the transitive
closure of r2 is the same as the transitive closure of r1 . (Here
antitransitivity means that for any a1a3 in r2 , there is no a2

such that both a1a2 and a2a3 are also in r2 .) Note also that
by definition (9), the relation r1 does not change if suitable
r2 and r3 can be found. This will indeed be the case.

At first we check that r2 satisfies the second requirement
to be a transitive reduction of r1 . By the first part of sentence
/, the relation r3 is the transitive closure of r1 , because it is
just like in Example 1, except for the bidirectionality of the
implication. By sentence �, r2 must be a subset of r1 , and by
the second part of sentence /, this subset must have the same
transitive closure as r1 has. Here we need the bidirec-
tionality.

Second, for r2 to be a transitive reduction of r1 , it also has
to be antitransitive. This condition is satisfied by the mini-
mality requirement. For suppose that r2 is not antitran-
sitive. Then r2 must contain a certain subset, say [a1a2 ,
a2 a3 , a1a3]. Clearly, the relation r2"[a1a3] has the same
transitive closure as r2 has, but it has fewer tuples, and will
hence by + be preferred over r2 .

Since the two conditions are satisfied, after operation ?2

the knowledgebase will indeed contain the set of transitive
reducts of the original graph.

Example 3. Suppose now that we would like to know
whether a certain set of edges belongs to every transitive
reduction of a graph. This query can be expressed in the
language of recursively indefinite database [Mey90]. The
query can also be formulated as a transformation expres-
sion. Suppose that the relation r3 describes the set of edges
in question. Let the sentence ` be

\x1 x2
: (R3x1x2 � R2x1x2) � R4 .

Explanation. The transformation ?4{`%([(r1 , r3)]),
where % is ?2, 3 @ {�7 /([(r1 , r3)]) will yield one zeroary
relation r4 that will contain the empty tuple if and only if
r3�r2 where r2 stores the set of edges that belong to all
transitive reductions of graph r1 , and r3 is the given set of
edges.

To see this, note that %([(r1 , r3)])=[(r2 , r3)] is as in
the previous example, except that r3 is present and pre-
served unchanged by %, and we take � the common set of
edges in r2 .

In the {` operation we added to our sentence � an
implication for relation r4 . Here the minimality requirement
assures that r4 will be empty if and only if r3 is not a subset
of r2 .

Example 4. Transformation expressions can also
describe hypothetical, or subjective queries. Recall the space

103KNOWLEDGEBASE TRANSFORMATIONS

example from Section 2. Let the knowledgebase be kb=
[([v]) , ([w])], and consider the query ``if V had landed,
would W be necessarily still orbiting?''. The answer to this
query woud be ``yes'' if and only if the resulting singleton
knowledgebase of the transformation

' {R1(v)(kb).

does not contain w. Since � {R1(v)(kb)=[([v, w])] this is
not the case.

Note. The above example expresses a type of hypotheti-
cal queries called counterfactual queries. A counterfactual
query, denoted as A>B, has two parts an antecedent (A)
and a consequent (B), and the antecedent is known to be
false. A counterfactual query is true whenever ``if the
antecendent were ture then the consequent would be also
true''. It is possible to generalize from this example to any
right-nested (A>(B>C)) } } } counterfactual query. These
can be expressed by nested transformations {A({B({C)) } } } .

Example 5. Now consider the monochromatic triangle
problem, that is, the problem of deciding whether an
undirected graph r1 has a partition into two graphs r2 and
r3 such that both r2 and r3 are antitransitive.

Let v be the sentence

\x1 x2
: R1x1 x2 � R2x1x2 6 R3x1x2 .

Let \ be the conjunction of sentences

\x1x2x3
: R2x1x2 7 R2 x2x3 � cR2x1 x3 ,

\x1x2x3
: R3x1x2 7 R3 x2x3 � cR3x1 x3 ,

\x1x2
: R1x1x2 W R1 x2x1 ,

\x1x2
: R2x1x2 W R2 x2x1 ,

\x1x2
: R3x1x2 W R3 x2x1 .

Let `$ be the sentence R6 W \x1x2
cR5 x1x2 , and let the

operation {' denote copying the relation r1 into a relation
r4 , while {= is denoting assigning the value of r4"r1 into rela-
tion r5 . (From looking at the previous examples, the last
two are easily expressible as a transformation.)

Explanation. The result of the transformation � {`$%,
where % is the subexpression ?5 {={v7 \{'(R1), has in r6 the
empty tuple if and only if r1 has the described partition.

Consider at first the sentence v. It formalizes the fact that
r2 and r3 form a partition of r1 . The disjointness of r2 and
r3 is enforced by equation (3) in the definition of the
{-operation. That is because if we had ai # r2 & r3 , then by
taking r2"[ai] instead of r2 and the same r3 , we could also

satisfy the sentence v. The choice between these two
databases depends on equation (3) because the relation r2 is
not an input relation. Equation (3) clearly prefers the
second database.

Next see that the sentence \ says that r2 and r3 are
antitransitive, and that each of the relations r1 , r2 , r3 are
symmetric.

After the second { operation we have all possible parti-
tions in the knowledgebase, but we may have some
undesirable partitions, that is, partitions that change the
initial relation r1 . Since we have a copy of the initial relation
in r4 , we can check whether there are any partitions that are
desirable. Therefore, after %, a required partition exists if
and only if r5 is empty in some of the databases.

The transformation � {`$ checks exactly if r5 is empty in
some of the databases in %([(r1)]). If r5 is indeed empty in
some of the databases, then r6 will have in it the empty tuple.
Otherwise r6 will be the empty relation by the minimization
requirement. Hence we see that the transformation expres-
sion is a yes or no query corresponding to the mono-
chromatic triangle problem.

Example 6. The parity problem is, does a given unary
relation r1 have an even number of elements.

Let v$ be the sentence

\x1
: R1x1 � (R2 x1 6 R3x1).

Let . be the sentence

\x1 x2
: (R2x1 7R3x2) � R4 x1 x2 .

Let " be the conjunction of sentences

\x1x2x3
: (R4 x1 x2 7 R4x1x3) � x2=x3 ,

\x1x2x3
: (R4 x2 x1 7 R4x3x1) � x2=x3 .

Let * be the sentence

\x1x2
: (R4x1 x2 6 R4x2x1) � R5x1 .

Let {@ denote the transformation that assigns r1"r5 to r6 . Let
% be the expression ?1, 5{*{"{.{v$(R1).

Explanation. The transformation ?6{@%([(r1)]) results
in a knowledgebase that has a database in which the rela-
tion r6 is empty if and only if the parity of r1 is even.

Note that r1 has an even number of elements if and only
if r1 can be partitioned into two unary relations r2 and r3 of
the same cardinality. This serves as the basic intuition
behind the transformation expression. In other words, we
have here an expression that results in a knowledgebase
containing a single database that contains the relation r6 as
empty if and only if r1 has the desired partition.

104 GRAHNE, MENDELZON, AND REVESZ

Clearly, the sentence v$ is similar to v in Example 5 and
says that r2 and r3 form a partition. Now r2 and r3 have an
equal number of elements if and only if there is a function
from r2 to r3 that is bijective. In our example, the relation r4

is such a bijection.
The knowledgebase after the insertion of v$ will contain a

set of databases each of which specifies a partition of r1 into
an r2 and r3 . Next the insertion of . into the knowledgebase
will result in the addition of an r4 that is the Cartesian
product of r2 and r3 within each of the databases. The inser-
tion of " will eliminate all but those databases where r4 is a
bijection of r2 and r3 .

The insertion of * adds a new relation r5 that will contain
all the elements occuring in r4 (either as first or second
argument) in each database. We claim that r5 will be equal
to r1 in a database if and only if r1 has an even number of
elements.

To prove if: if r1 has an even number of elements, then
there is clearly a partition into r2 and r3 that have the same
number of elements and to there an r4 that is a bijection. The
first arguments of r4 will be equal to the elements of r2 and
the second arguments of r4 will be equal to r3 , hence the
union of these which will be output as r5 must be the same
as r1 .

To prove only if: if there is no database with r5 equal to
r1 , then in any database there must be some item a in r1 that
does not occur as either the first or the second argument of
r4 after the insertion of ". We know that a must be in either
r2 or r3 . Let us suppose without loss of generality that a is
in r2 . Then since r2 and r3 is a partition, it cannot belong to
r3 (partitions are disjoint and the disjointness is enforced by
the minimality condition as in Example 5). Since a belongs
to r2 and it is not paired by any element of r3 there must be
an odd number of elements. (Note that r3 cannot also have
an element b that is not paired with any element in
r2 because that would contradict the minimality condition,
i.e., from the Cartesian product of r2 and r3 the relation
r4 _ (ab) would be closer than the relation r4 obtained after
insertion of ".) Hence r1 must have an odd number of
elements.

Therefore it is clearly enough to check that in the
knowledgebase that results after performing % one of the
databases contains an r5 that is equal to r1 . We can use here
the transformation {@ similarly to the {= transformation in
Example 5. Then r6 will be the empty relation in one of the
databases if and only if the initial r1 had an even number of
elements.

Example 7. The maximal clique problem asks for a
graph whether the largest clique or maximal complete sub-
graph has exactly size k.

Let r1 be the set of edges of a graph. Let r2 be any set with
exactly k elements and r3 be any set with exactly k+1
elements. Let , be the following conjunction of sentences:

\x1
_x2

: R2x1 � R5x1x2 ,

\x1
_x2

: R4x1 � R5x2x1 ,

\x1x2x3
: R5x2x1 7 R5x3x1 � x2=x3 ,

\x1x2x3
: R5x1x2 7 R5x1x3 � x2=x3 ,

\x1x2
: R4x1 7 R4x2 7 x1{x2 � R1x1x2.

Explanation. Transformation {, can be used to check
whether the graph has a clique of size k.

If the graph has a clique of size k, then the vertices of one
such clique will be placed in the unary relation r4 . To see
that, note that besides r4 , an r5 relation has to be found.
Since r5 is a new relation, it must be a minimal-size relation.
Also by the first four lines, r5 is a bijection from r2 to r4 .
Hence the size of r2 and r4 will be the same. Hence the size
of r4 will be k as required. The last line assures that between
each distinct pair of elements in r4 there is an edge in the
graph. In other words, the elements of r4 are vertices and
form a clique.

If the graph does not have a size k clique, then either of
the two input relations r1 or r2 will be changed. By making
copies of these relations before the above transformation
and comparing them to the values of r1 and r2 after the
transformation we can test whether the graph has a size k
clique.

Note that we need to test not only that the graph has a
clique of size k but also that it is maximal. Clearly, if k is
maximal, then the graph has no clique of size k+1. To test
that, we can reuse the above query, after an appropriate
renaming of the relations. We also have to use here the input
relation r3 of size k+1.

\x1
_x2

: R3x1 � R6x1x2 ,

\x1
_x2

: R7x1 � R6x2x1 ,

\x1x2x3
: R6x2x1 7 R6x3x1 � x2=x3 ,

\x1x2x3
: R6x1x2 7 R6x1x3 � x2=x3 ,

\x1x2
: R7x1 7 R7x2 7 x1{x2 � R1x1x2.

The above transformation will either not change r1 and r3

and find a clique of size k+1 and place it in r7 , or change
r1 and r3 when there is no clique of that large size. By using
again copies of r1 and r3 , we can tell which of the two cases
occured and construct a query that answers either true of
false as required.

4. COMPUTATIONAL COMPLEXITY

In this section we will examine the computational com-
plexity of transformation expressions. We will consider both

105KNOWLEDGEBASE TRANSFORMATIONS

data and expression complexities in separate subsections. In
a third subsection we also consider the special case of trans-
formation expressions built from quantifier free formulas.

The main complexity results of this section are sum-
marized in the following table:

Transformation Data Expression
class complexity complexity

({, ?) #co-NP #co-NEXPTIME
3 #PSPACE #EXPSPACE

In this table ({, ?) denotes the class of all single transfor-
mations other than � or �, and 3 denotes the class of all
transformations. For the second case we also have some
lower bounds. Namely, we can prove that the data com-
plexity of 3 is � NP _ co-NP and its expression complexity
is � NEXPTIME _ co-NEXPTIME , assuming the standard
hypothesis in complexity theory that NP and NEXPTIME are
not closed under complement [GJ79]. We also show com-
plexity results for quantifier-free transformation expres-
sions, which we refer to as 30 .

4.1. Data Complexity

By the data complexity of 3 with respect to an expression
% we mean the complexity of deciding membership in the set

C%=[(db, kb) # DB_KB : db # %(kb)].

For the case of only one update operation the upper bound
for data complexity is:

Theorem 4.1. For any % # ({, ?), C% is in co-NP.

Proof. The case where % is of the form ?i1 , ..., ik is obvious.
In the other case % is of the form {, , for some , # 8.

Consider the complement of C{, , that is, deciding whether
db � {,(kb). From the definition of the { operator, it follows
that there are two ways that this can be the case. Either db
is not a model of ,, or for each db1 # kb there is a db2 that
is a model of ,, and such that db2<db1

db.
We guess which of these two cases holds. For the first case

the verification can be done in PTIME, since deciding
whether a database is a model of a given first-order formula
can be done in time polynomial in the size of the database.
This is because for the domain of variables B we have to
take the constants that appear in either the database or the
formula. Hence if we follow equations (4�8) that define
models of first-order formulas, at each existential quantifier
we have to test at most cardinality of B number of cases,
which is linear in the size of the database. This yields a
PTIME procedure for any fixed first-order formula.

For the second case, for each db1 in kb we guess a db2 and
again we verify both of the facts that db2 is a model of , and

that db2<db1
db. In other words, the symmetric difference

between db2 and db1 must be less than the symmetric dif-
ference between db1 and db. Since the symmetric difference
between db1 and db is at most the union of the two
databases, the size of each db2 guessed should not be greater
than the input size. Hence whether db2 is a model of , can
be also decided within PTIME. Finally, checking the condi-
tion db2<db1

db can obviously also be carried out in PTIME
for each db2 guessed. Since we need to guess only as many
db2 's as many databases the kb contains, we could decide in
NP whether db � {,(kb). K

For unrestricted composite expressions we have the
following lower bound characterization.

Theorem 4.2. There is a % in ({, ?)*, such that C% is not
in NP _ co-NP, unless NP=co-NP.

Proof. We will show a particular yes or no reduction
from the 3CNF formula satisfiability problem. Let the given
3CNF formula , be c1 7 } } } 7 cn , where each ci is of the
form l1 6 l2 6 l3 , with each li being a literal. We will show
that there is an expression of the form ?({�()) that gives a
yes or no query.

In the reduction we will use relations r1 (representing the
clauses), r2 (representing a consistent and complete truth
assignment), and r3 (representing the clauses not satisfied
by the particular assignment).

Let kb be [(r1)], where r1 has a tuple ti for each clause
ci of �. For instance, if clause ci is x1 6 cx5 6 x8 , then ti is
(i, 1, 1, 5, 0, 8, 1). Note that the third, fifth, and the eight
elements of the tuple ti denote by value 1 or 0 whether the
literal immediately preceding them occurs positively or
negatively.

Consider now the following formulas:

\x1 x2x3x4 x5x6x7
: R1x1x2 x3x4 x5x6x7

� ((R2x20 6 R2x2 1)

7 (R2x4 0 6 R2x41)

7 (R2x6 0 6 R2x61))

\x1x2x3x4 x5 x6x7 x8 x9x10
: (R1x1x2x3x4 x5x6x7

7 R2x2x8 7R2 x4x9

7 Rx6x10 7 x3{x8

7 x5{x9 7x7{x10)

� R3 .

The sentence � is the conjunction of the above two
sentences.

106 GRAHNE, MENDELZON, AND REVESZ

Now it can be seen that if , is satisfiable, then

?3({�(kb))=[(<) , (())].2

If , is not satisfiable, then

?3({�(kb))=[(())].

Suppose that C?3{� is in co-NP. Then it would be possible
to solve the 3CNF satifiability problem in co-NP. That is,
we could verify in NP for each kb if there is no solution, by
testing whether (<) � ?3({�(kb)). Conversely, suppose
that C?3{� is in NP. Then again the 3CNF problem could be
solved in co-NP. This time, we would test whether
(<) # ?3({�(kb)).

We know that 3CNF satisfiability problem is an NP-
complete problem. Now the existence of an NP-complete
problem that is in co-NP entails NP=co-NP. K

For the upper bound of C% we have:

Lemma 4.1. For any % without � and � operators, the set
C% is in PSPACE.

Proof. W.l.o.g. we assume that % is of the form
{,n(} } } ({,1

()) } } }). Let kb0 be the input knowledgebase, and
let kbi be the knowledgebase after operation {,i is per-
formed. In particular let kbn be the output of the whole
query, i.e., let kbn=%(kb0).

Suppose that for some database dbn we know that
dbn # %(kb0) and we need to verify that this condition holds.
We can do that by finding a dbi in each knowledgebase kbi

such that dbi # {,i (dbi&1). In other words we must nondeter-
ministically guess a chain of databases from an initial
db0 # kb0 to dbn and verify that in that chain each successive
database dbi is a closest model of ,i with respect to the
previous database dbi&1.

To verify that a dbi # {,i (dbi&1) we do the following. First
we find the domain B that contains all the constants in
either dbi&1 or ,i . Then we list all possible tuples that can
be constructed from B and the relations in %. The number of
these tuples is polynomial in the size of B and dbi&1. Note
that dbi must be a subset of these tuples, hence its size is
polynomial in the size of dbi&1 and by induction it is also
polynomial in the size of db0 and kb0 . We have to check
against each database db (that is a subset of the listed
tuples) that dbi�dbi&1

db. To do that we add a one-bit tag
initialized to zero to each tuple. A tag value of zero indicates
that the tuple is not part of the database, while a value of
one indicates that it is. We also fix some arbitrary ordering
of the tags. Taking in that fixed order the tags form a coun-
ter. For each database that we get we check in polynomial

time (and space) whether it satisfies ,i . If it does we have to
verify that the symmetric difference of db and dbi&1 is not
less than the symmetric difference of dbi and dbi&1. Clearly
that also can be done in PSPACE.

The above gives a NPSPACE procedure for testing
whether dbn # %(kb0). By Savitch's theorem, we have that
NPSPACE(n)�PSPACE(n2). Hence we can also do the test
in deterministic PSPACE. K

Theorem 4.3. For any % # 3, the set C% is in PSPACE.

Proof. Note that the relation symbols in % come from a
fixed set, say [R1 , R2 , ..., Rn], and that % and the initial
knowledgebase kb0 have a finite set, say B, of domain
elements in them. Let :(i) be the arity of relation Ri , and let
a be the maximum arity. Suppose we want to decide
whether dbn is in the knowledgebase %(kb0).

When each operation in % is applied, the size of each
database in the current knowledgebase can never be more
that O(Bn } a). This is because there can be at most B:(i)

tuples over a domain B in a relation over Ri , and we have
n relations. Note that O(Bn } a) is only a polynomial in the
size of the input database and knowledgebase. Therefore, it
is possible to use the technique described in Lemma 4.1 to
cycle through all possible databases in PSPACE.

We claim that we can test whether dbn is in %(kb0) within
PSPACE for any %. To prove that we use induction. For
the base case we may take any formula for % that has in
it only ? and { operations. Then by Lemma 4.1 it is
possible to verify if dbn is in %(kb0). To check that dbn is
not in %(kb0), we use the fact that PSPACE is closed under
complement.

Now suppose that % is of the form � %$ where %$ has in it
only ? and { operations. Then we create each possible tuples
using B and the relation symbols in %. With each of these
tuples, we use the technique of Lemma 4.1 again to cycle
through all possible databases. As we cycle through the
databases, we test using induction, whether it is in %$(kb0).
If yes, then we read out each tuple of the database and as we
read each tuple from it, we increment the counter of the
corresponding tuples that we created. As we do this we also
count the number of databases that are found to be in
%$(kb0). Finally, to obtain the output, we simply delete all
the counters and tuples we created except those tuples
whose counter value at the end of the cycling is the same as
the number of databases we found to be in %$(kb0). Clearly
this procedure can be done in PSPACE in the size of the
domain and the initial input.

It is easy to see that we can evaluate each �-operation
similarly to the above and that we can continue to evaluate
each successive transformation operation by cycling
through again the set of possible databases and calling
recursively the evaluation routine for an expression with
one less operations in it. Hence we can decide in PSPACE
whether dbn # %(kb0) for any dbn and kb0 . K

107KNOWLEDGEBASE TRANSFORMATIONS

2 Or [(<)], if , was a tautology.

4.2. Expression Complexity

By the expression complexity of 3 with respect to a pair
(db, kb) # DB_KB we mean the complexity of deciding
membership in the set

C(db, kb) =[% # 3 : db # %(kb)].

Theorem 4.4. For any , # 8 and any fixed (db, kb) #
DB_KB, we can test in co-NEXPTIME whether
db # {,(kb).

Proof. We follow the same procedure as in Theorem 4.1
to test whether db # {,(kb). Here the size of , is variable. The
formula can have at most |,| existential quantifiers, where
|,| denotes the length of the formula ,. Hence the verifica-
tion procedure may need to branch |,| times in B ways,
where B is the domain. (Note that B could vary with the size
of ,.) Therefore O(B |,|) is the worst-case time complexity,
which is exponential in the size of ,. K

Theorem 4.5. There is a C(db, kb) such that deciding for
arbitrary % # 3 whether db # %(kb) is not in NEXPTIME _

co-NEXPTIME, unless NEXPTIME is closed under comple-
ment.

Proof. In this proof we will simulate a nondeterministic
exponential time bounded Turing machine. Let the non-
deterministic exponential time Turing machine be T=
(K, _, $, s0), where K is the set of states of the machine,
_ is the alphabet, $ is the transition function, and s0 is the
initial state. Let the input tape have size n, and the computa-
tion be bounded by 2n steps. To simplify some of the nota-
tion, throughout this proof an overline (as in x� for example)
will denote binary vectors of length n.

First we use a n+1-ary relation called T to describe the
initial content of the tape. We create n facts T@� , c@� , one for
each i�n, where i is given in binary notation as @� . If i>n,
then content of the i th tape cell will be a special tape symbol
* denoting that it is blank. We write a sentence
\@� (@� {0� 7 @� {1� 7 } } } 7 @� {n�) � T@� , *, where 0� , 1� , ..., n� are
binary expressions of the numbers from 0 to n. Let ,1 be the
conjunction of all the n facts and the sentence. The size of ,1

is O(n2).
Second we use a 5-ary relation called D to describe the

transition function $ of T. We create for each possible
machine input state sin , input tape symbol cin , output state
sout , tape symbol w, and movement indicator m (being n, 1,
or r) a fact that Dsin , cin , sout , w, m if according to $ when
the machine is in state sin and pointing to cin , then either (1)

\t� , @� , p� , sin , sout , c@� , w, m : Ct� +1, @� , sout 7Rt� +1, @� , w W m=n 7 Ct� , @� , sin 7 Rt� , @� , c@� 7 Dsin , c@� , sout , w, m

7

Ct� +1, o� , sout W M@� , o� ,m 7 m{n 7 Ct� , @� , sin 7 Rt� , @� , c@� 7 Dsin , c@� , sout , w, m

7

Rt� +1, p� , cp� W Rt� , p� , cp� 7 Ct� , @� , sin 7 (@� {p� 6Dsin , c@� , sout , w, n).

the machine may go to state sout and point to symbol w after
writing it on the tape and the move m is n, that is, no move,
or (2) the machine may move one tape cell to the left and m
is 1, or right and m is r. (Note that if m is 1 or r, then w can
be any tape symbol; we will not use its value anywhere later
in the reduction.) Let ,2 be the conjunction of all the facts
described above. The size of ,2 is O(k2l 2) where k is the
number of machine states and l is the number of different
tape symbols.

Third we use a 2n+1-ary relation called C to describe the
configuration of the machine. The relation Ct� , @� , s describes
that at time step t� the machine is in state s and is pointing
to tape position @� . We can assume that the Turning machine
is pointing at time zero to the first tape cell. Therefore we
create a fact C0, ..., 0, 1� , s0 . Let ,3 denote this single fact.
The size of ,3 is O(n).

Fourth we use the 2n+1-ary relation R to denote the
sequence of nondeterministic transitions of the machine. We
will express the sequence of transitions of the machine by
relation Ra1 , ..., an , an+1 , ..., a2n , c in such a way that the
relation records the fact that at time t, encoded by the
binary sequence a1 , ..., an , the j th tape cell, where j is
encoded by the binary sequence an+1 , ..., a2n , contains
the tape symbol c. To initialize R we write a sentence:
\x1 , ..., xn , yR0, ..., 0, x1 , ..., xn , y W Tx1 , ..., xn , y. Let ,4

denote this sentence. The size of ,4 is O(n). (Here ,4 is only
for the initialization, but the expression of R will continue in
,6 below.)

Fifth we use the 2n-ary relation S to describe the suc-
cessor function limited to binary numbers of size n bits. That
is, we want S@� , o� to be true if and only if the binary number
o� is the successor of @� , in shorthand @� +1=o� . The successor
function can be expressed by a sentence of size O(n) as
described in [FR79]. Similarly, we use the 2n+1-ary rela-
tion M to describe the next tape position after the machine
moves one tape cell in direction m. That is we want M@� , @� , n
be true for each 0�@� �2n, and we want M@� , o� , r to be true
for each 0�@� �2n and o� successor of @� , and we want
M(@� , o� , 1) be true for each 0�@� �2n and @� successor of o� .
This can be expressed using the successor function by a
sentence. Let the conjunction of the two sentence be ,5 . The
size of ,5 is O(n).

Sixth we write a sentence ,6 that expresses the
requirements for a valid nondeterministic computation of
the machine:

108 GRAHNE, MENDELZON, AND REVESZ

This sentence says that if in time t� the machine T is pointing
to the @� th position and is in state sin , and the content of the
@th cell is c@� , and the transition specifies either a write or a
move, then the configuration and the tape contents in the
next time step will be as expected. The third part of the
sentence says that the tape symbol never changes in any
position (even at the current position) unless it is explicitly
overwritten by the machine. The size of ,6 is O(n).

Seventh we write a sentence ,7 that asserts that at time 2n

the machine is in the halting state h. The sentence will be
_p� C1, ..., 1, p� , h. Thus all valid relations for R are restricted
to those that lead to an accepting configuration. The size of
,7 is O(n).

Let %1 be the transformation {,1 7 ,2 7 ,3 7 ,4 7 ,5
and let %2

be the transformation {,6 7 ,7
. Applying %1 to an empty

initial knowledgebase will create the relations T, D, S, M
and initialize C and R as required.

Let %3 be the transformation that copies the four relations
T, D, S, M into a set of four new relations that do not occur
within either %1 or %2 . We can express %3 by a sentence of
length O(n). Apply %3 after %1 .

By the minimization requirement and definition (9),
whenever it is possible applying %2 after %3 will result in a
valid R and T, D, S, M and the initialization of R and C
unchanged, otherwise either one or more of these four rela-
tions will change or the initial value of R or C will change.

Similarly to Example 5, after performing %2 we can use
another transformation %4 that makes a binary output rela-
tion r0 the empty relation if and only if there were no
changes to T, D, S, M and the initialization of R and C,
otherwise r0 will be the relation with the empty tuple. We
can write %4 such that it projects out any other relations
beside r0 , so that only r0 remains. The size of %4 will be O(n).

Let %5 denote the complete transformation expression,
that is, %4(%2(%3(%1()))). The size of %5 is O(n2+k2l 2).

Suppose then that the language C(db, kb) is in NEXPTIME
for any kb and every database db. We fix kb0 to be the empty
knowledgebase. Let db0 be the database with the only
relation r0 and r0 being the empty relation. Then using the
transformation %5 we could decide in NEXPTIME in the size
of %5 , whether db0 # %5(kb0). Now let db1 be the database
that contains the only relation relation r0 , and r0 contains
the empty tuple. We could now decide in NEXPTIME
whether db1 # %5(kb).

Note that we can describe by any fixed NEXPTIME
bounded Turing machine and any variable input string of
length n by some %5 of length polynomial in n. Therefore,
if the language C(db, kb) is in NEXPTIME for every db and
every kb, then the question of whether the input tape is
accepted by an NEXPTIME bounded Turing machine is in
co-NEXPTIME. This in turn implies that NEXPTIME is
closed under complement. Hence unless NEXPTIME is
indeed closed by complement, the language C(db, kb) is not
in NEXPTIME. We can argue similarly that the language is

also not in co-NEXPTIME using the fact that we have an if
and only if transformation. K

For the upperbound we have in general that:

Theorem 4.6. For any (db, kb) # DB_KB, the set
C(db, kb) is in EXPSPACE.

Proof. The maximum size of any database in the current
knowledgebase during testing will be bounded as in
Theorem 4.3. In the present case the domain B is fixed, but
the maximum arity a and the number of relations n in the
databases are variable. Hence the expression complexity
will be the EXPSPACE, and we can show that by using the
same algorithm as in Theorem 4.3 together with the fact
that EXPSPACE is closed under complement. K

4.3. Some Special Cases

In this section we consider two special cases of the trans-
formation language: (1) quantifier-free transformations and
(2) Datalog-restricted transformations. By quantifier-free
transformations we mean expressions in which all sentences
used to update the knowledgebase are boolean combina-
tions of ground atomic formulas, i.e., formulas in which
each argument of each relation is a constant. By Datalog-
restricted transformations we mean transformation expres-
sions in which all sentences are conjunctions of function-free
Horn clauses.

Theorem 4.7. If % is quantifier free, then C{% is in PTIME.

Proof. Since each sentence of % is quantifier free, we
need to make a fixed number of transformations of the form
�, �, or {, where , is a quantifier free sentence. Transfor-
mations � and � can clearly be done in linear time in the
size of the knowledgebase using the same procedure as in
Theorem 4.3 For performing {, we have to test all truth
assignments to , that can be minimal models. Each of these
models will be a database which is the union of the ground
facts that occur only in the input database and some ground
atoms in , assigned to be either false (i.e., not occur in the
corresponding relation) or true (i.e., occur in the corre-
sponding relation). Since the number of grounds atoms that
need to be considered is fixed and bounded by the size of ,,
all possible minimal databases can be found and tested
whether they are models of , in PTIME. K

For the data complexity of tranformations with the
second restriction we have:

Theorem 4.8. If % is a Datalog-restricted transforma-
tion, then C{% is in PTIME.

Proof. Here we need to make a fixed number of trans-
formations of the form �, �, or {, where , is a Datalog
program. Again, transformations � and � can clearly be
done in linear time in the size of the knowledgebase. For

109KNOWLEDGEBASE TRANSFORMATIONS

showing that performing {, can be done in PTIME it is
enough to recall that Datalog programs have a unique least
model that can be computed using naive evaluation in
PTIME. K

For the expression complexity, when % is quantifier free
the transformation language has the following bound:

Theorem 4.9. C(db, kb) is not in NP _ co-NP, unless NP
is closed under complement, even if % # 30 and is quantifier
free.

Proof. This follows by a reduction from the problem of
satisfiability of propositional formulas [GJ79]. Take the
case when db and kb both contain a single zero-ary relation
r0 that is assigned to be true (i.e., contains the empty tuple).
Any propositional formula can be expressed by a sentence
,$ using zero-ary relation symbols different from R0 . Then
let , be the sentence ,$ � R0 .

Since r0 is an input relation, r0 will not be changed unless
necessary, which occurs if and only if ,$ has no model.
Hence the formula ,$ is satisfiable if and only if after the pro-
jection ?0 , the relation r0 still contains the empty tuple, i.e.,
db # ?0{,(kb) as required. Similarly to Theorem 4.5 this
leads to the conclusion that the problem is not in NP _

co-NP unless NP is closed under complement. K

Remark. Grahne and Mendelzon [GM95] have studied
the complexity of evaluating subjunctive queries in a
propositional language, and found the data complexity of
such a language to be in PTIME and the expression com-
plexity to be in PSPACE. The quantifier-free case of our
language does not have subjunctive implication operators
in it, otherwise it would be a proper superset of the language
in [GM95]. For other complexity theoretic issues in belief
revision and updates we refer the reader to [EG982, EG93,
GM95].

5. EXPRESSIVE POWER

Let YF, SF, and SO be the class of all transformations
from databases to databases expressible, respectively, by
fixpoint queries, existential second-order queries, and
second-order queries, as defined in [CH82, Var82]. It is
well-known that YF is properly included in SF and that SF
is also included in SO [Var82].

In order to relate our language to the above classes of
transformations, we shall restrict ourselves to the case
where all input knowledgebases are singletons, i.e. data-
bases, and we will restrict the language so that all output
knowledgebases are also singletons. From this restriction
follows that the expressive power results that are lower-
bounds in this section will carry over to the general case,
but the significance of the upper bounds is primarily in
the comparison with other languages. Let ST be the class
of all transformations from singleton knowledgebases to

singleton knowledgebases, expressible by a transformation
in 3 of the form (?b{)*, where each b is one of � or �.

As we noted in Section 2, the transformations described
by expressions in this class fall within the class of deter-
ministic updates defined by Abiteboul and Vianu. It follows
immediately that every query in ST is expressible in their
languages detTL and detDL, which are shown in [AV88]
to express all deterministic updates. It follows from
Theorem 5.2 below that this inclusion is proper, since ST
does not go beyond the second order queries SO.

However, ST does include all the existential second-order
queries: let ST i denote the subclass of ST expressions that
use at most i compositions of subexpressions of the form
?b{. Then all existential second-order queries can be
expressed within ST1.

Theorem 5.1. SF�ST1.

Proof. Without loss of generality let x� ._Rn+1,(x�) be
any existential second order query. Let a be the arity of
Rn+1 and let the set of relation symbols in , be
[R1 , ..., Rn , Rn+1]. (Note that a is also the size of x� . The
size of x� could be smaller if we added extra projection opera-
tions.) By the standard definition [Var82] the image
of this query under a database (D, r1 , ..., rn) is [d� # D |x� | :
there is a relation rn+1�Da such that ,(d�) is true in
(D, r1 , ..., rn+1)].

Instead of a fixed domain as in [Var82], we take D to be
the set of constants in , and in the input relations r1 , ..., rn .
Therefore the possible values of rn+1 are finite and can be
listed. There would be exactly 2|D|a number of possibilities
for rn+1. Therefore we can construct a knowledgebase kb
that has in it exactly that many databases with each
database containing r1 , ..., rn and one of the possible rn+1.
Then the query can be expressed as a transformation as
follows. We create a new relation rn+2 to present the output
of the query. Then we write

?n+2 ? {(\x� ,(x�) � Rn+2(x�))(kb).

This transformation always takes in set of databases,
with each database having schema [R1 , ..., Rn+1]. The
input database is never changed because the implication
\x� ,(x�) � Rn+2(x�) can always be satisfied by adding the
required tuples for x� to rn+2. By the minimality require-
ment, rn+2 will always have only those tuples in it which
satisfy ,(x�). If no tuples satisfy ,(x�), then rn+2 will be an
empty relation. Also by the minimality requirement, none of
the other relations are changed. The projection ?n+2 simply
returns the desired output, that is, the set of tuples that
satisfy the existential second order formula, for some value
of rn+1. K

By Theorem 5.1 any SF query can be expressed by a
transformation expression of the form ? ? {. An interesting

110 GRAHNE, MENDELZON, AND REVESZ

question is what can be gained in expressive power by the
composition of ?b{ transformations. The following theorem
gives a partial answer to that question, namely that the
composition cannot increase the expressive power beyond
SO.

Theorem 5.2. ST�SO.

Proof. Clearly the theorem is proved by demonstrating
there is a logspace reduction from ST to an equivalent trans-
formation in SO.

First we consider the case where % is of the form ?ij ? {, ,
where j # [1, ..., n], _=(db)=[Ri1 , ..., Rin], and [Rij]�
_(,)�[Ri1

, ..., Rin]. In the second-order syntax we there-
fore sometimes write , as ,(Ri1

, ..., Rin).
Suppose that the arity of Rij is k, and for each i let Ri$ and

Si be rational variables of the same arity as Ri . The corre-
sponding second-order query would then be

x1x2 } } } xk ._R$i1 } } } _R$in \Si1 } } } \Sin

: .(x1x2 } } } xk , Ri1 , ..., Rin , R$i1 , ..., R$in),

where . is the formula

R$ij(x1x2 } } } xk) 7 ,(R$i1 , ..., R$in)

7 min(,, Ri1 , ..., Rin , R$i1 , ..., R$in).

Here min(,, ...) is an abbreviation of the formula

\, (Si1
, ..., Sin) 7 \�

n

j=1

(Sij�Rij
R$ij)++

�\�
n

j=1

(R$ij�Rij
Sij)+ ,

where Sij�Rij
R$ij abbreviates

\xx2 } } } xk : ((Sij x1 x2 } } } xk 7 cRij x1x2 } } } xk)

6 (Rij x1x2 } } } xk 7 cSij x1x2 } } } xk))

� ((R$ij x1x2 } } } xk 7 cRij x1 x2 } } } xk)

6 (Rij x1x2 } } } xk 7 cR$ij x1x2 } } } xk)),

and likewise for R$ij�Rij
Sij .

It can now be verified that for any db # DB, the transfor-
mation expression % and the above second-order query
return the same result when applied to [db].

If % is of the form ?ij @ {, , then the corresponding second-
order query is

x1x2 } } } xk .\R$i1 } } } \R$in : (,(R$i1 , ..., R$in) 7 min(,, ...))

� R$ij x1x2 } } } xk .

Note the similarity between these second-order queries
and circumscription [McC80].

To proceed, if % is of the form ?in+1
? {, where _(db)=

[Ri1
, ..., Rin], and [Rin+1

]�_(,)�[Ri1 , ..., Rin , Rin+1
], then

we apply a slight variation of the basic reduction including
the necessary modification to the formula Sij�Rij

R$ij (cf.
definitions (1)�(3)).

Furthermore, if the projection in % is on several compo-
nent relations, we define a vector of second-order queries.

Finally, if % is a composition of several ?b{-expression,
the corresponding second-order query will be obtained by
composing the more elementary queries. K

Since SO=QPHIER, the existence of a logspace reduction
for unrestricted expressions in 3 to queries in SO would
place the % transformations within the polynomial
hierarchy.

Abiteboul, Simon and Vianu [ASV90] have studied
retrictions of the update languages that we mentioned at the
beginning of this section and characterized their expressive
power in terms of complexity classes. Their approach is to
transform non-deterministic languages into deterministic
ones by either taking the union of all the possible output
databases computed for each input database (which they
call the possibility semantics) or taking the intersection
(certainty semantics). Since the � operator corresponds
naturally to possibility semantics and � to certainty, it
seems that the languages of [ASV90] should be closely con-
nected to various subclasses of ST transformations, but we
have not yet explored this in detail.

6. CONCLUSIONS AND OPEN PROBLEM

We propose in this paper a simple and versatile language
that unifies queries and updates. There are a few other
proposals in that direction, but our language has to its
advantage that its basic operator for update satisfies all the
Katsuno�Mendelzon postulates, which capture intuitive
requirements on the notion of update.

Our work leaves open the precise computational com-
plexity and expressive power of the transformation
language. Our conjecture is that if we restrict to a constant
the number of nested transformations in Lemma 4.1 then we
are likely to end up in the polynomial hierarchy PHIER. It
would be also good to get tighter lower and upper bounds
for the data complexity of transformation expressions that
we know lies between the upper bound of PSPACE and the
lower bound of not in NP _ co-NP. To tighten this and
other bounds would require a deeper understanding of the
nature of the � and � operators which are unique to this
paper.

Another interesting direction of research would be to
investigate the relationship between hypothetical queries
and the proposed transformation language. Finally, it

111KNOWLEDGEBASE TRANSFORMATIONS

would be challenging to look for suitable specific applica-
tion areas, and perhaps tailor the transformation language
to those by adding application-specific operators.

REFERENCES

[AbG85] S. Abiteboul and G. Grahne, Update semantics for incom-
plete databases, in ``Proceedings of the 11th International
Conference on Very Large Database,'' pp. 1�12, 1985.

[ASV90] S. Abiteboul, E. Simon, and V. Vianu, Non-deterministic
languages to express deterministic transformations, in
``Proceedings of the Ninth ACM SIGACT�SIGMOD�
SIGART Symposium on Principles of Database Systems,''
pp. 218�229, 1990.

[AV87] S. Abiteboul and V. Vianu, A transaction language complete
for database update and specification, in ``Proceedings of the
Sixth ACM SIGAT�SIGMOD�SIGART Symposium on
Principles of Databases Systems,'' pp. 260�268, 1987.

[AV88] S. Abiteboul and V. Vianu, Procedural and declarative
database update languages, in ``Proceedings of the Seventh
ACM SIGAT�SIGMOD�SIGART Symposium on Prin-
ciples of Database Systems,'' pp. 240�250, 1987.

[AGM85] C. E. Alchourro� n, P. Ga� rdenfors, and D. Markinson, On the
logic of theory change: Partial meet contraction and revision
functions, J. Symbolic Logic 50 (1985), 510�530.

[ABW88] K. R. Apt, H. Blair, and A. Walker, Towards a theory of
declaritive knowledge, in ``Foundations of Deductive Data-
base and Logic Programming'' (J. Minker, Ed.), Chapter 2,
Morgan Kaufmann, Los Altos, CA, 1988.

[BS81] F. Bancilhon and N. Spyratos, Update semantics of relational
views, ACM Trans. Database Systems 4 (1981), 557�575.

[Bon88] A. J. Bonner, Hypothetical Datalog, in ``Proceedings of the
Second International Conference on Database Theory,''
pp. 144�160, 1988.

[CH82] A. K. Chandara and D. Harel, Structure and complexity of
relational queries, J. Computer System Sci. 25 (1982),
99�28.

[EG92] T. Eiter and G. Gottlob, On the complexity of propositional
knowledge base revision, updates, and counterfac tuals, in
``Proceedings of the Eleventh ACM SIGMAT�SIGMOD�
SIGART Symposium on Principles of Databases Systems,''
1992.

[EG93] T. Eiter and G. Gottlob, The complexity of Nested Counter-
factuals and Iterated knowledge base revisions, in
``Proceedings of International Joint Conference on Artificial
Intelligence, 1993.

[FUV83] R. Fagin, J. D. Ullman, and M. Y. Vardi, On the semantics of
updates in databases, in ``Proceedings of the Second ACM
SIGACT�SIGMOD�SIGART Symposium on Principles of
Database Systems,'' pp. 352�365, 1983.

[FKUV86] R. Fagin, G. Kuper, J. D. Ullman, and M. Y. Vardi, Updating
logical databases, in ``Advances in Computing Research''

(P. C. Kanellakis and F. Preparata, Eds.), Vol. 3, pp. 1�18,
JAI Press, London, 1986.

[FR79] J. Ferrante and C. W. Rackoff, ``The Computational Com-
plexity of Logical Theories,'' Springer-Verlag, Berlin�
New York, 1979.

[Gab85] D. M. Gabbay, N-Prolog: An extension of Prolog with
hypothetical implications, II, Logical foundations and nega-
tion as failure, J. Logic Programming 2 (1985), 251�283.

[Ga� r88] P. Ga� rdenfors, ``Knowledge in Flux: Modeling the Dynamics
of Epistemic States,'' MIT Press, Cambridge, MA, 1988.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intrac-
tability, A Guide to the Theory of NP-completeness,
Freeman, New York, 1979.

[Gra91] G. Grahne, Updates and counterfactuals, in ``Proceedings of
the Second International Conference on Principles of Knowl-
edge Representation and Reasoning,'' pp. 269�276, 1991.

[GM95] G. Grahne and A. O. Mendelzon, Updates and subjunctive
queries, Inform. Comput. 116 (1995), 241�252.

[GMR92] G. Grahne, A. O. Mendelzon, and P. Z. Revesz, Knowledge-
base Transformations, in ``Proceedings of the Eleventh ACM
SIGACT�SIGMOD�SIGART Symposium on Principles of
Database Systems,'' pp. 246�260, 1992.

[IN88] T. Imielinski and S. Naqvi, Explicit control of logic programs
through rule algebra, in ``Proceedings of the Seventh ACM
SIGACT�SIGMOD�SIGART Symposium on Principles of
Database Systems,'' pp. 103�116, 1998.

[KM91a] H. Katsuno and A. O. Mendelzon, On the difference between
updating a knowledge base and revising it, in ``Proceedings of
the Second International Conference on Principles of Knowl-
edge Representation and Reasoning,'' pp. 387�394, 1991.

[KM91b] H. Katsuno and A. O. Mendelzon, Propositional knowledge-
base revision and minimal change, Artificial Intelligence 52
(1991), 263�294.

[Mak85] D. Makinson, How to give it up: A survey of some formal
aspects of the logic of theory change, Synthe� se 62 (1985),
347�363.

[McC80] J. McCarthy, Circumscription��A form of non-monotonic
reasoning, Artificial Intelligence 13 (1980), 27�39.

[Mey90] R. van der Meyden, Recursively indefinite databases, in
``Proceedings of the Third International Conference on
Database on Database Theory,'' pp. 364�378, 1990.

[Rei78] R. Reiter, On closed world database, in ``Logic and
Databases'' (H. Gallaire and J. Minker, Eds.), pp. 55�76,
Plenum Press, New York 1978.

[Rei92] R. Reiter, On specifying database updates, in ``Proceedings of
the Third International Conference on Extending Database
Technology,'' to appear.

[Var82] M. Vardi, The complexity of relational query languages, in
``Proceedings of the Fourteenth Annual ACM Symposium on
the Theory of Computing,'' pp. 137�145, 1982.

[Win89] M. Winslett, Reasoning about action using a possible models
approach, in ``Proceedings of the Seventh National Con-
ference on Artificial Intelligence,'' pp. 89�93, 1988.

112 GRAHNE, MENDELZON, AND REVESZ

