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Abstract

Visualization of recursively defined spatio-temporal con-
cepts is a general problem that appears in many areas. For
example, drought areas based on the Standardized Precipi-
tation Index (SPI) and long-term air pollution areas based
on safe and critical level standards are recursively defined
concepts.

In this paper, we develop a general and efficient repre-
sentation and visualization method for recursively defined
spatio-temporal concepts. We illustrate our general method
by visualizing drought and pollution areas.

1. Introduction

In Geographic Information Systems [4] we frequently
need to visualize on a map the area where a given prop-
erty P holds. The area is defined using the followingnon-
recursiveform.

Definition 1.1 An area has propertyP during time unitT ,
if duringT we measure an amountk or more of an indicator
of propertyP .

However, many properties cannot be defined in this sim-
ple way. Usually, these complex properties are defined
based on a series of observations in time. Their definitions
have the following generalrecursiveform.

Definition 1.2 An area has propertyP during time unitT
if during T we measure either
(i) k or more amount of an indicator of propertyP or
(ii) betweenk1 andk amount of the same indicator
andthe area has propertyP during time unitT − 1.

The amountk1 is less thank in the above definition. The
first part of the recursive definition is like the Definition 1.1.
The second part adds more areas. Hence while an area with
only a measurement value betweenk1 andk during timeT
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does not have the propertyP according to the non-recursive
definition, it mayhave the property according to the recur-
sive definition. Definition 1.2 is appropriate when the indi-
cators measure at time unitT − 1 do not disappear com-
pletely by time unitT .

Example 1.1 Suppose we would like to find the counties
on a map that have adisease out-of-controlat timeT , and
suppose the only indicator that we have available is the
number of new infections. Answering this query is not a
simple matter of finding the county that have more than
somek(e.g.,k = 10) new infected persons. Some people
infected with the disease at timeT − 1 will continue to be
infected at timeT . Suppose we expect about half of the in-
fected persons to continue to be infected after a time unit. If
at timeT −1 a county had a disease out-of-control, then it is
reasonable to assume that the disease is still out-of-control
at timeT if duringT we have between five and nine new in-
fected persons. Hence the recursive definition, written in the
form of Definition 1.2, is as follows:

A county hasa disease out-of-controlduring weekT if
during weekT it reports either
(i) 10 or more new infected persons or
(ii) between 5 and 9 new infected persons and it is highly-
infected during weekT − 1.

In this paper we describe an Information Visualization
System for Recursively Defined Concepts (IVSRDC) that
is able to visualize all recursively defined concepts express-
ible by Definition 1.2. Revesz and Li provided constraint-
based visualization for spatio-temporal data in [7] but did
not consider recursively defined concepts.

The paper is organized as follows:

Section 2 describes the main functions of the visual-
ization system from the user’s perspective. Section 3 de-
scribes the implementation of the system. Section 4 de-
scribes two sample applications (drought analysis and air-
pollution evaluation) and reports the performance on the
drought analysis problem. Finally, Section 5 concludes this
paper and gives some directions for further work.



2. The outline of the IVSRDC system

The Information Visualization System for Recursively
Defined Concepts (IVSRDC) is a web-based general so-
lution for those problems that can be defined by Defini-
tion 1.2. Figure 1 shows the abstraction of the system.
There are four inputs for the system. One is the relation
M(x, y, t, w), where the attributes(x, y) specify 2-D lo-
cations,t specifies a time instance, and the last attributes
w records the measurement of the indicator of propertyP

of each location. The other three inputs areT, k, andk1,
which are defined in Definition 1.2. The output of the sys-
tem is the visualized image(s) of a spatio-temporal relation
P (x, y, t) that represents the area with propertyP at timet.

Recursively Defined  Concept

Information Visualization System for
Recursively Defined Concepts

M(x, y, t, w)

Map of P(x, y, t)
Map of P(x, y, t)

T, k, k1 Overlay objects

Figure 1. The functionalities of the IVSRDC.

The homepage of the system is shown in Figure 2. It pro-
vides an English description of the general problem that this
system can solve and several input areas for the users to
specify arguments related to their own applications.

The general solution for the problem defined in Defini-
tion 1.2 can be formally expressed as follows:

GivenM(x, y, t, w), we have:

A = {(x, y, t) | M(x, y, t, w) ∧ w ≥ k ∧ t ≤ T }
B = {(x, y, t) | M(x, y, t, w) ∧ k1 < w < k ∧ t ≤ T }

WhereA is the part ofM that is greater or equal tok,
andB is the part that is betweenk andk1. We define the
areas having propertyP at timet after the Definition 1.2 as
follows:

Definition 2.1
P = {(x, y, t) | A(x, y, t) ∨ (B(x, y, t) ∧ P (x, y, t − 1))}

Applying a general solution based on the general defi-
nition makes the system have the ability of solving similar
problems without modifying the program. The user does not
need to search for solutions in many specific applications.

Our experience shows that this implementation largely in-
creases the usability and maintainability of this system in
practice. As we explain in Section 4, the applications of
drought analysis and air-pollution evaluation have distin-
guish contexts. However, both of them can be described by
the general definition of Definition 1.2. That enables us to
solve them with the same system without changing the pro-
gram.

3. Implementation of the IVSRDC system

In this section, we introduce some background informa-
tion first. Then we describe the software architecture of the
system and the data translation process. Finally, we illus-
trate the naive implementation and the optimized algorithm.

3.1. Background information

In a 2-D spatial problem, a point-based spatio-temporal
relation has the schema of (x, y,t, w1, w2, . . ., wm), where
the attributes(x, y) specify point locations,t specifies a
time instance, andwi (1 ≤ i ≤ m) records the features
of each location.

A point-based spatio-temporal data set only stores infor-
mation of some sample points. To represent the features be-
yond those finite sample points, it is necessary to do spatio-
temporal interpolation on them. In this paper, we use a 2-
D spatial interpolation function for triangles [2, 3], which
interpolates and translates the original point-based spatio-
temporal information into a constraint relation.

A constraint database is a finite set of constraint rela-
tions. A constraint relation is a finite set of constraint tuples,
where each constraint tuple is a conjunction of atomic con-
straints using the same set of attribute variables [6]. Hence,
constraints are hidden inside the constraint tables, and the
users only need to understand the logical meaning of the
constraint tables as an infinite set of constant tuples rep-
resented by the finite set of constraint tuples. Typical con-
straints include linear or polynomial arithmetic constraints.

Management of Linear Programming Queries (MLPQ)
system is a constraint database prototype system that im-
plements rational linear constraint databases and queries. It
supports both SQL and Datalog queries, minimum and max-
imum aggregation operators over linear objective functions
among other functionalities [6].

By using constraint databases, even simple query lan-
guages, such as SQL and Datalog, can express some diffi-
cult recursively defined spatio-temporal concepts. With the
help of the MLPQ system, the result of those queries can be
automatically displayed in static snapshots or animation.



Figure 2. The homepage of the IVSRDC system.

3.2. Software architecture of the IVSRDC

Recursively defined spatial-temporal information is dif-
ficult to visualize in most systems. However, constraint
databases [6] provide an efficient way to store the spatio-
temporal data, and Datalog query language supports recur-
sion. In this paper, we combine 2-D interpolation function
and recursive Datalog with MLPQ constraint database sys-
tem. Furthermore, we realize a general solution to calculate
and visualize the complex spatial-temporal problems for-
mulated according to Definition 1.2.

Figure 3 shows the software architecture of the IVSRDC
system. It has three layers, which are described below.

I. User interfaces layeraccepts input from the user and dis-
plays the output to the user. There are two inputs from the
user. First, the point-based spatio-temporal data set. Second,
the three argumentsk, k1, and timeT .

II. Middle layer does the internal data processing. It has
the following three modules.

1. The interpolation module is used to interpolate

and translate point-based relational data into con-
straint data, It implements the 2-D shape function
for triangles [3] to interpolate and translate the origi-
nal data set into a constraint data set.

For example, Figure 4 is a point-based spatio-
temporal data set consisting of Standardized Precipita-
tion Index (SPI) records collected at 48 main weather
stations spread out all over Nebraska.

The translation has two steps. First is a triangulation
of the sample points. Several efficient algorithms have
been developed to generate triangular meshes. A pop-
ular method among them is the “Delaunay Triangula-
tion” [1, 9]. We embed in our system the Delaunay tri-
angulation algorithm available from the public website
www.geom.umn.edu/software/∼qhull. Fig-
ure 5 shows the triangulation result of the48 weather
stations in Nebraska. Each of these stations is an ex-
treme point of at least one triangle in the map.

The second step consists in defining for each trian-
gle a linear interpolation function that represents the
amount of indicator for any point within it [3]. We im-
plement the algorithm in our system as a function of
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Figure 3. The software architecture of the IVSRDC system.

station x y year-week SPI

butte -231.4 2214.9 2001-1 -0.62
bloomfield -134.6 2179.1 2001-1 -0.83
oneill -214.9 2164.1 2001-1 -0.83
...

...
...

...
...

butte -231.4 2214.9 2001-12 -0.14
bloomfield -134.6 2179.1 2001-12 0.07
oneill -214.9 2164.1 2001-12 -0.15
...

...
...

...
...

butte -231.4 2214.9 2002-1 -0.38
...

...
...

...
...

Figure 4. The point-based weekly SPI data.

the2-D interpolation module.
Figure 6 shows the result of the interpolation and

translation. It is a constraint relation with three con-
straint tuples. Each constraint tuple contains four linear
constraints. The first three inequality constraints over
x andy represent the triangular area. The last linear
equation overx, y, andw represents the SPI value of
the point at location(x, y) within this area. The field
week represents the weekly time starting from January
1st,1800.

For example, the first tuple withid = 1 in Fig-
ure 6 is interpolated from the first three weather sta-
tions of Figure 4 and represented as the gray region in
Figure 5. The same triangular region in Figure 5 has
different tuples at different time instance in Figure 6.
The time unitweek = 10489 in Figure 6 corresponds

Figure 5. Triangulated map based on the 48
weather stations in Nebraska.

to the first week of 2001 in Figure 4,week = 10500
represents the 12th week of 2001, and so on. The only
difference between these tuples is the last linear equa-
tion overx, y, andw.

2. Therecursive Datalog Generatoris designed to gen-
erate the Datalog query with the input arguments and
send the query to the MLPQ constraint database sub-
system.

3. Thepresentation moduleexplains and visualizes the
output of the database layer. It also allows user to zoom
in and zoom out any specific area within the whole
map. It can also overlay some input objects on top
of the output and generate a combined output image.
Those objects may include state/county boundaries,
highways or rivers.



id east north week SPI

3.0788x + y ≥ 1502.47,

−0.1868x + y ≥ 2204.24,

0.3698x + y ≤ 2129.32,1 x y 10489 w
0.7280x− 3.8974y + 1000w = −9420.80.

−5.6429x + y ≥ 5432.03,

−1.4370x + y ≤ 3040.58,

−0.9106x + y ≥ 2694.89,2 x y 10489 w
12.6524x + 0.8319y + 1000w = −6314.32.

...
...

...
...

...
...

3.0788x + y ≥ 1502.47,

−0.1868x + y ≥ 2204.24,

0.3698x + y ≤ 2129.32,1 x y 10500 w
−2.5483x− 1.0246y + 1000w = −1819.61.

...
...

...
...

...
...

Figure 6. The constraint-based weekly SPI data set.

III. Database layer: TheMLPQ constraint database sub-
systemis used to evaluate the input Datalog queries and vi-
sualize the result as animation or image(s). Finally, thepre-
sentation layergenerates a new web page with result im-
age(s) and display it to the users.

3.3. Naive algorithm and optimization

Definition 2.1 can be translated into the following Data-
log Query 1:

A(x, y, t) : − M(x, y, t, w), w ≥ k, t ≤ T.

B(x, y, t) : − M(x, y, t, w), k1 < w < k, t ≤ T.

P (x, y, t) : − A(x, y, t).
P (x, y, t) : − B(x, y, t), P (x, y, t − 1).

DatalogQuery 1is the core program of the IVSRDC sys-
tem and can be evaluated by the MLPQ subsystem directly.
Comparing the size and complexity of a C++ or Java pro-
gram needed to solve the same problem based on relational
databases, the Datalog and constraint databases provide a
more concise and manageable approach. A simple and in-
dependent query solution makes the program easy to under-
stand and maintain.

Although the code of naive implementation is concise,
its efficiency can be further improved.

There are two sources of the inefficiency. The first is
the difficulty of providing appropriate time boundary con-
ditions for the Datalog query. This is necessary in real im-
plementation because without a reasonable boundary con-
dition, the recursive process may not terminate.

The second issue is the redundant calculation introduced
by the naive implementation. Although the user only needs

to know the area with propertyP in one or several separate
time instances, the naive implementation always calculates
these areas for every time unit during a time period. That is
an extra burden for the system that can be avoided.

For example, a user wants to know the area that has prop-
erty P at timeT . If the user decide to limit the depth of
the recursive execution to10 weeks, the naive implementa-
tion will try to find all such areas at every week from week
T−10 to weekT . The results between weekT −10 to week
T − 1 are neither necessary nor confident.

In order to improve the efficiency of the algorithm, we
modify the naive Datalog solution as follows:

Theorem 3.1

P = {(x, y, t) | A(x, y, t) ∨

(

+∞∨

m=1

(C(x, y, t, m − 1) ∧ A(x, y, t − m)))}

where

C = {(x, y, t, m) | (B(x, y, t) ∧ m = 0) ∨
(B(x, y, t − m)∧
C(x, y, t, m − 1) ∧ m ≥ 1)}

Theorem 3.1 allows us to express the problem of find-
ing relationP by an efficient Datalog query as follows.

C(x, y, t, 0) : − B(x, y, t).
C(x, y, t, m) : − B(x, y, t − m),

C(x, y, t, m − 1), m ≥ 1.

P (x, y, t) : − A(x, y, t).
P (x, y, t) : − C(x, y, t, m − 1),

A(x, y, t − m), m ≥ 1.



Note: RelationA(x, y, t) and B(x, y, t) are defined in
Query 1. AssumeCk = {(x, y, t) | C(x, y, t, k)}, we al-
ways haveCj ⊆ Ci for all 1 ≤ i < j. That means for
each fixed timet the area ofC(x, y, t, m) monotonously
decreases asm increases.

Hence the Datalog query evaluation of theP should ter-
minate after some finite number of rule applications. The
users can easily assign an appropriate constantM as the up-
per bound ofm for their specific application to balance the
accuracy and calculation time. The biggerM , the more ac-
curate the result and the more the calculation.

After this improvement, the execution time of the opti-
mized Datalog is more predictable and much less than the
naive implementation in general. Detail comparison is re-
ported in Section 4.3.

4. Sample applications of the IVSRDC

The IVSRDC system provides a general method to vi-
sualize recursively defined concepts. It can be easily ap-
plied in many different research areas. In this section, we
describe two sample applications which are implemented
by the IVSRDC system. Then we compare the performance
of naive and optimized algorithm based on the drought anal-
ysis problem.

4.1. Drought analysis problem

Although the concept of drought is well-known for most
people as a deficit of precipitation, it is hard to precisely de-
fine the beginning and ending time of a drought event. Pre-
cipitation has to be combined with time and location to rep-
resent a drought condition. Meteorologists have developed
many drought indices to help the analysis of drought. Stan-
dardized Precipitation Index (SPI) [5] is one of the com-
mon and simple measures of drought. The original SPI data
is calculated by the entire precipitation data stored in a
point-based spatio-temporal database sampled in weather
stations, that is, only the sample points have SPI values.

We use SPI values to calculate the drought regions. Val-
ues of SPI range from2 and above (extremely wet) to−2
and less (extremely dry) with near normal conditions rang-
ing from0.99 to−0.99. McKee et al. [5] defined the criteria
for adrought eventfor any time scale as follows. A drought
event occurs “any time the SPI is continuously negative and
reaches an intensity of−1 or less. The event ends when the
SPI becomes positive.” Therefore, each drought event has
a duration defined by its beginning and end, and an inten-
sity for each time unit that the event holds.

We describe the problem in the format of Definition 1.2
as follows:

Definition 4.1 An area is indrought during weekT if dur-
ing T we measure either

(i) −1 or less SPI value or
(ii) between−1 and0 of SPI valueand it was indrought

during weekT − 1.

In Section 2, we provide a general solution for this
kind of problems. By inputing the three arguments ask =
−1, k1 = 0 andT = request time, the system can automat-
ically generate a correct Datalog query to find the drought
areas and visualize the result in a picture.

Figure 7 on the next page shows the evaluation process
of this recursive Datalog query. The red area represents the
A relation. Green area is theB relation and blue area is
the area ofC relation.1 For any integermi < mj we have
Cmi

⊆ Cmj
.

4.2. Air pollution evaluation problem

Clean air is considered to be a basic requirement for hu-
man health and well-being. The development of toxicity is
a complex function of the interaction between a pollutant
concentration and the exposure duration. After peak expo-
sure for a short period, a pollutant may cause acute, damag-
ing effects. Exposing to a lower concentration of a pollutant
for a long period of time may cause irreversible chronic ef-
fects. It is easier to evaluate the effects of a short-term peak
exposure to a chemical than a prolonged exposure to a lower
concentration. However, in some cases, the low concentra-
tion over a long period can have more impact than the pat-
tern of peak exposure [10].

As stated in [10], a similar situation occurs for effects on
vegetation. Plants are generally damaged by short-term ex-
posures to high concentration as well as by long- term expo-
sures to low concentration. Therefore, both short-and long-
term guidelines to protect plants are proposed. In this paper,
we focus our work on the effects of polluted air on plants
because the exposure - response relationship between pollu-
tants and plants is more accurate than that on human health.
However, the rules can be easily applied on human health if
required.

We can evaluate and visualize the air pollution based on
the safe and critical level of the pollutants given in the air
quality guidelines [10].

When the pollutant concentration exceeds a critical level,
the probability of damage is considered to be non-zero. That
implies a non-sustainable force. This force can lead to ac-
tual damage at any point in time.

If the concentration keeps below the safe level, then the
pollution is safe for most acceptors. No adverse effects were
found in the receivers under this condition.

When the concentration level of the pollutant is between
the safe level and the critical level, then there is no immedi-

1 This figure looks best if printed in color. In a black-and-white printout,
the blue areas will be black and the red areas gray.



Figure 7. Process of finding the drought places at time 10515 ( the 27th week of year 2001).



ate damage caused by the pollutant. But the plant may ac-
cumulate this chemical in the body and produce adverse ef-
fects after a long period of time.

It is also important to know that the critical and safe lev-
els may not be unique in different regions. For example, the
critical levels of sulfur dioxide (SO2) in forest or vegeta-
tion areas are almost half of that in the agricultural crop ar-
eas. [10] provides a table of the critical levels for the ef-
fects of sulfur dioxide on vegetation, which is listed in Fig-
ure 8. To handle this problem, we can apply the general so-
lution for each region and combine the outputs together in
the final output.

Vegetation Guideline
category (µg/m3) Time period Constraints

Agricultural 30 Annual and
crops winter mean
Forests and 20 Annual and
natural winter mean
vegetation
Forests and 20 Annual and (a)
natural winter mean
vegetation
Lichens 10 Annual mean
Forests 1.0 Annual mean(b)

(a) Accumulated temperature sum above +5◦C is
< 1000◦C · days per year.

(b) Where ground level cloud is present≥ 10% of time

Figure 8. Guidelines for the effects of sul-
fur dioxide ( SO2) on vegetation: critical lev-
els [10].

In this paper, we choose sulfur dioxide (SO2) as the sam-
ple pollutant to visualize the air pollution in IVSRDC sys-
tem. The area we evaluate here has four regions. The green
region on the left represents natural vegetation area. The
golden area on the right-bottom of the map represents agri-
cultural crops. The dark green top-right area is a forest. The
blue region in the map is a river. The red point in the mid-
dle of the map represents a factory which releasesSO2 into
the air every day. Each of these object is represented by a
spatial constraint relation in the input database and speci-
fied by the user through the web page interfaces.

The long-term pollution area can be defined as follows:

Definition 4.2 An area ispolluted during weekT if during
T we measure either
(i) critical level or more pollutant in the air or
(ii) betweensafe andcritical level of pollutant in the air
andit waspolluted during weekT − 1.

Figure 9. Output web page of finding polluted
regions.

Applying the general solution for each region and com-
bine them together, we can get the output map of the pol-
luted regions. Figure 9 is the final output web page with the
output image combined with the polluted regions, different
plant regions, river object, and factory object. The user can
calculate the area of each object by selecting it from the leg-
end. And he/she can even calculate the intersection or dif-
ference of any two objects.

4.3. Performance analysis

To evaluate the improvement of the optimization, we do
experiment on the drought analysis problem and show the
execution result in Figure 10.

The constraint database in our experiment is the interpo-
lated SPI data of year 2001. We use SPI data in the eval-
uation because it is come from real data and is representa-
tive for other problems. It has 4264 tuples, each of them has
three inequality functions and one equality function. As a
preparation of the data, we generate relationA andB for
both algorithms first. RelationA has608 tuples and rela-
tion B has2511 tuples.



Bound Items Naive Optimized Implement
Implement C(x,y,t,m) P(x,y,t)

10489- time 1060sec 669sec 48sec
10499 tuples 80 150 0
10499- time 1020sec 324sec 28sec
10509 tuples 217 86 59
10505- time ≥ 3h 2153sec 118sec
10515 tuples N/A 218 99
10519- time 4706sec 325sec 18sec
10529 tuples 397 40 0
10529- time 2791sec 1183sec 67sec
10539 tuples 97 203 5

Figure 10. Efficiency comparison in finding
drought regions.

In practice, the naive implementation is inefficient and
the execution time is unpredictable. In some cases, it gen-
erates no output before it uses out the memory of the test-
ing machine. On the other hand, the optimized implementa-
tion can always generate an output in an acceptable time. Its
execution time is much more predictable than the naive al-
gorithm.

5. Conclusion and future works

For spatio-temporal applications, recursive queries are
not expressible using the basic query languages of GIS sys-
tems. Some relational database and knowledge-based sys-
tems provide recursive queries, but they do not provide
spatio-temporal data representation. Hence the visualiza-
tion of recursively defined concepts cannot be handled by
any known system in an easy way. They would usually re-
quire some special functions to be written in a programming
language like C or C++ and added to a library. In contrast,
the IVSRDC only uses standard SQL and Datalog queries to
solve the problem. Therefore, the program is simple, declar-
ative and high-level query that is easy to maintain.

This feature is important, because the requirement of vi-
sualizing recursively defined concepts on spatio-temporal
data is frequent enough to need a general and simple solu-
tion method as shown in Example 5.1.

Example 5.1 An ecosystem is indanger during monthT if
during monthT the density of one important plant species
either
(i) decreased 10% or more or
(ii) decreased between 2% and 10% and it was already in
danger during monthT − 1.

Constraint databases integrate database technology with
constraint solving methods to visualize complex spatio-

temporal problems [8]. Based on the recursive Datalog
query language and the MLPQ system, we can visualize
some novel queries in a simple and efficient way, which
would be difficult or impossible to do with other systems.
The problems solved by those queries are not trivial and
can be found in many other important research areas.

We are currently extending the usage of the IVSRDC
system. For example, we are improving the user interfaces
and allow the user to specify the color of each overlay ob-
ject. We are expanding therecursive Datalog Generatorso
that the user can select an object and compare the differ-
ence of its areas at different time instances. Besides the im-
provement of the IVSRDC system, we are also branching
out to other new applications that require displaying recur-
sively defined spatio-temporal concepts.
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