CONSTRAINT QUERY LANGUAGES*

Paris C. Kanellakis' Gabriel M. Kuper? Peter Z. Revesz}

Abstract

We investigate the relationship between programming with constraints and database query
languages. We show that efficient, declarative database programming can be combined with
efficient constraint solving. The key intuition is that the generalization of a ground fact,
or tuple, is a conjunction of constraints over a small number of variables. We describe the
basic Constraint Query Language design principles and illustrate them with four classes of
constraints: real polynomial inequalities, dense linear order inequalities, equalities over an
infinite domain, and boolean equalities. For the analysis, we use quantifier elimination
techniques from logic and the concept of data complexity from database theory. This
framework is applicable to managing spatial data and can be combined with existing multi-
dimensional searching algorithms and data structures.

Keywords: database queries, spatial databases, data complexity, quantifier elimination,
constraint logic programming, relational calculus, Datalog.

1 Introduction

1.1 Motivation and Framework

Q): What’s in a tuple?
A: Constraints.

Constraint programming paradigms are inherently “declarative”, since they describe compu-
tations by specifying how these computations are constrained [7, 36, 52]. A major recent
development in logic programming systems is the integration of logic and constraint paradigms,
e.g., in CLP [27], in Prolog III [17], and in CHIP [19], for a recent survey see [16]. One intu-
itive reason for this successful integration is as follows. A strength of Prolog is its top-down,
depth-first search strategy. The operation of first-order term unification, at the forefront of this

*A preliminary version of the results in this paper appeared in [28].

tBrown University, Providence, RI. Research was supported by IBM, by an Alfred P. Sloan Fellowship, and
by ONR grants N00014-83-K-0146 ARPA Order No. 4786 and N00014-91-J-4052 ARPA Order No. 8225.

fIBM T.J. Watson Research Center, Yorktown Heights, NY.

$Brown University, Providence, RI. Research was supported by NSF grant IRI-8617344 and by NSF-INRIA
grant INT-8817874.

search, is a special form of efficient constraint solving. Additional constraint solving increases
the depth of the search and, thus, the effectiveness of the approach.

The declarative style of database query languages is an important aspect of database sys-
tems. Indeed, having such a language for ad-hoc database querying is a requirement today.
It is rather surprising that constraint programming has not really influenced database query
language design. Perhaps the bottom-up and set-at-a-time style of evaluation emphasized in
databases, and more recently in knowledge bases, seems to contradict the top-down, depth-
first intuition behind Constraint Logic Programming. There has been some previous database
research on the power of constraints for the implicit specification of temporal data [14], for
extending relational algebra [23], and for magic set evaluation [44] but no overall design princi-
ples. Also, manipulation of constraints has been used to study termination properties of logic
programs. For an example related to the frameworks of this paper see [8].

The main contribution of this paper is to show that it is possible to bridge the gap between:
bottom-up, efficient, declarative database programming and efficient constraint solving. A key
intuition comes from Constraint Logic Programming: a conjunction of constraints is the correct
generalization of the ground fact. The technical tools for this integration are: data complezity
[11, 60] from database theory, and quantifier elimination methods from mathematical logic.

Let us provide some motivation for the integration of database and constraint solving meth-
ods. Manipulation of spatial data is an important application area (e.g., spatial or geographic
databases) that requires both relational query language techniques and arithmetic calculations.
Indexes for range searching and modeling of complex structures have been used to bridge the
gap between declarative accessing of large volumes of spatial data and performing common
computational geometry tasks. However, even with these extensions arithmetic calculations
have not been given first-class citizen status in the various query languages used, and the inte-
gration of language and application has been “loose”. For an example of “tight” integration of
application, language paradigm, and implementation, let us review the relational data model.

In the relational data model, [15], an important application area (data processing) is de-
scribed in a declarative style (relational calculus) so that it can be automatically and efficiently
translated into procedural style (relational algebra). Program evaluation is bottom-up and set-
at-a-time as opposed to top-down and tuple-at-a-time, because the applications involve massive
amounts of structured data. This evaluation may be optimized, e.g., via algebraic transforma-
tions, selection propagation etc. It may be performed in-core in PTIME, because of the low
complexity of the calculations expressed. Most importantly, it may be implemented efficiently
with large amounts of data in secondary storage via indexing and hashing.

Our claim in this paper is that by generalizing relational formalisms to constraint for-
malisms it is, in principle, possible to generalize all the key features of the relational data
model. (1) The language framework that we propose preserves the declarative style and the
efficiency of relational database languages. (2) The possible applications of constraint databases
include both data processing and numerical processing of spatial data. (3) The implementation
technology of spatial access methods (see [48, 49]) naturally matches the new formalism. We
will now explain our new framework and give arguments in support of the above (1-3).

database input query program database output

¢(db, constraints)

1. closed form
tuple = A constraints 2. evaluated bottom-up

3. low data complexity

Figure 1: The CQL database framework

(1) What could be sound criteria for achieving language integration of data processing and
other computations, such as arithmetic calculations? Here are some examples:

(a) Preserving the declarative language style is desirable.
(b) Additional expressive power is desirable, but must come without a serious loss of efficiency.
(c) Bottom-up processing is desirable, since it is a good candidate for many optimizations.

These criteria are satisfied by the Constraint Query Language (CQL) design principles
outlined below (and illustrated in Figure 1). The formal definitions are in Section 1.2.

o A generalized k-tuple is a quantifier-free conjunction of constraints on k variables, which
range over a domain D. In the relational database model R(3,4) is a tuple of arity 2. It
can be thought of as a single point in 2-dimensional space and also as R(z,y) with z = 3
and y = 4, where z,y range over some finite domain. In our framework, R(z,y) with
(r =y ANz < 2)is a generalized tuple of arity 2 and so is R(z,y) with z +y = 2.5, where
x,y range over the rational or the real numbers. Hence, a generalized tuple of arity k is
a finite representation of a possibly infinite set of tuples of arity k.

o A generalized relation of arity k is a finite set of generalized k-tuples, with each k-tuple
over the same variables. It is a disjunction of conjunctions (i.e., in disjunctive normal
form DNF) of constraints, which uses at most &k variables ranging over domain D.

A generalized database is a finite set of generalized relations. Each generalized
relation of arity k is a quantifier-free DNF formula of the logical theory of con-
straints used. It contains at most k£ distinct variables and describes a possibly

infinite set of arity k tuples (or points in k-dimensional space D¥).

o The syntax of a CQL is the union of an existing database query language and a decidable
logical theory. For example: Relational calculus [15] + the theory of real closed fields
[63] (Section 2); Inflationary Datalog™ [1, 22, 33] + the theory of dense linear order with
constants (Section 3); Inflationary Datalog™ + the theory of equality on an infinite domain
with constants (Section 4); and Datalog + boolean equations (Section 5). In each of these
cases, we combine in the obvious way the syntax of the database language and the logical
theory.

o The semantics of a CQL is based on that of the decidable logical theory, by interpreting
database atoms as shorthands for formulas of the theory. Let ¢ = ¢(z1,...,z,) be a query
program using free variables z1,...,z,,. Let predicate symbols R, ..., R, in ¢ name the
input generalized relations and let 71, ..., r, be corresponding input generalized relations.
We interpret the program in the context of such an input. Let ¢[r1/R1,...,r,/Ry] be the
formula of the theory that is obtained by replacing in ¢ each database atom R;(z1, ..., 2)
by the DNF formula for input generalized relation r;, with its variables appropriately
renamed to 21, ..., zx. (Note that, without loss of generality, an occurrence of a database
atom in ¢ is of the form R;(z1,...,2r) 1 < i < n, where R; is a predicate symbol of arity
k and z1, ..., z; are distinct variables; this is because in our framework we can always
use equality constraints among variables in ¢.) Let D be the constraint domain:

Query program ¢ = ¢(z1,...,%,) applied to input database rq,...,7, is a
formula of the logical theory of constraints used, i.e., ¢[r1/R1,...,mn/Ry]. The
output is the possibly infinite set of points in m-dimensional space D™, such
that instantiating the free variables z1,...,z,, of this formula to any one of
these points makes the formula true.

e For each input, the queries must be evaluable in closed form and bottom-up. By closed
form we mean that the output of any query program applied to any input generalized
relations must be a generalized relation. The analogue for the relational model is that
relations are finite structures, and queries are supposed to preserve this finiteness. This
is a requirement that creates various “safety” problems in relational databases [15, 54].
The precise analogue in relational databases is the notion of weak safety of [3]. In our
framework, it is finiteness of representation of constraints that must be preserved. Eval-
uation of a query corresponds to an instance of a decision problem. Interestingly, many
quantifier elimination procedures realize the goal of closed form. Also, they use induction
on the structure of formulas, which leads to bottom-up evaluation.

e For each input, the queries must be evaluable efficiently in the input size, i.e., with low
data complezity. Database atomic formulas indicate, in the declarative query language
itself, the parts that can grow asymptotically versus the parts that are constant-size. By
fixing the program size and letting the database grow, we can prove that the evaluation
can be performed in PTIME or in NC or in LOGSPACE, depending on the constraints
that we consider (for the various complexity classes see [21]).

(2) Let us motivate these design principles by a very common task from computational geometry
and spatial databases; the problem of computing all rectangle intersections [43, 49]. Note that
the theory of constraints used in this simple, but very common, example is the theory of dense
linear order with constants (see Section 3).

(a2,d2) (c2,d2)

(a1,d1) (c1,d1)

(a2,b2) (c2,b2)

(a1,b1) (e1,b1)

Figure 2: Rectangle intersection

Example 1.1 The database consists of a set of rectangles in the plane, and we want to compute
all pairs of distinct intersecting rectangles.

This query is expressible in a relational data model that has a < interpreted predicate. One
possibility is to store the data in a 5-ary relation named R. This relation will contain tuples
of the form (n,a,b,c,d), and such a tuple will mean that n is the name of the rectangle with
corners at (a,b), (a,d), (c,b) and (c,d). We can express the intersection query as

{(nl,n2)|n1 75 no A (Elal,az,bl, b, c1, Ca, dl,dz)(R(nl,al,bl,cl, dl) A R(nz,ag, ba, Cg,dg)
AQ3z,y € {a1,a2,b1,b2,c1,¢2,d1,do})(a1 Sz <1 Aby <y<diNay<z<cpAby <y <dy))}

To see that this query expresses rectangle intersection note the following: the two rectangles
n1 and no share a point if and only if they share a point whose coordinates belong to the set
{a1,a2,b1,b2,c1,c2,d1,d2}. This can be shown by exhaustively examining all possible intersect-
ing configurations. Thus, one could eliminate the (3z,y) quantification altogether and replace
it by a boolean combination of < atomic formulas, involving the various cases of intersecting
rectangles.

The above query program is particular to rectangles and does not work for triangles or for
interiors of rectangles. Recall that, in the relational data model quantification is over constants
that appear in the database. By contrast, if we use generalized relations the query can be
expressed very simply (without case analysis) and applies to more general shapes.

Let R(z,z,y) be a ternary relation. We interpret R(z, z,y) to mean that (z,y) is a point in
the rectangle with name z. The rectangle that was stored above by (n,a, b, ¢, d), would now be

stored as the generalized tuple (z =n) A (a <z <c¢) A (b <y <d). The set of all intersecting
rectangles can now be expressed as

{(nl’n2)|n1 7é nig A (E'.’L', y)(R(n17 L, y) A R(n27 Z, y)}

The simplicity of this program is due to the ability in CQL to describe and name point-sets
using constraints. The same program can be used for intersecting triangles.

In this paper we shall argue that this simplicity of expression can be combined with efficient
evaluation techniques, even if quantification is over an infinite domain.O

We refer to Section 2.1 for more concrete examples from computational geometry. Other
examples are presented in Section 2.2 (the balanced checkbook example) and Section 5.2 (the
adder circuit example).

Remark A: The constraint theories that we investigate here are applicable to spatial databases.
Temporal databases require the development of analogous frameworks for the theory of discrete
linear order with constants, e.g., see [28]. For recent developments of constraint-based ap-
proaches to temporal databases we refer to [4, 13, 46]. Our results on linear order only apply
to dense linear order. The case of discrete, or integer, linear order is analyzed in [46]. O

Remark B: The key concept in CQL, illustrated by Example 1.1, is that constraints describe
point-sets, such that all their points are in the database. With the appropriate constraint
theory these point-sets are accurate (and perhaps the most intuitive) representations of spatial
objects. Our framework is thus one of complete information. Constraint logic programming
paradigms are currently attracting a great deal of attention in languages for operations research
applications [58, 59] and have also impacted the field of concurrent programming language
design [50]. The use of constraints for operations research and for concurrency is sometimes
semantically different from their use in our framework. For example: Constraints can be used
to represent the many possible states (of which one is true) of a set of concurrent processes.
Each individual concurrent process maintains and manipulates constraints that describe the
partial information it has about the state of all processes. O

(3) The language framework of the relational data model does have low data complexity, but
does not account for searches that are logarithmic or faster in the sizes of input relations.
Without the ability to perform such searches relational databases would have been impractical.
Very efficient use of secondary storage is an additional requirement, beyond low data complexity,
whose satisfaction greatly contributes to relational technology.

B-trees and their variants BT -trees, [5, 18], are examples of important data structures for
implementing relational databases. In particular, let each secondary memory access transmit
B units of data, let r be a relation with N tuples, and let us have a BT-tree on the attribute
x of r. The space used in this case is O(N). The following operations define the problem of
1-dimensional searching on relational database attribute x, with the corresponding performance
bounds using a B*-tree on z: (i) Find all tuples such that for their z attribute (a; < z < ay).
If the output size is K tuples, then this range searching is in worst-case O(loggz N + K/B)
secondary memory accesses. If a; = ay and z is a key, then this is key-based searching. (ii) Insert
or delete a given tuple. These are in worst-case O(logp N) secondary memory accesses.

The problem of k-dimensional searching on relational database attributes 1, ...,z general-
izes 1-dimensional searching to k attributes, with range searching on k-dimensional intervals. It
is a central problem in spatial databases for which there are many solutions with good secondary
memory access performance, e.g., grid-files, quad-trees, R-trees (see the surveys [48, 49)]).

For generalized databases we can define an analogous problem of 1-dimensional searching
on generalized database attribute x using the operations: (i) Find a generalized database that
represents all tuples of the input generalized database such that their z attribute satisfies
(a1 <z < ag). (ii) Insert or delete a given generalized tuple.

If (a1 <z < ag) is a constraint of our CQL then there is a trivial, but inefficient, solution
to the problem of 1-dimensional searching on generalized database attribute z. One can add
constraint (a1 < z < ag) to every generalized tuple (i.e., conjunction of constraints) and naively
insert or delete generalized tuples in a table. This would involve a linear scan of the generalized
relation and introduces a lot of redundancy in the representation. In many cases, the projection
of any generalized tuple on z is one interval (¢ < z < a’). This is true for Example 1.1, for our
CQL’s with dense linear order, for relational calculus with linear inequalities over the reals, and
in general when a generalized tuple represents a convex set. Under such natural assumptions,
there is a better solution for 1-dimensional searching on generalized database attribute z.

e A generalized 1-dimensional index is a set of intervals, where each interval is associated
with a generalized tuple. Each interval (a < z < a') in the index is the projection on z
of its associated generalized tuple. The two endpoint a,a’ representation of an interval is
a fixed length generalized key.

¢ Finding a generalized database, that represents all tuples of the input generalized database
such that their z attribute satisfies (a; < z < ay), can be performed by adding constraint
(a1 < z < a3) to only those generalized tuples whose generalized keys have a non-empty
intersection with it.

e Inserting or deleting a given generalized tuple are performed by computing its projection
and inserting or deleting intervals from a set of intervals.

The use of generalized 1-dimensional indexes reduces redundancy of representation and
transforms 1-dimensional searching on generalized database attribute x into the problem of on-
line intersections in a dynamic set of intervals. This is a well-known problem with many elegant
solutions from computational geometry [43]. It is a special case of 2-dimensional searching in
relational databases, called 1.5-dimensional searching in [41]. For example, the priority search
trees of [41] are a linear space data structure with logarithmic-time update and search algorithms
for in-core processing. Grid-files, R-trees, and quad-trees have all been used for solving this
problem with good secondary memory access performance.

In summary, current spatial database access methods are applicable to indexing in our CQL
framework because: If (a7 < z < ag) is a constraint of our CQL and the projection of any
generalized tuple on z is an interval (¢ < z < @), then the problem of 1-dimensional searching
on generalized database attribute z is a special case of 2-dimensional searching in relational
databases.

We will now concentrate on the technical development of the CQL framework and on the
existence of natural constraint query languages with closed form, bottom-up evaluation of low
data complexity.

1.2 Basic Definitions

The framework, of generalized relations with corresponding query languages, can be applied to
many different classes of constraints.

Definition 1.2 The classes we consider in Sections 2-4 are as follows.

1. Real polynomial inequality constraints are all formulas (and their negations) of the form
p(z1,...,2;) 6 0, where p is a polynomial with real coefficients, variables z1, ..., z;, and ¢
is one of =, <, < (or its negation #, >, >). The domain D is the set of real numbers and
function symbols +, *, predicate symbols 6, and constants are intepreted in the standard
way over D.

2. Dense linear order inequality constraints are all formulas (and their negations) of the
form z0y and zfc, where z,y are variables, ¢ is a constant, and 6 is one of =, <, <
(or its negation #, >, >). We assume D is a countably infinite set (e.g., the rational
numbers) with a binary relation which is a dense linear order. Constants, =, <, and
< are interpreted as elements, equality, the dense linear order, and the irreflexive dense
linear order of D.

3. Equality constraints over an infinite domain are all formulas (and their negations) of the
form zfy and zf0c, where x,y are variables, ¢ is a constant, and 6 is = (or #). We assume
D is a countably infinite set (e.g., the integer numbers) but without order. Constants and
= are interpreted as elements and equality of D.

In Section 5, we present the definitions and analysis for boolean equality constraints.O

Remark C: There are of course other classes of constraints that could illustrate the CQL
framework, e.g., linear inequalities over the reals or discrete linear order constraints. However,
the examples we have chosen illustrate all of our analytical techniques. (a) Real polynomial
inequality constraints are quite general. They show the possible applicability of the framework
to problems of computational geometry and the limits of data complexity analysis. It is pos-
sible to combine them with relational calculus, but not with recursive formalisms. (b) Dense
linear order constraints are also very general, since one may use them to simulate any PTIME
computation (as in [26] and [60]). We devote a large part of our analysis to this case, because it
best illustrates the desired integration with relational calculus and various recursive formalisms.
Discrete linear order is much harder to combine with recursion [46]. (c) Equality constraints
over an infinite domain were chosen as the simplest generalization of the relational data model.
The analysis here is very close to that of dense linear order constraints. (d) Finally, boolean
equality constraints capture important operations research applications, although their CQL is
not as “efficient” as in the other cases. O

Definition 1.3 Let ® be a class of constraints.

1. A generalized k-tuple (over variables z1, ..., xj) is a finite conjunction @1 A --- A ¢y,
where each ¢;,1 <1¢ < N, is a constraint in ®. Furthermore, the variables in each ¢; are
all free and among z1, ..., xk.

2. A generalized relation of arity k is a finite set r = {41, ...,%¥nm}, where each ¢;,1 <i < M
is a generalized k-tuple over the same variables z1, ..., zk.

3. The formula corresponding to a generalized relation r is the disjunction 11 V -+ V 9pr.
We use ¢, to denote the quantifier-free formula corresponding to relation r.

4. A generalized database is a finite set of generalized relations.O

In database theory, a k-ary relation r is a finite set of k-tuples (or points in a k-dimensional
space) and a database is a finite set of relations. However, the relational calculus and algebra can
be developed without the finiteness assumption for relations. We will use the term unrestricted
relation for finite or infinite sets of points in a k-dimensional space. It is possible to develop
query languages using such unrestricted relations (e.g., see [39]). In order to be able to do
something useful with such unrestricted relations, we need a finite representation that we can
manipulate. This is exactly what the generalized tuples provide.

Definition 1.4 Let ® be a class of constraints interpreted over domain D, r a generalized
relation of arity k£ with constraints in ®, and ¢, = ¢.(z1,...,xr) the formula corresponding
to r with free variables z1, ..., x,. The generalized relation r represents the unrestricted k-ary
relation which consists of all (a1,...,a;) in D* such that ¢,(a1,...,a;) is true. A generalized
database represents the finite set of unrestricted relations that are represented by its generalized
relations. O

Example 1.5 This is a generalization of the relational data model. Let relation r consist of
the tuples (1,2) and (3,4). These tuples are equivalent to the generalized 2-tuples, z = 1Ay = 2
and £ = 3 Ay = 4. Therefore, the r corresponds to the set {z =1Ay =2,z =3 Ay =4} and
the formula ¢, = (z =1Ay =2) V(z =3 Ay =4). It should be clear that a point (z,y) is in
the generalized relation iff it satisfies the corresponding formula.

Let us illustrate our framework using real polynomial inequality constraints. Let generalized
relation 7 consist of two generalized tuples (y = 2%z Az # y) and (z +y > 1). Corresponding
to this r is the DNF formula ¢, = (y =2z Az #y)V (z+y > 1). ¢, describes an infinite set
of points in 2-dimensional space namely the half plane £ + y > 1 and the line y = 2 x z without
the point z =y =0. O

Note that the representation of an unrestricted relation by a finite set of generalized tuples
need not be uniquely defined.

Relational calculus + constraints: We present a short but self-contained description of
the relational calculus with a given a class of constraints. For more details on the relational
calculus in database theory see [15, 29, 54].

Definition 1.6 Let ® be a class of constraints. Let Rj,..., R;,... be predicate symbols, each
with a fixed arity. A relational calculus + ® query program is a formula of the first-order
predicate calculus with equality, such that its atomic formulas are (1) of the form R;(z1,...,z;),
where j is the arity of predicate symbol R;, or (2) formulas from the class ® of constraints.O

Example 1.7 Let ® be the class of dense linear order constraints. If R; is a predicate symbol
of arity 2, then the following is a query:

d(z1,22) = Ri(x1,22) V IY(Ri(x1,y) A Ri(y, z2) A (21 < 22) A (22 < 7))

In order to formally define its meaning, we need interpretations for the predicate symbols.
These will come from input generalized relations. We also need interpretations of the symbols
in the constraints. These will come from the particular theory of constraints used.O

Definition 1.8 Let D be the domain of constraint class ® and § the interpretation of the
symbols in these constraints. Let ¢ be a relational calculus + ® query program with predicate
symbols Ry, ..., R, and with free variables z1, ..., . Let r1, ..., r, be generalized relations
of the same arities as Ry, ..., R,. These generalized relations represent unrestricted relations
P1, - -, pn (wWhere p; is the set of points that satisfy ¢,,). Using the standard first order meaning
of = we define:

pEd)[pl/Rl""’pn/R”] E{a']-""’a'm EDm | <D’5’p1""’pn> ‘: qs(a'l""’am)}

The query expressed by program ¢ is defined as a mapping: from unrestricted relations
P1,---pn (represented by the input generalized relations r1,...,7,) to an arity m unrestricted
relation p. We also require that p be representable by some generalized relation r of arity m. O

Although unrestricted relation p = ¢ [p1/R1,- .., pn/Ry] is always well defined, the reader
should note that our definition requires an additional closure condition. Both input and output
should be representable by generalized relations.

Remark D: It is easy to verify that this definition is equivalent to interpreting database atoms
as shorthands for formulas of the theory of constraints, as we required in our CQL design
principles. In other words, if we let ¢ = ¢[ri/R1,...,mn/Ry] be the result of replacing each
occurrence of R; in ¢ by the formula ¢,,, then ¢ [p1/R1, ..., pn/Ry] is precisely the set of points
that satisfy 1. This formula 1, however, might contain quantifiers and even not correspond to
any generalized database. So closure is a non-trivial condition. Quantifier-elimination in the
theory of constraints will allow us to satisfy this condition. O

Example 1.9 For a simple example where closure does not hold consider real polynomial equal-
ities. These are constraints of the form p(z1,...,z,) 6 0, where 6 is = or #. Let R(z,y) be a
binary predicate symbol for the input generalized relation {y = x2}. The result (interpreting
the generalized relation as an infinite set of points) of 3z.R(z,y) is the set {y|ly > 0}, which
cannot be represented by polynomial equality constraints. O

10

Datalog + constraints: We now consider Datalog with constraints. The syntax is that of
Datalog (e.g., see [1, 29, 33, 54, 55]) but we allow the bodies of rules to contain constraints.

Definition 1.10 Let ® be a class of constraints. Let Ri,..., R;,... be predicate symbols, each
with a fixed arity. A Datalog 4+ ® query program 7 is a finite set of rules of the form:

t() :—tl,tg,...,tl.

to, the rule head, must be an atomic formula of the form R(z1,...,zx), where R is some predicate
symbol of arity k. The expressions t1, ..., %, the rule body, are either of the form R'(z1,...,zx),
where R’ is some predicate symbol of arity &', or are constraints from ®. The predicate symbols
that appear in heads of rules are called intentional database predicates (IDBs) and the rest are
called extensional database predicates (EDBs). O

The meaning of a Datalog + ® query program 7 on generalized relations ry,...,r,, that
represent the unrestricted relations pq, ..., p,, is the least fixpoint of the monotone mapping
defined by a first-order formula ¢, and pi,...,pn. The definition is the same as in the case
without constraints, the only difference being the use of unrestricted relational databases [29,
39, 54]. We present this definition by example.

Example 1.11 Consider the Datalog query program 7 with dense linear order constraints.
R(‘T,y) T R(JZ, Z), RO(Za y),x < Y,y <z

R(‘T, y) S RO('T’ y)

Apply this query program to the generalized database ry that represents the unrestricted rela-
tion pg. Then ¢, is the following first-order formula,

ér(z,y) = (z,y; R) = Ro(w,y) V I2(R(z,2) A Ro(2,9) Az <y Ay < 2).

¢ defines a mapping from arity 2 unrestricted relations p to arity 2 unrestricted relations.
Note that, in this formula Ry is always interpreted as py. Predicate symbol R is singled out
because its interpretation as any value p defines the mapping:

p—){a,b€D2| <D555p05p>|: ¢7T(a’b)}

This mapping is monotone with respect to set inclusion for p. By the Tarski fixpoint theorem
it has a least fixpoint, which is the output of the query program applied to input r¢. O

The mere existence of the fixpoint, as guaranteed by the Tarski fixpoint theorem, is not
enough for our purposes. As in the case of the relational calculus we require that the result
of a Datalog query be finitely representable as a generalized database. We shall show that
this closure condition is satisfied by Datalog, when we consider constraints from the language
of dense linear order or equality over an infinite domain. Unfortunately, as the next example
shows, this rules out the use of Datalog with real polynomial inequalities.

11

Example 1.12 Let 7w be the query program that consists of the rules S(z,y) :— R(z,y) and
S(z,y) — R(z,z),S(z,y) (i-e., S is the transitive closure of R). If the input r for R consists
of the generalized relation y = 2 % z, then the result of the query is the set of all points (z,y)
that satisfy y = 2¢ * for some i > 0. This set is not finitely representable in the language of
polynomial inequality constraints. O

Inflationary Datalog™ + constraints: The syntax is that of Datalog with constraints with
one addition. We allow in a rule body expressions of the form —R/(z1,...,z), where R’ is
some predicate symbol of arity k. We give the language inflationary semantics [1, 22, 33]. In
the inflationary semantics after each iteration the set of facts derived is added to the set of facts
that were derived in the previous iterations.

We shall show that the closure results mentioned above, for Datalog with dense order or
with equality constraints, hold with inflationary negation as well.

Remark E: We have given the semantics of a Datalog + ® (Datalog™ + ®) query program on
a generalized database as the least fixpoint of a monotone (inflationary) mapping from unre-
stricted relations to unrestricted relations. It is easy to verify that our definition is equivalent to
interpreting EDB atoms as shorthands for formulas of the theory of constraints, as we required
in our CQL design principles. O

Various fragments of relational calculus and Datalog have been found to be particularly
useful in databases and have been examined in depth. Tableaux query programs form such a
fragment. We provide definitions and examples for them in Section 2.2, and refer to [2, 12, 32, 54]
for a more detailed treatment.

Complexity: We assume familiarity with the definitions of basic complexity classes such as
LOGSPACE, PTIME, NC, and IT} (see [21]).

The prototypical logspace-complete problem in IT) is the AFE-quantified boolean formula
problem: Input, a formula VZ3yy(Z,y), where Z,7 are sets of boolean variables and ¥ (Z,7) a
propositional formula over these variables. Question, is the input formula true?

We now define data complexity. Our definition involves the complexity of evaluating some
representation for the output of a fized query @, given a wvariable input generalized database.
This is more general than the definition of data-complexity for yes/no decision problems.

Definition 1.13 Our sequential machine model is a Turing Machine (TM) with a read-only
input tape, a write-only output tape, and a fixed number of work tapes. Our parallel machine
model is a Parallel Random Access Machine (PRAM). Our input generalized relations are
encoded using some fixed binary encoding.

A query @ has data complezrity in PTIME (resp. LOGSPACE, NC) if there is a TM (resp.
TM, PRAM) which given input generalized relations d produces some generalized relation
representing the output of Q(d) and uses polynomial time (resp. logarithmic space on the work
tape, polynomial number of processors running in polylogarithmic parallel time). O

12

1.3 Overview of Contributions

i From Codd’s original work [15] it follows that: safe relational calculus can be evaluated bottom-
up in closed form and LOGSPACE data complexity. Codd defines safe formulas via syntactic
restrictions on relational calculus. The LOGSPACE data complexity analysis is from [11]. We
provide as evidence of the soundness of our design principles many variations of this observation
in the context of constraints. The following table summarizes the main data complexity results:

Polynomial | Dense Order | Equality
Relational Calculus NC LOGSPACE | LOGSPACE
Datalog™ Not closed PTIME PTIME

In more detail:

1. Relational calculus with real polynomial inequality constraints can be evaluated bottom-
up in closed form and NC data complexity. This is a direct consequence of [6, 35, 53] and
illustrates the potential applicability of the framework to spatial databases (Section 2.1).

2. As part of our analysis of the relational calculus and real polynomial inequality constraints,
we provide a new interpretation of the homomorphism theorem for tableau query contain-
ment from [2, 12, 32]. Our interpretation is based on the simple geometric fact that, “an
affine space is contained in a finite union of affine spaces iff it is contained in one member
of this union” [47], p. 139. We show that deciding containment between tableaux queries
with linear equalities is NP-complete, but that with quadratic equalities it is IT5-hard
(Section 2.2).

3. Relational calculus (Inflationary Datalog™) with dense linear order constraints can be
evaluated bottom-up in closed form and LOGSPACE (PTIME) data complexity. This is
shown by adapting the proof of [20]. Also, by a slight modification of [26, 60] Inflationary
Datalog™ with dense linear order expresses ezactly PTIME (Section 3.1).

4. For Datalog with dense linear order constraints, we develop a bottom-up evaluation
method that is closer to the classical foundations of logic programming [38] and knowledge
bases [54, 55] (Section 3.2). This allows us to show that piecewise linear Datalog with
dense linear order constraints can be evaluated bottom-up in closed form and NC data
complexity (Section 3.3).

5. Relational calculus (Inflationary Datalog™) with equality constraints over an infinite do-
main can be evaluated bottom-up in closed form and LOGSPACE (PTIME) data com-
plexity. This extends the approach to safe queries of [3, 25, 31, 44] (Section 4).

6. Finally, Datalog with boolean equality constraints can be evaluated bottom-up and in
closed form. For the definitions we refer to Section 5 and [10, 34, 40]. The data complexity
here is higher than in the previous cases and it depends on the use of free boolean algebras
with m generators. We partly analyze this data complexity and show it to be IT5-hard
(Section 5).

13

2 Real Polynomial Inequality Constraints

Throughout Section 2, we assume that the constraint domain D is the set of real numbers, but
our analysis applies to any real closed field.

In Section 2.1, we give our first example of a CQL by combining relational calculus with
real polynomial inequalities.

In Section 2.2, we investigate tableaux queries with constraints. We present several results
on the optimization of such queries, in the presence of linear equations, quadratic equations,
and simple inequalities without arithmetic operations.

2.1 Relational Calculus with Constraints and Computational Geometry

Consider a query language consisting of all first-order formulas over the database predicates
together with real polynomial inequality constraints. The syntax is the union of relational
calculus with that of the theory of real closed fields [53]. For the semantics, the database
atomic formulas will be used as shorthands for large formulas of the theory of real closed fields,
as described in Section 1.

The critical observation is that database atomic formulas express and highlight, in the
declarative query language itself, the parts that can grow asymptotically versus the parts that
are constant-size calculations. That the database size N dominates the query size by many
orders of magnitude, is the rationale of data complexity. In the following examples N is the
only parameter that grows asymptotically.

In Example 1.1, we already illustrated this language using the problem of object inter-
section. It is interesting to note that most other basic operations of computational geometry
(e.g., Convex Hull and Voronoi diagram — see [43]) can be described in this declarative query
language, which also happens to be efficiently bottom-up evaluable.

Example 2.1 Convez hull: The database consists of an arity 2 relation r, that describes NV
points of the plane. We want to select those points from r that form the convex hull. To
do this, observe that a point (z,y) is not a convex hull point iff there are 3 other points in r
such that (z,y) is inside the triangle that they generate. Using constraints, we can define a
predicate Intriangle(z,y, z1,y1, %2, Y2, T3,y3) that holds when (z,y) is in the triangle generated
by (z1,91), (x2,y2) and (x3,y3). Point (z,y) in r will be in the convex hull iff there do not exist
points in 7 such that Intriangle(x,y,x1,y1,T2,y2,%3,y3). The naive algorithm based on this
observation, known as Floyd’s method, takes O(N*) time, because it involves four database
atomic formulas. Although it cannot compete with various known O(N log N) algorithms, it is
still useful in combination with other convex hull techniques. O

Example 2.2 Voronoi diagram: We can show how to find the graph called the dual of the
Voronoi diagram [43]. To do this, note that two points u and v are adjacent in the Voronoi

14

dual iff all the points on the line from u to v are closer to u or to v than to any other point in
the database. This condition can easily be expressed in our language. O

Queries in the language of relational calculus and real polynomial inequality constraints can
be evaluated bottom-up in closed form, i.e., the result of a query on a generalized relation is also
a generalized relation. This closure property follows immediately from the decision procedure
of Tarski for the theory of real closed fields [53] and is one of its basic properties. One can think
of Tarski’s procedure as a generalized relational algebra, where all the operations are simple
variants of the familiar database ones except for projection. Projection corresponds to quantifier
elimination and is the nontrivial operation. Unfortunately, Tarski’s decision procedure has
extremely high complexity, even in our setting. In general, the decision problem for the theory
of real closed fields requires nondeterministic exponential time.

Fortunately, our setting has much more structure than the general problem of geometric
theorem proving. The reason for this is that if we focus our attention on data complexity then
the problem is tractable. If we have a fixed query on a generalized database, we have a fixed
bound on the number of variables and on the quantifier depth. We can then use the results of
[6, 35] to show that the data complexity is in NC.

Theorem 2.3 Relational calculus with real polynomial inequality constraints can be evaluated
bottom-up in closed form and NC data complexity.

Proof: This is a direct application of [6, 35]. To see this use the fixed dimension case
of the theorem p. 263 in [6]. The cell decomposition method in sections 6-7 of [35] can be
used to output a formula in DNF (of size polynomial in the input) that represents the output
generalized database. O

It is true that the general-purpose bottom-up evaluation based on geometric theorem prov-
ing is not as efficient as the various specialized computational geometry algorithms. But it can
be thought of as a statement that the potential for optimization is present.

Of course, given the NC data complexity bounds, there are computations that are not
expressible in relational calculus with real polynomial inequality constraints. It would be in-
teresting to determine which natural computational problems are or are not expressible. For
example, we conjecture that computing Euclidean Spanning Trees is not expressible because it
involves reachability computations.

As we pointed out in Section 1, if we consider Datalog with polynomial constraints, the
resulting language is not closed. Furthermore, such a language combining arithmetic with
recursion has full Turing computability power. It would be interesting to design a CQL with
low data complexity which allows limited use of recursion and real polynomial inequalities.

2.2 Tableaux Query Programs and their Containment Problem

Data complexity is based on the assumption that there are sufficient resources for unlimited
processing of a query program. This is only a theoretical approximation, and many sophisticated

15

T Balanced
z f r m | Expenses
x s - - | Savings
r w ¢ - | Income

fHr+m+s=w+1

Figure 3: The tableau with constraints “balanced checkbook” query program.

techniques have been developed for query optimization. A key problem for optimization is
testing containment of query programs.

Each query program ¢ computes for any input generalized database d an output generalized
relation ¢[d]. Recall that generalized relations represent possibly infinite sets of points. We say
that a query program ¢, is contained in query program ¢o, denoted ¢1 C ¢, iff for each input
generalized database d, all the points in ¢;[d] are also in ¢3[d]. The containment problem is:
Given two query programs ¢1, ¢2 decide if ¢1 C ¢o.

We now examine (tagged untyped) tableauz query programs. These query programs were the
subject of many investigations in relational database theory and can be presented as nonrecur-
sive Datalog rules. The terminology (tagged untyped) tableau is used, because each program
can be described as a table, with variables or constants appearing in each entry, with the predi-
cate symbols as row-tags, and possibly with some untyped variable appearing in many columns.
We augment these queries using special real polynomial inequalities such as linear equations,
quadratic equations, and inequalities without +, *. For instance:

Example 2.4 In nonrecursive Datalog notation and using a single linear equation constraint
we express the following “balanced checkbook” query.

Balanced(z) — Ezpenses(z, f,r,m), Savings(z, s), Income(z,w,i),f +r+m+s=w +1

This is a query program with FEzpenses, Savings and Income input relations, Balanced
output relation, and a single linear equation constraint: z is user-id, f is amount spent for
food, r for rent, m for miscellaneous, s for transfer to savings, w for wages, and ¢ for interest.
The intended output of this query is the list of user-ids whose checkbooks balance.

In tableau notation, the checkbook query can be represented by a four row tableau with
Balanced, Expenses, Savings, and Income row-tags. The first row corresponds to the head of
the rule and is called the summary row. The other three rows correspond to predicate symbol
occurrences in the body of the rule. Each of these rows has width four, because we add dummy
arguments up to the maximum arity, i.e., new distinct variables denoted — (see Figure 3). The
linear equation constraint is extra.

For the detailed terminology see [2].0

16

Let us now explain normal forms, symbol mappings, and homomorphisms. We break up
each ¢, tableau query program with constraints, into a tableau part 7', that consists exclusively
of distinct occurrences of variables, and a conjunction of constraints C. This normal form
(T, C) is without loss of generality, since the constraints in C' can force any equalities of the
distinct symbols in T'.

Let ¢1 = (T1,C1) and ¢o = (T, C5) be two normal form tableaux query programs with real
polynomial inequality constraints. A function A is a symbol mapping from the symbols of ¢o to
those of ¢ iff it maps the summary row of 75 into the summary row of 77, every constant to
itself, and the tagged rows of T3 into similarly tagged rows of T7. A symbol mapping h extends
naturally to rows and to constraints. We shall call such a symbol mapping h a homomorphism
from ¢, to ¢ if it also has the property that whenever constraints C are satisfied so are h(C5),
i.e., when constraints Cy imply constraints h(Cx).

Lemma 2.5 Let ¢ = (71, C1) and ¢ = (T3, C3) be two normal form tableaux query programs
with real polynomial inequality constraints. Let h1, ..., hy, be all the possible symbol mappings
from TQ to Tl. (Vd, ¢1[d] g ¢2[d]) iff (01 implies h1 (02) VoV hm(CQ))

Proof: (If) If #; is any constraint satisfying valuation for ¢; (i.e., 81 is an assignment of
values to variables of T} satisfying C1), then 6;(C}) is true and, by the hypothesis, there is a
symbol mapping hy such that 61 (hy(C2)) is true. Then we can take 6, = 01hy, as a satisfying
valuation for ¢o. This implies that for any generalized database d, ¢1[d] C ¢o[d].

(Only if) Let d be any generalized database and 6; be a valuation for 77 that satisfies
C1, yielding some summary row output. Then there must be another valuation 6» for 75 that
satisfies Co, yielding the same summary row output. Moreover, we can restrict §2 to map the
rows of T5 only to the image of 61, i.e., to the database tuples accessed to make a valid valuation.
This restriction is without loss of generality, because the database could indeed be no larger,
and if the query containment holds in this restriction, then it also holds for any larger database
that contains the image.

Now take any row t in Ty. 69 maps t into a tuple ¢’ in the database. 6; also maps
at least one row t" into t' (choose an arbitrary ¢”). Then we can construct a mapping h
from ¢ to t”, by following the arrows in the mapping of 62 and reversing the arrows in the
mapping of #;. For example, if t = (a,b,c),t’ = (5,8,5) and t" = (z,y,2), then we can take
h=(a— z,b > y,c — z). Moreover, continuing this way h can be expanded into a complete
symbol mapping from T, to 77, because the variables are distinct in 75 so there are no clashes
in the symbol mapping. This shows that if 6;(C7) is true then there is a valuation 6 and a
symbol mapping h such that 65(Cs) is true and 0;h = 02 and thus 6, (h(C2)) is true.

Therefore we see that for any valid valuation 6; of C; there is some symbol mapping h
depending on 6; such that 61(h(C3)) is true. Moreover, the above argument did not use any
assumption about C;. Hence, this shows that for all Cy’s, C; implies hi(C2) V - -+ V hy(Co),
where hq, ..., hy, are all the possible symbol mappings from 75 to T7. O

Let ¢1 = (T1,C1) and ¢o = (T, C2) be two tableau query programs with constraints, in
normal form. We say that they have the homomorphism property, whenever there is a symbol

17

mapping h from ¢9 to ¢; such that (for all generalized databases d, ¢1[d] C ¢o[d]) iff (Cy
implies h(C5)). We will now show that the homomorphism property holds when we have linear
equations and is the key to proving containment in NP. This extends the basic technique of
[2, 12].

Theorem 2.6 Given two query programs, each a tableau with a conjunction of linear equation
constraints, deciding containment is NP-complete.

Proof: NP-hardness is immediate, since it is NP-complete to determine containment for
such queries just with equations of the form = = y [2, 12]. The new part is showing membership
in NP, given more general linear equations. We show that for two queries ¢; and ¢ in normal
form: ¢; is contained in ¢y iff there is a homomorphism mapping ¢ into ¢;.

We use the previous lemma and from [47], p. 139, the simple geometric fact: “an affine
space is contained in a finite union of affine spaces iff it is contained in one member of this
union”.

For linear equation constraints, each of the conjunction of constraints C; and h;(Ca) de-
scribes an affine space. Moreover, C; implies h1(C2) V ... V hp,(Cs) iff the affine space C; is
contained in the union of other affine spaces. But this can happen only if one of the affine
spaces h;(Cs) contains the affine space C;. Therefore one of the symbol mappings must be a
homomorphism from ¢, to ¢;. Such a homomorphism can be guessed in NP, and containment
of an affine space in another can be checked in polynomial time. O

In contrast, with quadratic equations we can show:

Theorem 2.7 Given two query programs, each a tableau with a conjunction of quadratic
equation constraints, deciding containment is IT5-hard.

Proof: We can give a simple reduction from the Y3y (Z,7y) quantified boolean formula
problem, which is known to be IIh-complete. Without loss of generality assume that in
negation is only used on the boolean variables, i.e., negation has been pushed to the leaves of
the parse tree of .

Let ¢9 be:

R(E) — xl(]- —.’L'l) = 0,,£L'n(1 _In) = anl(l _yl) = Oaay’m(l _ym) = OaX(Eagag)

In ¢ all the constraints except the last one are used to restrict the 7 = (z1,...,z,) and
the ¥ = (y1,...,ym) vectors of variables to be either 0’s or 1’s.

The formula x(Z,7,3) denotes the conjunction of quadratic constraints that is constructed
as follows. Let F1,..., F; be the subformulas of ¥, with F; = 1. Let s1,...,s; be distinct fresh
variables. Then add the conjunct s; = s; + s; whenever Fy = F; A F}, add s = s;s; whenever
Fy, = F;V F;, add s = (1 — s;) whenever Fj, = =F;. If F}, = F; and F; is a boolean variable z;
or y; in Y(Z,y), add s, = (1 — ;) or s = (1 —y;). Finally add the conjunct s; = 0.

18

By induction, it can be proven that for any truth assignment 9 (%,7) is true iff I5x(Z, 7, 5)
is true assigning 1 (0) to z;, y; if the respective boolean variables get assigned true (false). The
basic intuition is that subformula F; is made true by the assignment iff constraint s; = 0 is
satisfied. Hence, ¢o will have as output all T truth assignments for which there is some 7 truth
assignment such that v (Z,7) holds. Then let ¢; be:

R@):—xz1(1—21) =0,...,2,(1 —2,) =0

Note that ¢ will have as output all possible T vectors, hence ¢; C ¢ if and only if the
quantified boolean formula holds. O

Containment in the presence of inequality constraints without 4+ and # is the problem
examined in[32]. For containment of tableaux with inequalities and no +, *, we can show that
the homomorphism property fails even for semiinterval query programs.

Semiinterval query programs are those in which each variable is bounded by a constant from
only one side i.e., left or right, and there are no other constraints. In [32] it is shown that the
homomorphism property holds for left-semiinterval queries or right-semiinterval queries alone
and does not work for interval queries, i.e., variables are bounded from both sides.

Theorem 2.8 The homomorphism property fails for semiinterval query programs.

Proof: We give two example queries ¢; and ¢o such that ¢; C ¢o, but there is no homo-
morphism from ¢ to ¢1. The query ¢ is:

R"(u) — R'(u), R(v,w),v < 4,w >4
While the query ¢; is:
R"(u) :— R'(u), R(z,y), R(y, 2),z < 4,2 > 4

There are two possible symbol mappings from the symbols of ¢2 to the symbols of ¢;. The first
is h1 = (u = u,v — z,w — y), and the second is hy = (u = u,v = y,w — 2).

¢1 C ¢ is easy to see, because either y > 4 and R(z,y),R(y,2), < 4,z > 4 implies
R(z,y), x <4,y > 4, which is the same as in ¢ after renaming, or y < 4 and R(z,y), R(y, 2),
z < 4,z > 4 implies R(y, 2),y < 4,z > 4, which is again the same as in ¢, after a different
renaming. Therefore, for each database if ¢ gives some output, then ¢9 also gives a superset
of that output. However, one symbol mapping is not enough to show containment.

Consider now the database R(1,3), R(3,5), R'(7). Then for the valuation § = (z — 1,y —
3,z = b,u = 7), ¢ yields R"(7). However, 6hy(¢2) is not a valid valuation for ¢o, because
Oh1(R(v,w),v < 4,w >4) = R(1,3), 1 <4, 3 >4, ie., it is unsatisfiable and cannot produce
any output tuple.

Similarly, considering the database R(1,5),R(5,9),R'(7) and the valuation ' = (z —
L,y = 5,z = 9,u — 7), ¢ again yields R"(7). However, 8'hy(d2) is not a valid valuation,
because @'ha(R(v,w),v < 4,w > 4) = R(5,9),9 > 4,5 < 4, i.e., it is also unsatisfiable and
cannot produce any output tuple. O

19

3 Dense Linear Order Inequality Constraints

Throughout Section 3, we assume that the constraint domain D is the set of rational numbers,
but our analysis applies to any set with a dense linear order.

In Section 3.1, we show that the relational calculus (Datalog™) with dense linear order
inequality constraints can be evaluated bottom-up in closed form and LOGSPACE (PTIME)
data complexity. These are tighter bounds than the NC bounds that we get from the analysis
of relational calculus with real polynomial inequality constraints.

In Section 3.2, we provide an alternative bottom-up evaluation for Datalog, which em-
phasizes logic programming tools, as opposed to decision procedures for logical theories. The
motivation for this is to gain more intuition about Herbrand atoms, minimal models, derivation
trees, and the other machinery of constraint logic programming [27, 38].

In Section 3.3, we examine the parallel bottom-up evaluation of Datalog programs with
dense linear order constraints, using the logic programming tools developed in 3.2.

3.1 Data Complexity of Relational Calculus and Datalog— with Dense Order

We will first show that the relational calculus with dense linear order inequality constraints has
LOGSPACE data complexity. The proof of this result is based on the proof of [20], which we
extend to languages with constants and adapt for data complexity analysis. Our basic technical
contribution is the appropriate definition of r-configuration (for rational-configuration).

In order to use the decision procedure techniques of [20], we transform the query program
applied to the input set of constraints into one semantically equivalent formula ¢ of the theory
of dense linear order with constants (see Section 1).

For example, let R(z,y) be a binary generalized relation containing the three generalized
tuples z < y, x < 5 and y = 4. Consider the query program (3z)(R(z,z) A R(z,y)) applied to
this generalized database. Then the equivalent formula is

d(z,y) = (F2)((z <2V <b5Vz=4)A(z<yVz<5bVy=4))

Furthermore, we can, within the required resource bounds, eliminate all occurrences of =, <
and just use atoms of the form z; < zj,z; < ¢,¢ < z;. For thisreplace z < y by (z = y)V(z < y)
and £ =y by —((z < y) V (y < x)). We similarly eliminate all logical connectives but Vv, -, 3.
This is for minimizing the case analysis in the proof.

In what follows: we fiz the query program and the input generalized database and consider
the equivalent formula ¢ (as in the above example). The following definition of r-configuration
is the key one. Note that it is with respect to the formula ¢, which we consider fixed. We
shall refer throughout to r-configurations, without mentioning the formula ¢. Throughout this
section, we use Dy be the set of constants that appear in ¢.

20

Definition 3.1 An r-configuration ¢ = (f,1,%) of size n consists of a sequence f = (f1,..., fa),
where {f1,...,fn} = {1,...,j}, for some j < n, and two sequences | = (I1,...l,) and T =
(u1,.-.,un), where the [;’s are in Dy U {—o0}, and w;’s are in Dy U {400}, such that:

1. For all ’i, li < Uj-

2. There is no constant c¢ in Dy with the property that I; < ¢ < u;.

3. Whenever f; < f;, then [; < uj;.

4. Whenever f; = f;, then [; = [; and u; = u;. O

The idea behind r-configurations is as follows. Consider two points Z = (z1,...,%,) and

7= (Y1,---,Yn) in D™. We want to know whether they can be distinguished using the order
constraints and the available constants. We say that: these points can be distinguished if

1. The relative order of the z;’s is different from the relative order of the y;’s, or

2. Some x; is in a different relation to some constant in Dy than some ;.
Each r-configuration characterizes a set of non-distinguishable points. The f;’s describe the

relative order of the z;’s, i.e., z; < z; iff f; < f;. l; and u;, on the other hand, bound z; from
below and above by constants from Dy U {400, —00} in the tightest fashion possible.

Example 3.2 Assume that the constants in Dy are {0,1,2,3}. The sequence of numbers
(0.5,3.5,1.5,1.5,2) can then be represented by the r-configuration consisting of

1. f=(1,4,2,2,3) describing the order between the elements of the sequence.
2. 1=1(0,3,1,1,2)
3. u=(1,400,2,2,2)0
We also need some technical definitions: (3.3) Express an r-configuration as a conjunction
of constraints. (3.4) The points satisfying this conjunction are the indistinguishable points

denoted by the r-configuration. (3.5) An r-configuration can be extended by adding other
variables.

Definition 3.3 The formula F({), with n free variables {z1,...,zn}, corresponding to an r-
configuration £ = (f,1,%), of size n, is the conjunction of: (1) z; < z;, whenever f; < f;.
(2) z; = zj, whenever f; = f;. (3) l; < z; < u; whenever [; < u;. (4) z; = l; whenever [; = u;.
O

Definition 3.4 = F(¢)(ay1,...,a,) will mean that F'(€) is satisfied by the assignment of each
a; to the corresponding variable z;.0

21

Definition 3.5 Let ¢ = (f,],@) be an r-configuration of size n. An r-configuration & =
(F',T,w) of size n+ 1 is an extension of £ if

1. ' is an extension of f. This means that for all i, 4, 1 < i, < n, fi < £ it fi <
2.1 = (l1, ...y ln,lny1), and

3. U = (u1,...,Up,Upy1).0

The idea behind the proof is as follows. We show that the r-configurations partition multi-
dimensional space in such a way that to test whether a subformula of the query holds throughout
an r-configuration, it suffices to test whether it holds at an arbitrary point in this configuration.
This partitioning is made formal using the five Lemmas 3.6-10. We use this partitioning to
construct an algorithm EVALy, which evaluates the query in closed form. The output of EVAL,
consists of a set of r-configurations. Its correctness is described in the two Lemmas 3.11-12.
We then argue that EVAL, can be implemented in LOGSPACE.

Query Evaluation Algorithm EVAL,

Input of EVALy: A generalized database. We will assume from now on that ¢ is the result of
substituting the definition of the generalized database for each occurrence of a predicate symbol
in the query (we comment later on why this does not affect the LOGSPACE complexity).

For each r-configuration ¢ of size n, with constants from Dy, test whether F(§) — ¢ is valid
(i.e., true for all assignments to its free variables). This test is performed using recursive
procedure Boolean-EVAL,.

Procedure Boolean-EVAL,, takes as input an r-configuration &'. It is only called on subfor-
mulas of ¢, thus guaranteeing that all the constants in 1) are in Dy. Boolean-EVAL,, returns 1
iff F(¢') — 1 is valid. Its various cases are:

1. 9 is an atomic formula z; < ;.
If f; < f; (where f;, f; are from ¢) then return 1 else return 0.

2. 7 is an atomic formula z; < ¢ or ¢ < x;.
For z; < ¢, if l; = u; < cor l; < u; < ¢ (where [;,u; are from ¢') then return 1 else return 0.
For ¢ < z;, if ¢ < l; = u; or ¢ <l; < u; (where l;,u; are from &') then return 1 else return 0.

3. 1 is 11 V tho.
If the result of Boolean-EVAL,, (¢') is 1 then return 1 else return result of Boolean-EVAL, (¢').

4. o is —a)'.
If result of Boolean-EVALy (¢') is 1 then return 0 else return 1.

5. 1 is (Fz)y'.
For every extension &” of ¢', do Boolean-EVALy, (¢").
If the result on one of these r-configurations is 1 then return 1 else return 0.

Output of EVALy: The disjunction of the F'({)’s for which F'({) — ¢ is valid.

22

Lemma 3.6 Let £ be an r-configuration of size n, and let ¢’ be an extension of size n + 1.
Then we have that = F(€)(a1,...,a,) iff for some a | F(¢&')(a1,...,an,a).

Proof: Since F(£) is a conjunction of some of the conjuncts in F(¢'), F(&')(aq,...,an,a)
implies F'(¢)(aq,...,a,). For the converse,

1. If for some i, fr11 = f;, let a = a;.

2. Otherwise, let < and j be such that f; and f; are maximal and minimal, respectively,
satisfying f; < fn4+1 < fj (the construction can easily be modified to handle the boundary
cases with 4 or j nonexistent). If l,11 = upy1, let @ = l,41. It then follows that
a; < a < aj. Otherwise, pick a arbitrarily satisfying the conditions a; < a < a; and
ln+1 < a < up41. The reason such an a exists is shown as follows. Given the density
of order, such an a would not exist only if a; < I,11 or up41 < a;. Assume aj < l,4q.
fnt1 < fj, together with part 3 of Definition 3.1, implies that /,,1 < u;. However, by
the definition of F'(§), I; < a;. Since l; < a; < lp41 < uj, it follows that [; < u;; and by
the definition of F'(£) once more, I; < aj. We therefore have

lj < aj <lpt1 < uy

which contradicts part 2 of Definition 3.1. The second case is similar.

In both cases, it follows that (ay,...,a,,a) satisfies F(¢').0

Lemma 3.7 Let £ be an r-configuration of size n. There exist elements a1, ..., a, of D, such
that = F(¢)(aq,...,an).

Proof: Induction on the size of £, using Lemma 3.6.0

Lemma 3.8 Let ay, ..., a, be elements of D. There exists a unique r-configuration £ of size
n such that = F(¢)(a1,...,an)-

Proof: Uniqueness follows from the fact that if ¢* # ¢2, then F(£1) A F(£?) is unsatisfiable.
To show this, suppose that (a1,...,a,) satisfies F(£') A F(£2). Let ¢! = (fl,zl,ﬂl) and &2 =
—2 22
(f 0. @).

1. Let fz-1 # fZ-Q, w.lo.g, fi1 < fz-2. Since 72 is a sequence that consists of all the integers from
1 to some k (possibly with repetitions), it follows that for some j, f]2 = fl. But then, by
Definition 3.3, a; < ;. This implies, using Definition 3.3 again, that f; < f7. Repeating
this, we get an infinite descending sequence of positive integers, a contradiction.

2. Let I} # 12, wlo.g., I} < [?. Suppose first that I = u}. Then, by Definition 3.3,
I} = a; < 1? < a;, a contradiction. On the other hand, if I} < u}, then part 2 of
Definition 3.1 implies that u; < I2. Once more, by Definition 3.3, a; < u} < I? < a;, a
contradiction.

23

3. The case when u} # u? is similar.

Existence is shown by induction on n. The case n = 1 is trivial. Assuming that the result
holds for n, let a1,..., ayn, any+1 be given, and let & be such that (aq,...,a,) satisfies F().
We show how to extend £ to &' such that (ai,...,ant1) satisfies F(¢'). There are two cases to
consider for a = ap41:

1. For some i, a = a;. £’ is defined by f; = f; for i <n, fy 1 = fi, [=l and up g = u;.

2. Let ¢ and j be such that a; and a; are maximal and minimal, respectively, satisfying
a; < a < a; (the construction can easily be modified to handle the boundary cases).
I 11 will be the largest constant in Dy such that /11 < a, upy1 the smallest such that
a < Upyi- f’ is defined in such a way that it is compatible with the ordering of the a;’s,
ie.,

(a) If fr < fi, then f] = fp.
(b) If fx > fj, then f; = fr + 1.
(c) fTI’L-‘rl :fj-

In both cases, = F(¢')(a1,...,an41).0

Lemma 3.9 Let 9 be a formula, with at most k free variables, using only constants in Dy.
Let ¢ be an r-configuration of size k and = F(&)(a1,...,ax) and = F(§)(a),...,a}), then

= lar,. . a) P, ap).

Proof: We show, by induction on the size of 1, that the result holds for all r-configurations
¢ and all g;’s and a’s.

1. Atomic formulas. There are two types of atomic formulas z; < z; and z; < ¢ (¢ < z; is
treated similarly). In the first case, a; < a; iff f; < f;, and likewise, a} < ag- iff fi < f;.
Therefore, a; < a; iff a] < a/;. In the second case, a; < ¢ iff u; < cor l; < wu; < ¢, and
similarly for a/.

I.
it

2. If v is of the form =1y or 91 V 12, the proof is straightforward.

3. If ¢ is (3z)v’, then (aq,...,ax) satisfies ¢ iff for some a, (a1,...,ax,a) satisfies ¢/'. By
Lemma 3.8, there is an r-configuration ¢’ such that (aq, ..., ax,a) satisfies F/(¢'). Tt is easy
to see (by the existence argument in Lemma 3.8) that ¢’ must be an extension of £. Since
(a,...,a}) satisfies F(£), by Lemma 3.6 there is an o such that (af,...,a},a’) satisfies
F(¢'). But then, by the induction hypothesis, (a},...,a},a’) satisfies ¢, and therefore
(a,...,a}) satisfies 9. O

Lemma 3.10 Let { be an r-configuration, and 9 a formula using only the constants in Dy.
Then F(§) — 1 is valid (i.e., true for all assignments to its free variables) iff F'(§) A ¢ is
satisfiable (i.e., true for some assignment to its free variables).

24

Proof: If F(¢) — 1 is valid, then Lemma 3.7 implies that F(£) A is satisfiable. On the
other hand, if F(£) A ¢ is satisfiable, say by (a1, ...,ay), and F(£) is satisfied by (al,...,al),
then Lemma 3.9 implies that ¢ is satisfied by (af,...,a,). O

We now prove correctness of Boolean-EVAL,, and EVAL.

Lemma 3.11 The algorithm Boolean-EVAL(¢') described above returns 1 iff F(¢') — 4 is
valid.

Proof: The proof is by induction on the structure of .

1. % is an atomic formula z; < x;. The proof of correctness is trivial.

2. 1) is an atomic formula z; < c¢. Correctness when [; = u; < ¢ is trivial. When I; < u; < ¢,
correctness follows from the fact that ¢ € Dy and thus ¢ < u; implies ¢ < ;.

w

. % is an atomic formula ¢ < x;. The proof is similar with 2.

W

. 1 is 11 V 1h9. Correctness follows from Lemma 3.10, together with the fact that F(&') A
(11 V o) is satisfiable iff (F(€') A1) V (F(&') A o) is satisfiable.

5. 1 is ~)’. To show correctness we must show that F(¢') — —¢' is valid iff (F (&) — ¢)
is not valid. By Lemma 3.10, F(¢') — —' is valid iff F(&') A =)' is satisfiable. But
F(&") A=)’ is the same as —(F(¢') — 9'), which completes the proof.

(=]

. 1 is (3z)1y'. To show correctness it suffices, by Lemma 3.10, to show that F(¢') A (3z)'
is satisfiable iff F/(£") A1)’ is satisfiable for some £”.

For the if, assume that the formula F(£") A4 is satisfied by some (ay,...,a,,a). Lemma
3.6, then implies that F(&') A (3x)1)’ is satisfied by (a1,...,a,). For the only if, assume
that F(&') A (3z)vy' is satisfied by (a1, ..., ay). There must then exist an element a € D,
such that (a1,...,an,a) satisfies ¢'. By Lemma 3.8, there is a r-configuration &” such
that (a1,...,an,a) satisfies F(£"”). By restricting £’ to the first n variables, and using
Lemma 3.6 together with the uniqueness part of Lemma 3.8, it follows that £’ is an
extension of £’

To show that EVAL is correct, we have to show that it outputs a formula in DNF that is
equivalent to ¢. The formula output by EVALy is clearly in DNF, and it therefore suffices to
show:

Lemma 3.12 The result of EVAL is equivalent to the formula ¢.

Proof: Let S = {&1,...,&,} be the set of those configurations for which of F'(&;) — ¢ is
valid. Clearly, \/<;<, F(&) — ¢ is valid. For the converse, let (ay,...,a;) be an assignment
of values to the free variables of ¢ such that = ¢(ay,...,a;). By Lemma 3.8, there exists a
configuration £ such that (ai,...,ax) satisfies F'({). But then (a1,...,a;) satisfies F(&) A ¢,
and by Lemma, 3.10, it follows that £ € S, completing the proof. O

We still have to show that:

25

Lemma 3.13 EVALy4 can be implemented in LOGSPACE.

Proof: First, consider Boolean-EVALy. The first problem we have to address is that the al-
gorithm assumes that we have constructed the formula ¢, which cannot be done in LOGSPACE.
The solution is to use the query formula as given, switching to the database whenever the query
contains a predicate symbol, rather than copying explicitly the contents of the relation at this
point. This can be easily done with only a constant extra memory cost.

To run Boolean-EVAL, we need to store the current configuration. Since we have a fixed
query formula, we have a bound on the number of quantifiers, and hence on the maximum size
of the configurations we have to consider. It then follows that we can store each configuration
in LOGSPACE.

For a given configuration &, we use a fixed number of pointers to find the subformulas of
¢ and perform the appropriate steps of Boolean-EVAL, on them. Whenever we encounter a
predicate symbol, we use one pointer to remember where we are in the query, and a second
pointer to scan the database, as though it were part of the query formula at this point. The
first pointer is to remember where to return to after we reach the end of the database relation.

Most of the subcases of Boolean-EVAL,, are straightforward. When we are considering a
quantifier, however, we have to iterate over all extensions of £&. We can do this in LOGSPACE
by considering each extension to ¢ in turn, and first testing whether it is a legal configuration
or not. This shows that Boolean-EVAL,, is a LOGSPACE algorithm.

The algorithm EVALy iterates over all configurations £, and performs Boolean-EVAL4 on
each one. As before, we can easily iterate over all configurations in LOGSPACE, and this shows
that EVALy is also in LOGSPACE. O

Now we can show that:

Theorem 3.14

1. The relational calculus with dense linear order inequality constraints can be evaluated
bottom-up in closed form with LOGSPACE data complexity.

2. Inflationary Datalog™ with dense linear order inequality constraints can be evaluated
bottom-up in closed form and PTIME data complexity.

Proof: The first part of the theorem follows from Lemmas 3.12-3.13. Note that, EVAL,4
proceeds by structural induction on ¢ and all calls to its outermost for can proceed in parallel.

For the semantics of a query program =, of Inflationary Datalog™ with dense linear order
constraints, we have to iterate a relational calculus formula ¢,. We can use EVALy of the first
part of the theorem as one iteration of the query. Since the relational calculus formula is fized,
there are at most a polynomial number of r-configurations. Since under inflationary semantics
we can only add r-configurations at each iteration, we obtain a polynomial time algorithm
for Inflationary Datalog™ with dense linear order constraints. These iterations proceed in a
bottom-up fashion. O

26

A final observation involves the expressive power of Inflationary Datalog™ with dense linear
order inequality constraints.

Theorem 3.15 Inflationary Datalog™ with dense linear order inequality constraints can ex-
press any relational database query computable in PTIME (for a formal definition of these
queries see [11]).

Proof: As shown in [26] and [60] the fixpoint queries of [11] together with a finite discrete
linear order express exactly PTIME. It follows from the proofs of this fact, as well as the normal
form results of [26, 22, 1] that Inflationary Datalog™ with a finite discrete order expresses
exactly PTIME. These simulation proofs can be easily modified, by making all programs use
only constants appearing in the database. O

3.2 Datalog Bottom-up Evaluation Revisited

Let us now consider an alternative proof for the Datalog case of Theorem 3.14. The main idea
comes from the semantics of Constraint Logic Programming [27]. It involves generalizing the
notion of a Herbrand atom. The result is a “natural” bottom-up evaluation for Datalog with
dense linear order constraints.

Definition 3.16 Let P be a generalized database logic program, that is, a Datalog + constraints
program defining the IDB predicates and a generalized database defining the EDB predicates.

1. A generalized EDB Herbrand atom is an EDB predicate symbol with distinct variable sym-
bols as arguments and a conjunction of dense linear order constraints on these variables.
(Note that these atoms are generalized tuples).

2. A generalized IDB Herbrand atom is an IDB predicate symbol with distinct variable sym-
bols as arguments and an r-configuration £ on these variables. F(£), as in Definition 3.4,
is a conjunction of constraints on these variables. (Note that these atoms are generalized
tuples of a special form). O

Example 3.17 For example, an r-configuration can also describe a generalized Herbrand atom
when it is attached to a predicate symbol. Start from the r-configuration ¢ of Example 3.2,
assume predicate R has arity 5 and the database has only the constants {0, 1,2,3} in it. The
conjunction of constraints F'(£) gives us a generalized Herbrand atom denoted as:

R(z1,29,%3,24,25) —0< 11 <1 <z3=24<2=125<3 < To.

First, let us observe that r-configurations are closed under projection. We say that an r-
configuration is projected onto a subset of its variables when all the variables outside this subset
are eliminated, i.e., their bounds are deleted from /,% and they are removed from the ordering
f. Tt is easy to see that the projection of an r-configuration is an r-configuration of smaller size.

27

The evaluation of a generalized database logic program P starts by collecting in a set H
all the predicate, variable, and dense linear constant symbols that occur in the program, that
is, either in its rules or in its database part. We call H the generalized Herbrand base of P,
because all symbols that are ever used during our evaluation must be in H. Since each program
is by definition finite, H must be also a finite set.

The generalized Herbrand universe of P consists of all generalized EDB Herbrand atoms
of P (these remain fixed throughout the evaluation of the program) and all generalized IDB
Herbrand atoms that can be built out of the generalized Herbrand base. Since there is a finite
number of r-configurations the generalized Herbrand universe is finite. Its lattice of subsets is
also finite and thus complete.

We let an interpretation I of P be a subset of its generalized Herbrand universe, containing
all the generalized EDB Herbrand atoms of P.

Definition 3.18 Let P be a generalized database logic program and H be its generalized
Herbrand base. Let I be an interpretation of P. All generalized EDB Herbrand atoms of I are
derivable in one rule firing from P and I. Generalized IDB Herbrand atoms are derivable in
one rule firing from P and I as follows:

Choose any rule Ay :— Ai,Ag, ..., Ax,C of P, where Agy, A1, Ag,..., Ay are relational

atoms and C' is a conjunction of dense linear order constraints.

Without loss of generality the n occurrences of variables in the relational atoms are distinct
and any equalities are part of C.

1. Choose any r-configuration ¢ of size n built from H.
2. Check that F(¢) — C is valid, i.e., true for all values of the free variables.

3. If A;, 1 < i < k is an EDB relational atom R(...) then project { onto its variables
to produce r-configuration &;. Check that for some generalized EDB Herbrand atom
R(...) :— 1 in I we have that F'(§;) — 1 is valid.

4. If A;,1 <4 < k is an IDB relational atom R(...) then project ¢ onto its variables to
produce r-configuration §;. Check that generalized IDB Herbrand atom R(...) :— F(&;)
isin I.

5. If all tests are true and if Ay is the IDB relational atom R(...) then project ¢ onto its
variables to produce r-configuration &y. Fire the rule once to derive generalized IDB
Herbrand atom R(...) :— F(&)-

We define a function Tp from interpretations to interpretations as follows:

Tp(I) = {A: Ais derivable in one rule firing from P and I}

28

In the above definition, generalized IDB Herbrand atoms are effectively r-configurations
and are treated purely syntactically. The constraints C' and the generalized EDB Herbrand
atoms are treated in a slightly different fashion. This is because we avoid transforming them
into disjunctions of r-configurations. This could be done but would be rather awkward and
unnecessary. Let us comment on the tests involving C' and the EDBs.

(1) Checking that F'(§) — C is valid can be done simply by picking one assignment to the
variables that satisfies F'(¢) and verifying that it satisfies C. This is by Lemmas 3.9 and 3.10.

(2) Checking that, for some generalized EDB Herbrand atom R(...) :— 1, the implication
F(&;) — 1 is valid can be done scanning the input and for each tuple checking as in (1) above.
The reason for this test is to guarantee that the multi-dimensional points of F'(¢;) are points of
the input generalized EDB relation r that corresponds to R. Recall that ¢, is a DNF formula,
in fact, it is the disjunction of all possible v’s of this test. It is interesting to note that by
Lemmas 3.9 and 3.10: F(&;) — ¢, is valid iff F(&;) — Vv is valid iff F/(&§) A\ % is satisfiable
iff for some v, F(&;) A 1) is satisfiable iff for some 1, F(&;) — 1 is valid.

We define a model M of P to be an interpretation of P such that Tp(M) C M. P may
have several models ordered according to set inclusion. We have the following analogues to
traditional logic programming;:

Theorem 3.19 Let P be a generalized database logic program and Lp the intersection of all
models of P. Then we have that,

1. Lp is the unique least model of P.
2. Lp is the unique least fixpoint of Tp.

3. Lp can be produced by a finite number of iterations of the mapping Tp.

4. Fach generalized Herbrand atom in Lp is derivable by a finite number of rule firings from
the interpretation with empty IDBs.

5. Lp can be evaluated bottom-up in PTIME data complexity, by rule firings starting from
the interpretation with empty IDBs.

Proof: (1) Identical to traditional logic programming model intersection property for Horn
clauses. (2) By Tarski’s theorem on the complete lattice of subsets of the generalized Herbrand
universe. (3) By the finiteness of the generalized Herbrand universe. (4) and (5) The arguments
are the same as for Datalog “naive” bottom-up evaluation. O

Call generalized naive evaluation the bottom-up evaluation by rule firings starting from the
interpretation with empty IDBs. This evaluation has the well defined finite output Lp. Is this
generalized database output the desired result according to the semantics defined in Section 17

Recall that for the semantics in Section 1 we interpreted programs as mappings from unre-
stricted relations to unrestricted relations. These semantics are computable via naive evaluation
of Datalog rules on unrestricted relations.

29

The following theorem expresses the fact that generalized naive bottom-up evaluation of P
is semantically sound and complete. Namely, given any generalized database representing input
unrestricted relations then its generalized database output Lp finitely represents the output of
naive evaluation on the input unrestricted relations.

Theorem 3.20 Let P be a generalized database logic program with generalized EDB Herbrand
atoms d;j. Let do be the unrestricted relational database represented by the generalized database
dy, that is, points(di) = do. If Lp(dy) is the output of the generalized naive evaluation of P
and Lp(dz) is the output of the naive evaluation of P[dy/d;] (with input dy instead of d;) then
points(Lp(di)) = Lp(ds).

Proof: We need to prove two directions. The soundness direction, that is, any point p in
points(Lp(dy)) is also in Lp(dz), and the completeness direction, that is, any point p in Lp(ds)
is also in points(Lp(dy)).

We prove each direction by induction on the number of iterations 7 of the two evaluations.
We shall show that for each 4, points(Th(d1)) = Th(dz2). Since generalized naive evaluation is
finite this also proves that a finite number of iterations suffice for naive evaluation as well!

For i = 0, we have points(T%(d1)) = points(d;) = do = T3(d>), hence the claim holds. Now
we assume that points(Th(d1)) = Th(dy) is true and prove the equality for 7 + 1.

For the soundness direction, let Ag :(— A1, Ag, ..., A, C be any rule of P where C are dense
linear order constraints. To perform a rule firing of generalized naive evaluation, assume that
an r-configuration ¢ is chosen whose set of satisfying points also satisfy C. Suppose that each of
the projections of £ onto the A’s of the body are r-configurations whose set of satisfying points
are also satisfied by some atoms of T(d;). Then by our rule application ¢ is projected onto
the head of the rule and is turned into an atom of T (d;). Now let p be any point within ¢.
Then all the projections of p are points. By the induction hypothesis, points(T%(d;)) = Th(dz).
Therefore, each projection of p onto the A’s of the body must be points within T};(dg). Hence,
taking that collection of points from T%(dz) we can derive via naive evaluation into T (da)
the projection of p on the rule head. Thus, points(T5M (d1)) C T (dy).

For the completeness direction, let Ay :— A, Ag, ..., Ag, C be any rule of P where C are
any dense linear order constraints. To perform a rule firing in naive evaluation, assume that
some point p is chosen as the values of all variables in the rule. Suppose that the projections
of p are all present among the atoms of T%(ds), and hence the projection of p on the head
is derived into T5™(dy) (call it p’). By Lemma 3.8 p satisfies some unique r-configuration
&. Use that ¢ and generalized naive evaluation. The point p must also satisfy C' and by
induction some atoms in 7 (d;). By Lemma 3.9 all points in ¢ satisfy exactly the same formulas.
Hence, taking ¢ a generalized naive rule firing can derive (as a projection of ¢ onto the head)
an atom of Tlifl(dl) that contains p’. We can reason similarly for each point, proving that
T (dg) C points(Th ™ (dy)). O

30

3.3 Datalog Derivation Trees and Parallelism

A generalized derivation tree for generalized Herbrand atom A using program P is a tree whose
nodes are labeled as follows:

1. A labels the root.
2. Every leaf is labeled by a generalized EDB Herbrand atom of P.

3. Every internal node is labeled by a generalized IDB Herbrand atom B. Let its children
have labels Bi, ..., Bg. There is a rule in P and an r-configuration such that: B is derived
by one firing of this rule using B, ..., By as atoms and this r-configuration.

Each generalized derivation tree illustrates one possible sequence of rule firings to derive
the label of its root. An obvious parallel evaluation method tries all possible ways of firing each
rule in every iteration step. Therefore the number of iteration steps necessary for this parallel
algorithm to derive an IDB atom is exactly the minimum depth generalized derivation tree for
the IDB atom.

This observation motivates the definition of a generalized polynomial fringe property. We
say that a program P has the generalized polynomial fringe property, if each atom in Lp has a
generalized derivation tree with at most a fixed polynomial (in the size of the EDB part of P)
number of leaves.

The (generalized) polynomial fringe property is a semantic notion. A natural class of
queries can be described purely syntactically by piecewise linear programs—see [55] for the
exact definition. Following [55] one can show that piecewise linear programs always have the
(generalized) polynomial fringe property.

Theorem 3.21

1. Datalog programs with dense linear order constraints that have the generalized polynomial
fringe property can be evaluated bottom-up in closed form and NC data complexity.

2. Piecewise linear Datalog with dense linear order constraints can be evaluated bottom-up
in closed form and NC data complexity.

Proof: Use the analysis of parallelism in Datalog programs by Ullman and van Gelder [55]
by substituting “generalized derivation tree” for “derivation tree”. O

We close this section with the observation that our development of constraint logic pro-
gramming machinery can have many applications. For example, various forms of analysis of
Datalog™ in logic programming (e.g stratified or inflationary semantics) can be directly trans-
lated into Datalog™ + dense linear order constraints.

31

4 Equality Constraints over an Infinite Domain

Throughout Section 4, we assume that the constraint domain D is the set of integer numbers,
but our analysis applies to any countably infinite set. In a sense, we have a special case of
Datalog ™ and dense linear order constraints. We present a separate analysis because for dense
linear order constraints we expressed # using <, but here we cannot.

We are interested in this class of constraints for the following reason. Suppose we have a
relational database. Any finite relation in this database can be represented as a set of equality
constraints. However, in the relational data model, there are “unsafe” queries for which the
result is not finite. This is a significant restriction in the relational model, since there is no way
to deal with these queries. However, in our generalized setting, the problem goes away. as long
as the result has a finite representation of the appropriate kind.

For the relational calculus and Datalog™ applied to finite relations there are similar results
in the literature [3, 31, 25]. Our work extends some of the results of [3, 31, 25], by adding
recursion and handling any input generalized relation. In fact, the specific number of constants
added in [3] and [25] to the “active domain” (the set of constants that appear in the database
and in the query) corresponds precisely to the induction depth used in proving our evaluation
method correct.

We show similar results to the dense linear order case, namely that the relational calculus
with equality constraints can be evaluated bottom-up in closed form and LOGSPACE data
complexity, and that inflationary Datalog™ with equality constraints can be evaluated bottom-
up in closed form and PTIME data complexity.

The algorithm and proofs follow the same outline as those in Section 3.1. We have to use
a different notion of configuration. As in Section 3.1, let ¢ be the query formula applied to the
given database instance, and let Dy be the set of constants that appear in ¢. We will also have
a special symbol o whose meaning will be explained below.

Definition 4.1 An e-configuration ¢ = (€,7) of size n consists of an equivalence relation € on
{1,...,n} and a sequence T = (vy,...v,), where each v; is in Dy U {0}, such that,

1. If i e j, then v; = v;, and
2. If v; =vj #o,theniej. O
Consider a point T = (z1,...,zy). The e-configuration that contains T is determined as
follows. The equivalence relation € is defined by i € j iff z; = x;. If z; is equal to some constant

v in Dy, we set v; equal to v. Otherwise v; will be the special symbol o whose meaning is that
x; is not equal to any constant in Dy.

Example 4.2 Let Dy be the set {1,2}. The sequence (1,1,2,4,2,4,3) is represented by the
e-configuration that consists of the equivalence relation € = {{1,2},{3,5},{4,6},{7}} together
with the sequence 7 = (1,1,2,0,2,0,0). O

32

We now proceed as in Section 3.1.

Definition 4.3 The formula F(§) with n free variables {z1,...,z,} that corresponds to an e-
configuration £ = (€,7) of size n is the conjunction of: (1) z; = z;, whenever i € j, (2) z; # z;,
whenever —(i € j), (3) z; = v; whenever v; # o, and (4) for all v in Dy, z; # v whenever v; = o.
O

Definition 4.4 = F(¢)(ay,...,a,) means that F(§) is satisfied by the assignment of each q;
to the corresponding variable z;.O

Definition 4.5 Let £ = (e,7) be an e-configuration of size n. An e-configuration ¢’ = (€/,7)
of size n + 1 is an extension of £ iff

1. Forall i and j, 1 <14,j <n,iejiff i€ j, and

2. 7 = (v1,...,09,0}4,).0
Lemma 4.6 Let £ be an e-configuration of size n, and let ¢’ be an extension of size n + 1.
Then E F(&)(a1,...,an) iff for some a, = F(¢')(a1,...,an,a).

Proof: Since F(¢) is a conjunction of some of the conjuncts in F(¢&'), F(&') (a1, .. ,an,a)

implies F(¢)(aq,...,a,). For the converse,

1. If for some 4, i € n+ 1, let a = a;.

2. Otherwise, there are two cases. If v) ; is in Dy, let a = v;,, ;. Otherwise, let a be some
element of the domain different from a1, ..., a,, and not in Dy. This is possible because
there is an unbounded supply of integers. In both cases, it follows that (ai,...,an,a)
satisfies F'(¢').0

Lemma 4.7 Let ¢ be an e-configuration of size n. Then there exist domain elements aq, ...,
ap, such that = F(&)(a1,...,a,).

Proof: Induction on the size of &, using Lemma 4.6.0

Lemma 4.8 Let ay, ..., a, be domain elements. There exists a unique e-configuration ¢ such
that = F(§)(a1,---,an)-

Proof: Uniqueness follows from the fact that if ! # £2, then F(£') A F(£?) is unsatisfiable.
To show this, suppose that (ai,...,a,) satisfies F(£Y) A F(£2). Let ¢! = (el,o!) and €2 =
(,7°).

1. Suppose that &' # 2. Let 4 and j be such that i € j but —(i € j). Then F(¢')
contains the conjunct z; = z;, while ¥’ (€?) contains the conjunct z; # zj, and therefore
F(£') A F(£?) is unsatisfiable.

33

2. Suppose that ' = € but v! # v2. Let i be such that v} # v?. If neither v} nor vh is
equal to o, then F(£!) contains the conjunct z; = v}, while F(¢2) contains the conjunct
z; = v2. If on the other hand, say, v} = o, then F(¢!) contains the conjunct z; # vZ,

while F(£2) contains the conjunct z; = v?.

Existence is shown by induction on n. The case n = 1 is trivial. Assuming that the result
holds for n, let ai,..., ay, ap+1 be given, and let € be such that (aq,...,a,) satisfies F ().
We show how to extend £ to &' such that (aq,...,a,+1) satisfies F(¢'). There are two cases to
consider for a = a,41:

1. For some i, a = a;. &' is defined by j € k iff j € kK whenever 1 < j,k <n, and j € (n+ 1)
whenever i € j. Also set v;, ;| = v;.

2. If a # a;, for all 4, we define the extension & of e by =(i @ n + 1) for all 4 from 1 to n. If
a € Dy, then v} | = a, otherwise v],, | = o.

In both cases, = F(¢')(a1,-..,an41).0

Lemma 4.9 Let ¢ be a formula, with at most k free variables, using only constants in D.
Let ¢ be an e-configuration of size k and = F(¢)(a1,...,ax) and = F(§)(a},...,a}), then

E(al,...,ap) ©F Y, ..., a)).

Proof: We show, by induction on the size of ¥, that the result holds for all e-configurations
¢ and all @;’s and a}’s.

1. 9 is ; = c. Then ¢ must be in Dy, and therefore F'(£) must contain one of the conjuncts
(z; =c)ifvy=cor (z; =) ifv;=C,c+# or (z; # c) if v; = o. Since we assume that
distinct constant symbols denote distinct elements we have: a; = ¢ iff a} = c.

2. If) is of the form z; = x; or =41 or 11 V 12, the proof is straightforward.

3. If ¢ is (z)y’, then (ay,...,ax) satisfies 9 iff for some a, (ai,...,a,a) satisfies ¢'. By
Lemma 4.8, there is an e-configuration ¢’ such that (ai,...,ax,a) satisfies F(&'). Tt
is easy to see that ¢ must be an extension of . Since (al,...,a}) satisfies F(£), by
Lemma 4.6 there is an o' such that (a,...,a},a’) satisfies F'(¢'). But then, by the
induction hypothesis, (a},...,a},a’) satisfies ¢, and therefore (a!,...,a}) satisfies 1. O

Lemma 4.10 Let £ be an e-configuration, and ¢ a formula using only the constants in Dy.
Then F(§) — % is valid (i.e., true for all assignments to the free variables) iff F(£) A v is
satisfiable (i.e., true for some assignment to the free variables).

Proof: If formula F(£) — 4 is valid, then Lemma 4.7 implies that F(£) A 1) is satisfiable.
On the other hand, if F(§) A v is satisfiable, say by (a1,...,ay), and F(§) is satisfied by
(ay,...,al), then Lemma 4.9 implies that ¢ is satisfied by (af,...,a}). O

*'n

34

In the same way as we did for dense linear order, we can define algorithms EVALy4 and
Boolean-EVAL,. These algorithms are similar to those for dense order, but use e-configurations.
For example, the algorithm Boolean-EVAL,, takes as input an e-configuration ¢ and a formula
1 that uses only constants in Dy. It returns 1 iff F({) — 4 is valid. Only the base cases of
Boolean-EVALy (§) are different from the dense linear order case:

1. 9 is an atomic formula z; = z;. Boolean-EVAL, (&) returns 1 iff i € j in &.

2. 1 is an atomic formula z; = c. Boolean-EVAL (&) returns 1 iff ¢ = v; in €.

The proof of correctness and the complexity analysis proceed in an analogous way to the
analysis of dense linear order. Also, for equality constraints we can develop constraint logic
programming machinery analogous to that of the previous sections. Therefore:

Theorem 4.11

1. Relational calculus with equality constraints over an infinite domain can be evaluated
bottom-up in closed form and LOGSPACE data complexity.

2. Inflationary Datalog™ with equality constraints over an infinite domain can be evaluated
bottom-up in closed form and PTIME data complexity. O

5 Boolean Equality Constraints

In this section, we describe the addition of boolean equality constraints to Datalog. The idea
is to use boolean operations as shorthands for manipulating various boolean domains, finite or
infinite.

In order to make the material self-contained, we first give some definitions and basic facts
about boolean algebras (Section 5.1). In Section 5.2, we describe the syntax and semantics
of a simple language, which we motivate using some examples. Note that, in this section, we
“parameterize” the concepts of database and general database. This allows more generality and
more flexibility in the language. Finally, in Section 5.3, we describe some lower bounds related
to bottom-up evaluation of fixed size programs, i.e., related to data complexity.

5.1 Boolean Algebras

A boolean algebra B is a sextuple < D, A,V,',0,1 >, where D is a set, A, V are binary functions,
"'is a unary function and 0, 1 are two specific elements of D (or zeroary functions) such that
for any elements z, y, and z in D the following axioms hold:

35

zVy = yVux TNy =

<
>
8

zV(yANz) = (eVyA(xVz) zA(yVz) = (zAy)V(zAz)
zVz = 1 zAzr = 0
V0 = =z zAN1l =z
0 # 1

For boolean algebras there is a representation theorem, known as Stone’s theorem: “Every
boolean algebra is isomorphic to a field of sets and every finite boolean algebra is isomorphic to
the power set of a finite set”. Thus, there is a unique (up to isomorphism) finite boolean algebra
for every cardinality 2. The boolean algebra of cardinality 22" is the one freely generated by
m generators and is denoted by B,,. For m = 0, we have Bo=({0,1},A,V,",0,1).

Let (D,A,V,",0,1) be any boolean algebra. Then the structure (D, A, ®,0,1), is called a
boolean ring with unity if we define for any elements z and y the binary function z®y (exclusive-
or) as (z Ay') V (' Ay). Because of one-to-one correspondence between boolean algebras and
boolean rings with unity the theory here can be developed in either setting [40]. In what follows
we use algebras and, sometimes, the exclusive-or as an abbreviation.

Boolean Terms: We use T'(F,V U C), for the set of terms built in the usual way, from F the
set of function symbols {A,V,",0,1}, V a set of variable symbols, and C a of constant symbols
distinct from 0,1. Ground terms are those terms which do not have any variable symbols
appearing in them. A (B,o)-interpretation is a pair, where B is a boolean algebra and o is
a mapping of the constant symbols C' to the elements of B. For each t in T(F,V U C), given
a (B,o)-interpretation and an element of B for each variable symbol appearing in ¢, we can
evaluate ¢ in the usual way and have it denote one element of B.

Boolean equations: An equation between terms ¢; and ¢y in T'(F,V UC) is a statement t; = t5.
We say that: (1) t; = t9 is true in B, o if after applying o to the constant symbols in 1,1,
then for every substitution of the variable symbols by elements of B, t; and ¢35 denote the
same element of B. (2) t1 = to is true in B if it is true in B, o for every o. (3) t; = tg is
true if it is true in every B. A number of useful properties hold in all boolean algebras. For
example, the following equations are true: zV (yVz) =(zVy)Vz, zA(yAz)=(zANy) Az,
z® (y®z) =(zdy) ® 2. For another useful example:

Lemma 5.1 Let t(z1,29,...,2,) be a term, where the z’s are the distinct variable or constant
symbols occuring in it. Then the following equation is true:

t(21,22, -y 2n) = (80,225, 2n) A21) V (81, 22,...,2n) A 21)0

Disjunctive Normal Form: We use the convention that 2z means 2’ and z' means z. Also, that
the 2z’s are ordered lexicograpically from z; to z,. Then, we also may write the equation in the
previous lemma as (21, 22, - .., 2n) = Vg, =01} (t(a1,22, ..., 20) A 2{'). By repeatedly using the

36

above lemma and the nine boolean algebra axioms, it is possible to transform each term into
the following disjunctive normal form:

t(z1,--m) =\ (ar,-.,an) AZ{ A 252 A LA 20
a={0,1}»
where \/4_ (0,1} denotes the disjunction of all 0, 1 substitutions for ai,...,a,. The function
determined by t(z1, ..., z,) depends only on the values of the 2" expressions t(ay, ..., a,), where

each a; is either 0 or 1. One can see that each of these 2" expressions has value either 0 or
1. Hence, it is possible to see that there are 22" disjunctive normal forms with n variable and
constant symbols.

Constructing B,,: We give a simple example of how to construct the free boolean algebra B,,
out of a set of m constant symbols C = {c;,...,cp}. First we build all possible ground terms.
Next we find all the equivalence classes of ground terms under the boolean algebra axioms.
Each equivalence class is an element of B,, and corresponds to a disjunctive normal form.
There are 22" distinct equivalence classes or elements of B,,. We call the constant symbols the
generators. (Note that, naively we would have used 2™ bits to represent every element of By,
but this way we can use logm bits for each generator).

Definition 5.2 A boolean equality constraint is a statement of the form ¢(zZ,¢) =g, 0, for a
(B, o)-interpretation and a term ¢ built using a set of variables T and a set of constants .
(We sometimes omit subscript o if it is obvious from the context).

Constraint ¢(Z,¢) =g 0 has a solution if the formula 3zZ(¢(z,¢) = 0) is true in B,o (i.e,
if after applying o to the constant symbols in %, there exists a substitution of the variable
symbols by elements of B that makes ¢ denote the 0 element of B). A solution of a constraint
is a substitution that makes ¢ denote 0. O

It is always enough to use boolean constraints of the form above, because the general
constraint ¢ =p , to has the same solutions as the constraint ¢; ® to =, 0, just by using the
boolean algebra axioms and the definition of &.

A useful fact about solving equations in boolean algebras is Boole’s Lemma, which can be
proven using the nine boolean algebra axioms and the disjunctive normal form described above.
Boole’s Lemma gives a simple way to eliminate existential quantifiers.

Lemma 5.3 The boolean equality constraint ¢(z1,z2,...,2n,¢) =B 0 has a solution iff the
constraint ¢(1,z2,...,z,,¢) A t(0,22,...,2,,¢) =B 0 has a solution iff /\56{0,1}" t(b,e) = 0
is true in B,o. Furthermore, the set of substitutions for zo,...,z, that make the formula
3z1(t(z1,z2,...,2n,€) = 0) true in B,o is the same as the set of solutions of constraint
t(1,z9,...,2n,¢) Nt(0,29,...,24,C) =B 0. O

Remark F: In Lemma 5.3 the expression Agcry1}n t(b,¢) denotes the conjunction of all 0, 1

substitutions into the variable symbols of t(x1,z2,. .., Ty, <) and is the same expression for all
B, 0. Note that the correctness of Boole’s Lemma is trivial if B happens to be By, otherwise
the conjunction may well be 0 even if none of its conjuncts are. O

37

5.2 Bottom-Up Evaluation of Datalog with Boolean Equality Constraints

The following evaluation method applies to any B, o-interpretation. We only describe a lan-
guage for the boolean equality constraint part. This language can easily be combined with the
one for dense linear order constraints, as we illustrate in the last example of this section.

Syntaz: Here, for simplicity of presentation, we use the convention that the various occurrences
of T and 7 are possibly different vectors of variables from the set {z1,...,z;,y1,...,y}, and
%o(Z) =B,¢ 0 and Y,4+1(Z,Y) =B, 0 are boolean equality constraints.

(1) The facts (or generalized tuples) have the form, Ry(Z) :— 1 (T) =B, 0.

(2) The rules have the form: Ry(Z) :— Ri(Z,9), ..., Rk(T,7), ¥k+1(Z,Y) =B, 0.

In these facts and rules all the T variables that appear in the body appear in the head. The i
variables appear only in the body.

Semantics: A set of rules and facts defines, in the standard fashion, a monotone mapping from
relations whose elements are from B to relations whose elements are from B. The semantics of
this set of facts and rules is the least fixpoint of this mapping.

One constraint suffices per fact/rule: Because, from the axioms one can show the equivalences:
(1) a =B, bhas the same set of siolutions as a®b =p, 0, and (2) a =p, 0 and b =g, 0 have the
same set of solutions as aVb =p , 0, which has the same set of solutions as a®b® (a Ab) =g 0.
Using these properties many constraints can be equivalently replaced by one.

Bottom-up FEvaluation: We describe the firing of one rule. Assume that we have either given
EDB or derived IDB facts R;(T,Y) :— 9%i(Z,9) =B, 0 1 <1i <k, and that we have the rule
Ry(z) :— Ri(T,7), .-, Re(T,9), Yx+1(Z,¥) =B,s 0. We produce a quantified description of the
set of tuples from B that such a firing will derive.

RI = {R(E) : E@TPI(T, ?) =—B,o Oa cee a"pk(fa y) =B,o Oawk—I—l (T, ?) —B,o O}

;From the above remark, it follows that R’ can be represented as a set of facts that satisfy
one equation, except for the quantified variables on the right side. These extra variables can
be eliminated by using repeatedly Boole’s Lemma that formula 3y (y,Z) = 0 is satisfiable
in B,o iff ¥(0,Z) A ¢(1,Z) =B, 0 has a solution. This allows us to add R’ in unquantified
single equation form to the derived facts. (Note that, here we use Boole’s Lemma to eliminate
quantifiers instead of some other “boolean unification” algorithm).

Soundness and Completeness: The bottom-up evaluation consists of repeatedly firing rules
starting from the input (EDB) facts and rules. Since the transformation into a single constraint
and the quantifier elimination preserve the set of solutions, this bottom-up evaluation does
implement the intended semantics.

Termination: As shown in the following theorem, this bottom-up evaluation can be made to
terminate after a finite set of firings, by using the property that terms can be rewritten (via
the axioms) into equivalent disjunctive normal forms.

We present now the simple “adder circuit” example of Buttner and Simonis [10], but in
this case we use bottom-up evaluation to illustrate the previous method.

38

Example 5.4 An adder circuit can be built from two half-adder circuits. We define the oper-
ation of the half-adder by a simple database fact using finite boolean equality constraints over
By. Note that here ¢ is empty and we omit it.

Halfadder(z,y, z,w) —x ®y =p, 2, L Ny =B, w

where = and y are input variables, z is the sum and w is the carry. Turning the two constraints
in the body into a single equivalent one we have:

Halfadder(z,y, z,w) — (z @y d2)V((z Ay) dw) =, 0

The adder circuit can be described by the use of two half-adder circuits and an extra constraint,
where = and y are input variables, c¢ is carry in, s is sum, and d is carry out.

Adder(z,vy,c, s,d) — Halfadder(z,y, s1,c1), Halfadder(s1,c, s,c2),d =g, c1 V ¢2

When using these definitions as a database query, the evaluation proceeds bottom-up,
substituting the constraints of the halfadder into the rule for the adder. That yields:

Adder(z,y,c,8,d) — (c1Ve2) ®d=p, 0,(zByds1)V((zAy)®ci) =g, 0,
(51@c®s)V((s1Ac)@c2) =B, 0

By transforming the three constraints in the body into one and using Boole’s lemma to
eliminate s1,c1, o we can transform the above into:

Adder(z,y,c,8,d) — (zDydcds)V((zAy) D (zAc)D(yAc)dd) =p, 0

Example 5.5 Suppose we replace the variable symbols z,y and ¢ in Example 5.4 by the
constant symbols X,), C. Then we get expressions for a subset of the variables in the constraint,
that is, for s and d, in terms of the constant symbols, that is, the parameters, X,),C. For
example, one solution would be s =g, Y &Y ®C and d =g, (¥ ANY)® (X AC) & (Y AC). This
says that given any o that interprets X',), C as elements of By, then s and d will be computed
according to the last two constraints. (See also Remark G below). O

Next we show that this evaluation method works in general by the following theorem.

Theorem 5.6 Let () be any query program of Datalog with boolean equality constraints over
some B,o. Then Q can be evaluated bottom-up in closed form.

Proof: Let v be the maximum arity of a relation in the given query program. Let m be the
number of constant symbols in the program and the input database. Our evaluation method
will consist of a number of iterative steps. In each step we add all new facts that can be derived
from the already known facts and rules. By the proper substitutions of database facts into the

39

rules we get formulas on the right-hand side of the rules. From these formulas we eliminate
existentially quantified variables using Lemma, 5.3.

We also have to show that the procedure terminates. To do that, we always keep every
fact in disjunctive normal form. Note that Lemma 5.3 does not introduce any new constant
symbols, hence the number of constant symbols m does not change during evaluation. The
quantifier elimination yields constraints that have up to m constant symbols and v variables.
That means that the constraints for each relation R can be represented by at most 22"
facts by counting only disjunctive normal forms. Hence, after each iteration step, every newly
derived constraint can be compared easily with facts already present in the database. If all
newly derived constraints are already present, then the iteration can stop, otherwise we add
the new constraints. This procedure clearly must terminate because there are only a finite
number of facts that can be added. O

A parametric fact (or parametric generalized tuple) is a fact (or generalized tuple) for
which we have not specified either B or ¢ or both. A parametric generalized database is a
set of parametric generalized tuples. (Note the difference between a parametric tuple and a
generalized tuple. A generalized tuple describes the set of all tuples that one gets by substituting
values for its variables. A parametric tuple describes a single tuple, given a substitution for its
parameters).

Example 5.7 As a simple example consider the problem of finding the parity of n bits. By
considering these n bits as parameters, a simple solution would be the following;:

Paritybit(z) — z =By o V1DV @ ... O Vn

Each different ¢ would be a different assigment of values from By to these n parameters. So if
we do not specify o this would be a parametric fact. O

Remark G: For the procedure described in Theorem 5.6, the particular B, in which the
constants are interpreted are not important. Syntactically, the same constraints are derived by
the evaluation algorithm for each B, . This is really a consequence of Lemma 5.3 and Remark
F. Therefore, we have that:

The evaluation of Theorem 5.6 can be applied to an input parametric generalized database d
to produce an output parametric generalized database Q(d), such that for each I = (B,o) we

have I(Q(d)) = Q(I(d)). D

iFrom a practical point of view, boolean equality constraints can be added on top of the
Datalog framework with dense linear order that we already examined in Section 3.2. We can
strictly sort the arguments of each database predicate, e.g., each argument can range either
over the rationals or over a finite boolean domain. All of our results still hold in this combined
framework.

Example 5.8 If the number of bits n of the previous example can vary, then we do not want
to write a new program each time n changes. We would like to have a fixed program and change
only the input (generalized) database or the input parametric (generalized) database. This we
could do with the following program:

40

Paritybit(x) ~— Parity(k, z), Last(k)

Parity(i,) =— Parity(j,y), Nezt(j, 1), Input(i, z),z =B, o Yy ® 2
Parity(1,z) :— Input(1, 2)

where we use Nezit(1,2),..., Next(n — 1,n), Last(n), and Input(1,)1),..., Input(n,),) as the
parametric database inputs to the Datalog with boolean and dense linear order constraints
program. We use in this example n explicitly given elements of the nonboolean domain to
order the parity computation. Then the program recursively finds the parity bit for the first ¢
bitsfor 1 <i:<n. O

5.3 Data Complexity and Finite Boolean Equality Constraints

For each fixed finite boolean algebra B, fixed Datalog query) with constraints over B, o, and
variable input generalized database d with constraints over B, o, query evaluation is a constant
size problem.

This is because: Given an input generalized database d (even with an asymptotically grow-
ing number of constant symbols) and a fixed finite boolean algebra B and a o, it is possible
to make the number of constant symbols fixed by substituting for them elements of B using o.
B has a constant number of elements and () has a constant number of variables, because they
are fixed. So the constraints can be eliminated by substituting the variables with elements of
B, and checking in which substitutions the constraints hold. Each time the constraint holds,
record the database tuple implied. That yields a database d’ that is equivalent to generalized
database d. The size of d’ is at most a constant. Hence the query evaluation is in this case a
trivial problem. For example, the adder circuit can be described using width 5 constant size
relations over 0,1 that define bit addition.

Recall, however, that the procedure described in Theorem 5.6 is “parametric”, i.e., syntac-
tically the same constraints are derived by the evaluation algorithm for each B, o. This might
be wasteful for the case of fixed B and @), but it is a general method applicable when B is
part of the problem input and when we do not know o a priori (so we have to manipulate the
constants symbolically).

We now take an algebra that is closer to the idea of our “parametric” evaluation than a
fixed algebra. Namely, we assume that the algebra is part of the input. In particular we assume
that the algebra is B,, where m is the number of constant symbols c¢i,..., ¢, in the input
database and the program. In the rest of the exposition, we assume that ¢ maps ¢, ...,cn to
the generators of B,,, so we omit the subscript ¢ in constraints.

Lemma 5.9 Let ¢(z1,...,%n,91,--.,Ym) be a term over variables z1,..., %y, y1,---,Ym and
the function symbols A,V,. Let B,, be the free boolean algebra generated by the constant
symbols c¢i,...,¢y. Then the formula Vy3zy(z1,...,%0,y1,...,Ym) = 0 is true in By if and
only if the constraint ¢ (z1,...,zn,c1,-..,cm) =B, 0 has a solution.

41

Proof: Note that in this proof we have to reduce a decision problem of size [to another
decision problem of size [, where [is the size of the formula 1). We do the proof by rewriting
the first problem to the second one, using identities, i.e. we will use iff steps in the reduction
instead of proving both directions separately.

First, we rewrite Vy3z(21,-..,%n,Y1,---,Ym) = 0 is true in By into:

Vge(0,13m Fze(o,13» ¥ (21, - -, Tn, Y1, - - -, Ym) = 0) is true in By by recognizing that each
variable must be either 0 or 1 and by adding parenthesis for clarity.

Note that the subformula within the parenthesis has a solution for the %’s if and only if the
conjunction of all 0,1 substitutions into the z variables has a solution for the y’s , that is, if

and only if| V?E{O,l}m(/\ie{o,l}n Y(T1ye ey Tpy Y1y -+ Ym) = 0) is true in By.

The last formula is true if and only if each of the 2™ subproblems that result from 0,1
substitutions to the y variables is true. By using the identity that ¢ =p 0 and b =p 0 iff
aVb =g 0, the last formula can be rewritten as V¢ 13m (/\56{071}71 V(T Ty YLy e Ym)) =
0 is true in By.

Claim: The last formula is equivalent to Azcjo13n (X1, TpyClye .y Cpy) = 018 true in By,.
(This claim is the basis of Martin and Nipkow’s method [40], but we can prove it in a simple
way as follows).

To prove the claim rewrite the term in the claim into disjunctive normal form. We get
geioym (Azeqo,yn Y(T15- -3 Ty Y15+ Ym)) A A" A...Ac¥m. Note that in B, the constant
symbols are distinct, and their complements are distinct from each other and from 0 and 1.
(It is a well-known fact that each element of a boolean algebra has only one complement.)
Hence none of the last m conjuncts is either 0 or a complement of another one among the last
m conjuncts. (These are the only ways we can prove a conjunction to be equivalent to 0.)
Therefore the conjunction of the last m conjuncts is never 0. Hence, the first conjunct, which
could be only 0 or 1, must be always 0 if the whole formula is 0 in B,,. Hence, the formula
can be 0 in By, if and only if Vye(o13m (Azeqo,13n Y(15- - Zn, Y15+ -+, Ym)) = 0 is true in By,
Since we don’t have any constant symbols in the formula, instead of B,,, we may use By, which
proves the claim.

So far we have rewritten the formula to AEE{O,l}n (X1, .., TpyClye .. Cp) = 0 is true in
Bp,. Finally, we use Boole’s Lemma to get the formula Jz¢(p, 29 (21, -, Tn, €15+ -5 ¢m) = 0
is true in B,,, which is equivalent to saying that ¥ (z1,...,zp,c1,...,cn) =B, 0 has a solution.
O

Note that, we cannot guess and verify a solution of ¥(z1,...,Zp,c1,...,¢n) =B, 0 that is

small. The size of each element of B,, can be very large. In fact:

Corollary 5.10 Given as inputs any ¢ and m, where t is any boolean formula with constant
symbols c1,...,cn, deciding whether ¢t =g 0 has a solution is ITh-complete (where By, is the
free boolean algebra generated by the constant symbols ci,...,¢y). O

42

Theorem 5.11 There is a fixed yes/no query program @ in Datalog with finite boolean equality
constraints such that: If for each input database d, with constant symbols ci,...,c,, we take
the o that maps these constant symbols to themselves and we interpret B as B,,, then deciding
whether Q(d) is yes is IT5-hard.

Proof: Our reduction will use the AE-quantified boolean formula problem (see Section
1.2). We will produce a yes/no query expressed in Datalog with boolean equality constraints
over the finite boolean algebra B,,, which is the free boolean algebra generated by m constant
symbols, such that the query answer is YES iff the quantified boolean formula V33z¢(Z,7) = 0
is true in By. In this reduction m = O(|9|). Assume T = {z1,...,z,} and ¥ = {y1,...,yp} -

When the terms substituted for the variables z1, ..., z, are terms that contain y variables,
the constant symbols 0 and 1, and the boolean operators A,V," in them, then the substitution
is called a parametric solution. To check whether the quantified boolean formula holds, it is
enough to check whether it has a parametric solution. (To see this, suppose that the formula is
true. Then there is a solution of z’s for any assignment of y’s. Take any x;. For each assignment
A of y, x; is either 0 or 1. We could build a simple formula that says “if A then z; is 0” or “if
A then z; is 17 as appropriate. We could therefore build a parametric solution for each z;.)

Our reduction will proceed in four steps. In this reduction we will use script letters for
constant symbols.

(1) We build a “tree” circuit for 9(Z,7) using some number of gates. The gates will be referred
to by the constants G, ..., Giop With Gy, as the output gate of the whole circuit. For each z; we
create a new constant symbol B; and substitute the x variables by these constant symbols while
creating the circuit. Similarly, for each y; we create a new constant symbol A; and substitute
the y variables by these constant symbols while creating the circuit. We also have a constant
YES. So we have as constants the A’s, B’s, G’s, and YES.

In the reduction we will present a query @ that uses a number of input database relations,
called EDB relations, and a number of initially empty output database relations, called IDB rela-
tions (following standard database terminology). We have Input, Top, Andgate, Orgate, Notgate,
A, B, Nezt and Last as EDB relations. We have as IDB relations, Value, Aexpr, Replace,
Parametric and Qutput. The yes/no output is carried in Qutput, i.e., yes if Output(YES) and
no otherwise.

Suppose that formula (Z,7) has a total of [occurrences of variables in it. We enter for
each occurrence of y; and for each occurrence of z; the values A; and B; via the distinct gates
Gi,...,G,. We create | database facts as follows. If the k*" occurrence of a variable in the
formula is y; (or z;), we create, using the EDB database predicate Input, the database fact:

or

Input(Gy, Bj)
We also declare Gy, as the output gate of the circuit, using the EDB database predicate Top:

Top (gtop)

43

Next we look at the parse tree of the formula 7). We tag each boolean operator A,V, in
the parse tree by a new distinct gate. We tag the operator at the root by the gate Gi,p. Then
for every 4, j,k if an A (or an V or an ') operator is tagged by gate G; and has as left child an
operator tagged by gate G; and has as right child (for a A and an V gate only) an operator
tagged by gate Gi, we create, using one of the EDB database predicates Andgate, Orgate, or
Notgate, the database fact:

Andgate(G;, G, Gr)

or

O’I"g(lte(gi) g]) gk)

or
Notgate(G;, G;)

The term corresponding to 1(Z,) is built bottom-up by the evaluation method, using the IDB
predicate Value and the following rules:

Value(k, z) :— Input(k, z)

Value(k, z) :— Andgate(k,i,j), Value(i, z), Value(j,y),z =B,, TNy
Value(k, z) :— Orgate(k, i, j), Value(i, x), Value(j,y),z =p,, zVy
Value(k,z) -— Notgate(k, i), Value(i,z),z =p,, '

The bottom-up evaluation derives as the value of the topmost gate Gi,, some zi,, such that
Ztop =B, P(B,A). As the rules are evaluated variables i,j,z,y are eliminated but constant
symbols Giop, A, B remain.

Remark i: We know that we have created Value so that Value(Gyop, (B, A) is in the fixpoint.
We will now proceed to construct in the fixpoint of Axpr all ground terms e that contain only
0,1, A’s and the boolean operators A,V,". We will then replace the B’s in the fixpoint, by all
possible such e’s in Replace and in Parametric.

Remark ii: We also know that the constraint (e, A) =g, 0 has a solution for the €’s in B, if
and only if 3z¢¢p,,.}n9h(Z, A) = 0 is true in By,. By Lemma 5.9 that last formula is true if and
only if Vg3z¥(z1,...,Zn, y1,---,yp) = 0 is true in By, which is our original quantified boolean
formula problem.

Therefore finding the e’s corresponds to finding a parametric solution. We show in the next
three steps how a Datalog query can try all possible substitutions that may yield a parametric
solution. The proof will follow from Remarks i-ii above.

(2) We create two unary EDB database relations A(z) and B(z) to store all A’s and B’s
respectively.

We also create a unary IDB relation Aexpr(e), which when evaluated bottom-up will contain
in it all the terms of the algebra which can be written with only 0,1,4’s and the boolean
operators A, V," in them.

Aexpr(e) —e=p,, 0

44

Aexpr(e) —e=p, 1
Aezxpr(e) — A(e)
Aexpr(e) — Aexpr(ey), Aexpr(ez),e =p,, €1 A e
Aezxpr(e) :— Aexpr(ey), Aexpr(es),e =g, €1V €2
Aexpr(e) — Aexpr(e1),e =p,, €}
The relation Aexpr has many elements. In fact it will consist of all elements that can be
written using the boolean operators and the boolean constant symbols A, ..., Ap. There are

22" distinct elements because there are that many disjunctive normal forms of boolean formulas
over those constant symbols. This is large, but still a finite number.

(3) Our main relation for replacement is the IDB relation Replace(a, B,c,d), whose intended
meaning is that if in term a all occurrences of constant B are substituted by a term ¢ which
has only 0,1, A’s and the boolean operators A,V,' in it, then we get the term d.

The actual bottom-up replacement can be done recursively as follows:
Replace(b, b, c,c) — B(b), Aexpr(c)
Replace(a, b, c,a) — A(a), B(b), Aexpr(c)

Replace(0,b,c,0) — B(b), Aexpr(c)

Replace(1,b,c,1) :— B(b), Aexpr(c)
Replace(o, z,y,n) — Replace(o1,x,y,n1), Replace(o2, z,y,n2),0 =p,, 01 Noz,n =g, ni Ang
Replace(o, z,y,n) — Replace(o1,z,y,n1), Replace(o2, z,y,n2),0 =p,, 01V 0o2,n =g, n1V ny

Replace(o,z,y,n) — Replace(o1,x,y,n1),0 =p,, 01,n =g, n}

(4) To make the substitutions in sequence for each B;, we order the B constants, using EDB
predicates Next and Last, and the database facts:

Nezt(0, By)
Next(Bz' , Bi+1)
Last(B,)

The next two rules using IDB predicate Parametric show how in sequence each B; can be
substituted by terms containing only 0,1, A’s and boolean operators A, V,'.

Parametric(expr,0) :— Top(Giop), Value(Giop, expr)

Parametric(new, j) :— Parametric(old, i), Next(s, j), Replace(old, j,y, new)

When the last B constant is replaced, there are only A constants present within expr. Hence,
we may have one last rule:

Output(YES) — Last(k), Parametric(expr, k), expr =p,, 0

45

As shown in Lemma 5.9 deciding whether exzpr =p_, 0 is equivalent to checking whether
for each 0,1 substitution into the A constants, the constraint expr =pg, 0 has a solution.

Since all possible substitutions of terms containing only 0,1, A’s and the boolean operators
AV, for the B’s are tried by the bottom-up evaluation, there is any output iff there is a
parametric solution iff Vy3z4)(Z,7) = 0 is true in By. This completes the reduction. O

6 Discussion and Open Questions

In this paper, we have presented many examples of “declarative and efficiently evaluable” con-
straint database query languages. Our framework is based on a study of quantifier elimination
procedures combined with a use of data complexity.

A number of technical questions remain open. For example: What is the precise data
complexity of Datalog with finite boolean equality constraints? Also, is it possible to develop a
similar framework for discrete linear order with constants? Note that, progress has been made
recently on this question in [46]. Discrete order can be used to model temporal databases.
For recent developments of constraint-based approaches to temporal databases we refer to
[4, 13, 28]. In Section 2.2, we left open the complexity of tableau containment with dense linear
order inequalities. This has been recently shown ITh-complete in [56].

It would be very interesting to study the implementation of the “declarative and efficiently
evaluable” languages outlined in this paper. The results presented here should be properly
viewed as positive arguments for the feasibility of such an effort. However, some critical research
questions remain:

(1) Although they do not appear as part of the relational data model, many physical access
structures, e.g., B-tree indexes, extendible hashing etc, are critical in the implementation of
relational databases. In Section 1.1, we argued that there are analogous simple access struc-
tures in the more general CQL setting (provided intervals are constraints of the CQL and the
projection of any generalized tuple on z is an interval). Is it possible to perform 1-dimensional
searching on generalized database attribute z in the same secondary memory access bounds
that one uses for 1-dimensional searching on relational database attribute 27 Note that, when
this problem reduces to on-line interval maintenace, the in-core performance of priority search
trees is linear space and logarithmic time. In general, how can grid-files, R-trees, quad-trees
and other such structures be used to speed-up CQL evaluation strategies?

(2) The technology of algorithms for logical theories is still rather complex, but much progress
has been accomplished in recent years. For example, see [45] for the state-of-the-art in real
closed fields. Are there interesting special cases, for which simple algorithmic techniques can be
used? These would be analogous to the special treatment of project-select-join query programs
in the relational model. In particular, linear inequality constraints should be investigated in a
CQL framework.

(3) How do various optimization methods combine with our framework? This would involve
extending [44]. For some recent research in this direction we refer to [24, 37, 42, 51]. Constraint

46

manipulation for database logic program analysis is also related to optimization, e.g., [8, 9, 57].

(4) Constraint query languages should be designed in an extendible way. For example, this
would make it possible to integrate a select set of computational geometry algorithms as prim-
itives in a bottom-up evaluation.

(5) Finally, constraint query languages should be designed with features, such as database
types and complex objects. Using such features it might be possible to pose queries about the
representation itself and not only about the unrestricted relations represented.

Acknowledgements: We would like to thank Jean-Louis Lassez for his constant encour-
agement. We would also like to thank Moshe Vardi and Allen Van Gelder for their many
constructive comments on the material presented here, as well as Raghu Ramakrishnan and
Terry Smith for numerous helpful discussions.

References

[1] S. Abiteboul, V. Vianu. Procedural and Declarative Database Update Languages. Proc.
7th ACM PODS, 240-250, 1988.

[2] A.V. Aho, Y. Sagiv, J.D. Ullman. Equivalences among Relational Expressions. STAM J.
of Computing, 8:2:218-246, 1979.

[3] A.K. Aylamazyan, M.M. Gilula, A.P. Stolboushkin, G.F. Schwartz. Reduction of the Re-
lational Model with Infinite Domain to the Case of Finite Domains. Proc. USSR Acad. of
Science (Doklady), 286(2):308-311, 1986.

[4] M. Baudinet, M. Niezette, P. Wolper. On the Representation of Infinite Temporal Data
and Queries. Proc. 10th ACM PODS, 280-290, 1991.

[5] R. Bayer, E. McCreight. Organization of Large Ordered Indexes. Acta Informatica, 1:173—
189, 1972.

[6] M. Ben-Or, D. Kozen, J. Reif. The Complexity of Elementary Algebra and Geometry.
JCSS, 32:251-264, 1986.

[7] A.H. Borning. The Programming Language Aspects of ThingLab, A Constraint-Oriented
Simulation Laboratory. ACM TOPLAS 3:4:353-387, 1981.

[8] A. Brodsky, Y. Sagiv. Inference of Monotonicity Constraints in Datalog Programs. Proc.
8th ACM PODS, 190-200, 1989.

[9] A. Brodsky, Y. Sagiv. Inference of Inequality Constraints in Logic Programs. Proc. 10th
ACM PODS, 227-241, 1991.

[10] W. Buttner, H. Simonis. Embedding Boolean Expressions into Logic Programming. Journal
of Symbolic Computation, 4:191-205, 1987.

47

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]

A K. Chandra, D. Harel. Structure and Complexity of Relational Queries. JCSS, 25:1:99—
128, 1982.

A K. Chandra, P.M. Merlin. Optimal Implementation of Conjunctive Queries in Relational
Databases. Proc. ACM STOC, 77-90, 1976.

J. Chomicki. Polynomial Time Query Processing in Temporal Deductive Databases. Proc.
9th ACM PODS, 379-391, 1990.

J. Chomicki, T. Imielinski. Relational Specifications of Infinite Query Answers. Proc. ACM
SIGMOD, 174-183, 1989.

E.F. Codd. A Relational Model for Large Shared Data Banks. CACM, 13:6:377-387, 1970.
J. Cohen. Constraint Logic Programming Languages. CACM, 33:7:52-68, 1990.

A. Colmerauer. An Introduction to Prolog ITI. CACM, 33:7:69-90, 1990.

D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11:2:121-137, 1979.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier. The Con-
straint Logic Programming Language CHIP. Proc. Fifth Generation Computer Systems,
Tokyo Japan, 1988.

J. Ferrante, J.R. Geiser. An Efficient Decision Procedure for the Theory of Rational Order.
Theoretical Computer Science, 4:227-233, 1977.

M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, 1979.

Y. Gurevich, S. Shelah. Fixed-Point Extensions of First-Order Logic. Annals of Pure and
Applied Logic, 32, 265-280, 1986.

M.R. Hansen, B.S. Hansen, P. Lucas, P. van Emde Boas. Integrating Relational Databases
and Constraint Languages. Computer Languages, 14:2:63-82, 1989.

R. Helm, K. Marriott, M. Odersky. Constraint-based Query Optimization for Spatial
Databases. Proc. 10th ACM PODS, 181-191, 1991.

R. Hull, J. Su. Domain Independence and the Relational Calculus. Technical Report 8864,
University of Southern California.

N. Immerman. Relational Queries Computable in Polynomial Time. Information and Con-
trol, 68:86-104, 1986.

J. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM POPL, 111-119,
1987.

F. Kabanza, J-M. Stevenne, P. Wolper. Handling Infinite Temporal Data. Proc. 9th ACM
PODS, 392-403, 1990.

48

[29] P.C. Kanellakis. Elements of Relational Database Theory. Handbook of Theoretical Com-
puter Science, Vol. B, chapter 17, (J. van Leeuwen editor), North-Holland, 1990.

[30] P. C. Kanellakis, G. M. Kuper, P. Z. Revesz. Constraint Query Languages. Proc. 9th ACM
PODS, 299-313, 1990.

[31] M. Kifer. On Safety, Domain Independence, and Capturability of Database Queries. Proc.
International Conference on Databases and Knowledge Bases, Jerusalem Israel, 1988.

[32] A. Klug. On Conjunctive Queries Containing Inequalities. JACM, 35:1:146-160, 1988.

[33] P. Kolaitis, C.H. Papadimitriou. Why not Negation by Fixpoint? Proc. 7th ACM PODS,
9231-239, 1988.

[34] D. Kozen. Complexity of Boolean Algebras. Theo. Comp. Sci., 10, 221-247, 1980.

[35] D. Kozen, C. Yap. Algebraic Cell Decomposition in NC. Proc. 26th IEEE FOCS, 515-521,
1985.

[36] W. Leler. Constraint Programming Languages. Addison Wesley, 1987.

[37] A.Levy, Y. Sagiv. Constraints and Redundancy in Datalog. Proc. 11th ACM PODS, 67-81,
1992.

[38] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.
[39] Y.N. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.

[40] U. Martin, T. Nipkow. Unification in Boolean Rings. Journal of Automated Reasoning,
4:381-396, 1988.

[41] E. McCreight. Priority Search Trees. SIAM J. Computing, 14:257-276, 1985.

[42] 1. S. Mumick, S. J. Finkelstein, H. Pirahesh, R. Ramakrishnan. Magic Conditions. Proc.
9th ACM PODS, 314-330, 1990.

[43] F.P. Preparata, M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
1985.

[44] R. Ramakrishnan. Magic Templates: A Spellbinding Approach to Logic Programs. Proc.
dth International Conference on Logic Programming, 141-159, 1988.

[45] J. Renegar. On the Computational Complexity and Geometry of the First-order Theory
of the Reals: Parts I-1I1. Journal of Symbolic Computation, 13:255-352, 1992.

[46] P.Z.Revesz. A Closed Form for Datalog Queries with Integer Order. Proc. 3rd International
Conference on Database Theory, 1990, (to appear in TCS).

[47] H.L. Royden. Real Analysis. 2" Ed., 1983.

[48] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Addison-Wesley, Reading MA, 1990.

49

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]
[60]

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading
MA, 1990.

V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie Mel-
lon University, 1989.

D. Srivastava, R. Ramakrishnan. Pushing Constraint Selections. Proc. 11th ACM PODS,
301-316, 1992.

G.L. Steele. The Definition and Implementation of a Computer Programming Language
Based on Constraints. Ph.D. thesis, MIT, AI-TR 595, 1980.

A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Cali-
fornia Press, Berkeley, California, 1951.

J.D. Ullman. Principles of Database Systems. Computer Science Press, 2"¢ Ed., 1982.

J.D. Ullman, A. Van Gelder. Parallel Complexity of Logical Query Programs. Algorithmica,
3:5-42, 1988.

R. van der Meyden. The Complexity of Querying Indefinite Data about Linearly Ordered
Domains. Proc. 11th ACM PODS, 331-346, 1992.

A. Van Gelder. Deriving Constraints among Argument Sizes in Logic Programs. Proc. 9th
ACM PODS, 47-60, 1990.

P. Van Hentenryck. A Logic Language for Combinatorial Optimization. Annals of Opera-
tions Research, 21, 247-274, 1989.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

M.Y. Vardi. The Complexity of Relational Query Languages. Proc. 14th ACM STOC,
137-146, 1982.

50

