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Abstract 
We propose a new adaptive spatio-temporal interpolation 
method that combines either by a step or a line function 
existing spatial and temporal interpolation methods. We test the 
new method using climate data obtained from weather stations 
in Colorado and Nebraska, for the time period from 1993 to 
2003. The experimental results show that in mountainous 
regions our adaptive spatio-temporal method has a much better 
performance than both the IDW (Inverse Distance Weighting) 
and the temporal interpolation methods have in themselves.  
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1. Introduction 
Geographic Information System (GIS) applications often 
require spatio-temporal interpolation of an input dataset, that is, 
to estimate the unknown values at unsampled location-time 
pairs. For example, suppose we have some weather stations that 
have incomplete recording of temperature for some time 
instances, and our application requires a sequential complete 
dataset, then we need interpolation to estimate the temperature 
at the unsampled time instances. 
 
    A key issue is the choice of an appropriate interpolation 
method for a given input data set [1]. In climatology, trend 
surface analysis [11], IDW [8, 9], splining [3], kriging [2] and 
shape functions [6] are common methods. Interpolation 
methods are closely related to visualization techniques and 
have an increasing presence in advanced scientific databases 
[7]. 
 
    Climatology researchers mainly use spatial interpolation 
methods like IDW without any temporal interpolation method. 
However, in some situations, spatial interpolation methods are 
not accurate enough. For example,  

(1) In mountainous regions, the assumptions used by the 
IDW method (see Section 2) do not hold. 

(2) Some weather station may not have enough nearby 
stations for estimation, while the assumption of IDW 
is based on enough close stations. 

(3) Several nearby stations have data for the same time 
instance, and spatial methods can be used for the 
estimation, but the estimation accuracy is poor.  For 
example, if we define “nearby” as within 50 miles, but 
all the nearby stations are between 45 to 50 miles, then 
the accuracy will be poor. 

 

    In this paper we propose a novel spatio-temporal 
interpolation method. Our main idea is the recognition that  
temporal methods can be useful in combination with spatial 
methods in the regions where spatial methods can not work 
well in themselves. 
 
    The rest of the paper is structured as follows. Section 2 gives 
background of inverse distance weighting. Section 3 describes 
our adaptive spatio-temporal interpolation method. Section 4 
describes our experimental methods. Section 5 discusses the 
evaluation of the experimental results. Finally, Section 6 
presents some ideas for future work. 

2. Inverse Distance Weighting 
Distance-based weighting methods have been used to 
interpolate climate data by Legates and Willmont [5], Stallings 
et al. [10] and others. The main assumption of IDW is that 
values closer to the unsampled location are more similar to the 
value to be estimated than values from further away.  It is 
consistent with most spatial data. For example, the maximum 
and minimum temperatures of one day have their values vary 
continuously and tend to be more similar to closer locations 
than farther ones. Hence in order to estimate a value for a 
particular weather station, the closer the station with known 
value the more weight it has on the prediction. 
 
    The sum of the weights is equal to 1. Weights are assigned 
proportional to the inverse of the distance between the sampled 
and unknown weather stations. Hence the larger the distance 
between sampled and unknown points, the smaller the weight 
given to the value at the sampled point.  
     
    Let iλ  = the weights for the individual locations, and  

iy  = the variables evaluated in the sampled locations. 
     
    IDW interpolations are of the form [4]: 
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    For simplicity we choose p  = 1. Hence,  
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3. The New Method 

Let E s be the estimated value using spatial method, E t the 

estimated value using temporal method, α  the weight of E s , 

and β  the weight of E t . We calculate the overall estimation as 
follows: 

 
E = α  * E s  + β  * E t   (3) 

whereα  + β  = 1 and 0 ≤ α , β ≤  1 
 
    For example, in case (1) of Section 1, since spatial method 
can not work, 0=α  and 1=β . On the other hand, if we do 
not use temporal method at all, then 1=α  and 0=β . These 
are the extreme cases. 
 
    When we consider this method, the most natural function is a 
step function as shown in Figure 1. In a step function, we find 
some threshold θ , and on one side of θ  we use IDW with 

1=α  and 0=β , and on the other side of θ  we use a 
temporal method with 0=α  and 1=β .  
    
     Let iM be the absolute difference between IDW estimation 

value and the original data, tM  be the absolute difference 
between temporal estimation value and the original data, and 
σ  be the standard deviation of the elevations of the target 
station and its neighbors. For example, for some θ , if most 
stations with θσ <  have smaller iM , while most stations 

with θσ ≥  have smaller tM , then a step function  works as 
follows:  
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Fig. 1. Step function. 

 
    As we state in Section 5, although this natural function has a 
straightforward intuition, the performance is not as good as for 

a line function. σ  increases, the neighbors are less close to the 
target station, and we should decrease α . A line function 
satisfies this intuition by making α  vary inversely with σ  as 
follows: 
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where r is a rate constant between 0 and 1. It is illustrated in 
Figure 2. 

 
Fig. 2. Line function. 

4. Experimental Method  
In order to test our idea, we randomly selected weather stations 
in Colorado and Nebraska and used the minimum daily 
temperature data of the time period from 1993 to 2003. We 
estimated the minimum daily temperature using our new 
method and compared it with the actual data. 

 
    The first step is the spatial interpolation. First we choose the 
closest five stations for each interpolated station. Then we 
calculate the spatial interpolation value using the IDW method. 
 
    The second step is the temporal interpolation. The 
calculation is similar to the first step except that the distance 
here is the time distance. For example, if we want to estimate 
the minimum temperature of one day in 2002, then the distance 
between that day in 2002 and the same day in 2003 is 365 days. 
     
    Once we get the spatial and temporal interpolation values, 
we apply equation (3) to calculate the final estimation value. In 
this experiment, we tested both step and line functions to find 
the best estimation parameters α , β , θ  and r. 

5. Experimental Results and Evaluation 
Several measures are suitable for experimentally comparing the 
accuracy of interpolation methods. We use mean-absolute-error 
(MAE) and root-mean-square-error (RMSE).  
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)(iA : Actual measurement,  
N : Number of data. 

5.1. Evaluation of step functions 
Figures 3-5 give the intuition for a step function, which is based 
on 100 random stations in Colorado. We randomly chose one or 
two daily minimum temperature for each station. The x-axis is 
the standard deviation in each figure, while the y-axis is iM  in 

Figure 3, tM  in Figure 4, and their weighted linear combina-
tion in Figure 5. It can be seen that for this data set, 500 seems 
a reasonable threshold because most stations with 500≤σ  
have iM ≤ tM . 
 
    In order to test the performance of step functions, we 
compared their MAE and RMSE with those of IDW and 
temporal estimation methods. Besides 500, we also tried other 
threshold values (100, 150, …, 1450, 1500). In this experiment, 
we estimated the minimum daily temperature of 50 stations in 
Colorado, from May to August 2002. In Table 1, the MAE and 
RMSE columns summarize the analysis of the various methods. 
 
    Compared with line functions in Section 5.2, the 
performance of step functions is poor. Clearly, IDW and 
temporal methods have some advantages, and line functions 
combine those advantages better than step functions do. 
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Fig. 3. iM  of step function. 

5.2. Evaluation of line functions 
In order to test the performance of line functions, we did 
experiments on 40 threshold values (100, 200, 300, …, 4000) 
and 10 rates (0.0, 0.1, …, 0.9), and recorded the best 
combination of those parameters and results in Table 2. We can 
see from Table 2 that line functions yield much better 
performance than both the IDW and the temporal methods in 
themselves. The IDW method has 21% less accurate MAE than 
the best line function. The temporal method has 39% less 
accurate MAE than the best line function. Similarly, the IDW 
method has 15% and the temporal method has 42% less 
accurate RMSE than the best line function has. 
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Fig. 4. tM  of step function. 
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Fig. 5. iM  and tM  of step function. 

 
Table 1. Comparison of step function, IDW and temporal methods 

 Best parameters MAE 
MAEsmethod'Best 

MAE sMethod'  RMSE 
RMSE smethod'Best  

RMSE sMethod'  

Step Function Ө = 950 3.8452 1.00 4.6988 1.00 
IDW N = 5, p = 1 4.1958 1.09 4.8912 1.04 
Temporal  4.8114 1.25 6.0262 1.28 

 
Table 2. Comparison of line function, IDW and temporal methods 

 Best parameters MAE  
MAEsmethod'Best 

MAE sMethod'  RMSE  
RMSE smethod'Best  

RMSE sMethod'  

Line Function r = 0.3, Ө = 1400 3.4598 1.00 4.2586 1.00 
IDW N = 5, p = 1 4.1958 1.21 4.8912 1.15 
Temporal  4.8114 1.39 6.0262 1.42 
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Fig. 6. MAE of 50 Colorado stations. 
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Fig. 7. RMSE of 50 Colorado stations. 
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Fig. 8. MAE of 50 Nebraska stations. 

 
    The MAE and RMSE of each weather station in Colorado 
are shown in Figure 6 and Figure 7, respectively. Virtually all 
economic sectors and many public and private activities are 
affected in some measure by changes in weather and climate. 
Hence applying our adaptive spatial-temporal interpolation 
method to achieve more accurate weather and climate 
predication is a matter of considerable economic and social 
significance.     
 
    We did experiments on Nebraska weather stations too and 
show the result in Figure 8. In this case the IDW method yields 

the best performance among the three tested methods. This 
result is not surprising in a plain area like Nebraska, because 
the weather stations in plain have a better chance of having a 
close neighbor with the similar height than weather stations in 
mountains have. 

6. Conclusion and Future Work 
Given the experimental results above, we conclude that in 
mountainous regions, our adaptive spatio-temporal 
interpolation method has a much better performance than 
traditional spatial interpolation and temporal interpolation 
methods. In the future, we plan to apply our method to other 
climatic variables like precipitation, mean temperatures, and 
many others. We also plan to look into other spatial methods 
like polynomial regression interpolation, and developing spatio-
temporal methods based on regression. 
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