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Abstract: Datalog programs with di�erence con-

straints, (i.e., pure Horn clause logic programs without

any function symbols and constraints except for con-

straints of the form x � y � c over the integers) can

express the entire r.e. class, hence their safety (i.e, ter-

mination on every input database) is undecidable in

general. We use two new approaches to deal with this.

First, we certify that speci�c programs are safe for any

valid database input. For this end, we introduce typed

Datalog programs. The type declarations and the pro-

gram structure can often lead to typed-safety, a decid-

able property that implies safety. Algorithms are pre-

sented for checking whether a typed program is typed-

safe and for evaluating the least �xpoint of typed-safe

queries.

Second, we provide approximate evaluations on the

least �xpoint of unsafe queries.

1 Introduction

The halting problem is a fundamental problem in com-

puter science that has plagued general purpose pro-

gramming languages from the very beginning of pro-

gramming. Database programming languages were

supposed to have avoided this problem by being re-

stricted languages in which all queries terminate. As

database programming languages have been extended

with various constraints since the initial work on con-

straint query languages by Kanellakis, Kuper and

Revesz [6] the halting problem has resurfaced. There

are four options for dealing with safety.

I. Ignore the issue. In constraint databases the long-

term goal is to provide something for naive users who

have no idea of the halting problem. They may be very

frustrated if they encounter a non-terminating query

without any warning. Hence this is not a good option.

II. Insist on safe query languages (i.e., in which ev-

ery program is terminating on every input database).

This has been the approach used up to now in con-

straint databases. Figure 1 summarizes some results in

this line of research. In the �gure D means any discrete

domain. In general [13] presents a su�cient restriction

on the type of constraints allowed to obtain safe query

languages considering standard �xpoint semantics, but

see [4] and [10] for some other results on safe recursive

queries going beyond standard semantics.

III. Certify safe programs. In this approach a

Domain Constraint Datalog See

set of D =

Bool

any [6]

set of D �, 6=

monBool

any [9]

integer gap-order any [7]

integer modulus any [12]

rational linear positive,negative [11]

real polynomial non-recursive [6]

Figure1: Safe Query Languages

database user is allowed to use a very expressive

database programming language. If a program writ-

ten by a user can be shown to terminate on every valid

input database, then it is certi�ed to be safe. A user

may continue to use an unsafe program at his/her own

risk after receiving a warning from the system. We take

this approach in Section 4. The main idea is to derive

an easily testable su�cient termination condition that

is di�erent from the termination conditions given for

example in [2] and [3] for the top-down evaluation of

constraint logic programs.

IV. Approximate the output. In this approach, the

output of the unsafe program is approximated. We take

this approach in Section 5.

We consider di�erence constraints of the form x�y �

c where c can be any integer. Datalog

di�

programs can

express the entire r.e. class. This is desirable from the

point of expressive power, but it also implies that safety

is undecidable for Datalog

di�

programs. Therefore, we

introduce a weaker form of safety, called typed-safety

that applies to typed Datalog programs. Any typed-safe

program is safe, but not all safe programs are typed-

safe. The notion of typed-safety is decidable for typed

Datalog

di�

programs.

Each typed Datalog

di�

program is a Datalog

di�

pro-

gram together with a type declaration for each input

relation. This type declaration indicates something

about the syntax of the constraints that are allowed

in a constraint relation. Our motivation for typing is

the following. A program that does not terminate on

some type A of input databases may terminate on some

other type B of input databases. Similarly, a program

may be typed-safe on A but not typed-safe on B.

This paper is organized as follows. In Section 2

we present some basic de�nitions. In Section 3 we

de�ne an algebraic evaluation of the least �xpoint of



Datalog

di�

programs and prove a su�cient condition

for termination. In Section 4 we de�ne typed-safe

Datalog

di�

programs and show that they satisfy the

su�cient condition for termination. In Section 5 we

give an approximate evaluation method for the least

�xpoint of any (safe or unsafe) Datalog

di�

program.

The approximation method gives a lower and an upper

bound for the least �xpoint.

2 Basic Concepts

2.1 Constraints

A di�erence constraint has the form

x� y � c

where x and y are variables or the constant 0 and c is

a constant. We call c the bound or right hand side and

x�y the left hand side in each di�erence constraint. We

assume that the domain of the variables and constants

is the set of integer numbers, denoted by Z.

Note that lower bound constraints x � c, upper

bound constraints x � c, equality constraints x = y

and x = c, and addition constraints x = y + c can

be all expressed by (conjunctions of) di�erence con-

straints. Hence we do not deal with these separately in

this paper.

2.2 Datalog

di�

Constraint Tuples: Each input database is a set of con-

straint tuples that have the form,

R

0

(x

1

; : : : ; x

k

) :|  :

where  is a conjunction of di�erence constraints on

x

1

; : : : ; x

k

which are not necessarily distinct variables

or constants.

Rules: Each Datalog program is a set of rules that

have the form,

R

0

(x

1

; : : : ; x

k

) :| R

1

(x

1;1

; : : : ; x

1;k

1

);

: : : ;

R

n

(x

n;1

; : : : ; x

n;k

n

);

 :

where R

0

; : : : ; R

n

are not necessary distinct relation

symbols and the xs are not necessarily distinct vari-

ables or constants and  is a conjunction of di�erence

constraints. We call the left hand side of :| the head

and the right hand side of :| the body of the rule.

Several constraint tuples or several rules can have the

same left-hand relation name. In the constraint tuples

all variables in the body also appear in the head. In

the rules some variables in the body may not appear

in the head.

Query: Each Datalog query consists of a Datalog

program and an input database.

Semantics: Let Q be any Datalog query with con-

straints. We call an interpretation of Q any assignment

I of a �nite or in�nite number of tuples over Z

�(R

i

)

to

each R

i

that occurs in Q, where �(R

i

) is the arity of

relation R

i

.

The immediate consequence operator of a Datalog

queryQ, denoted T

Q

, is a mapping from interpretations

to interpretations as follows. For each interpretation I :

R

0

(a

1

; : : : ; a

k

) 2 T

Q

(I) i� there is an instantiation � of

all variables by constants from Z, including variables

x

1

; : : : ; x

k

by constants a

1

; : : : ; a

k

, in either a constraint

tuple of the form above such that �( ) is true, or a rule

of the form above such that R

i

(�(x

i;1

; : : : ; x

i;k

i

)) 2 I

for each 1 � i � n and �( ) is true.

Let T

0

Q

(I) = T

Q

(I). Also let T

i+1

Q

(I) = T

i

Q

(I) [

T

Q

(T

i

Q

(I)). An interpretation I is called a least �xpoint

of a query Q i� I =

S

i

T

i

Q

(I).

Each di�erence constraint relation R represents a

possibly in�nite set of tuples of constants that satisfy

R. This set we denote by Mod(R).

3 Evaluation of Datalog

di�

Programs

In this section we show a quanti�er-elimination-based

and an algebraic evaluation of Datalog

di�

queries. We

also give a su�cient termination condition. Section 4

will investigate when this termination condition can be

guaranteed. We describe the steps of the evaluation

method as follows.

Constraint Rule Application: Let us assume that we

have a rule of the general form in Section 2 and we

also have input or derived constraint tuples for each

1 � i � n of the form:

R

i

(x

i;1

; : : : ; x

i;k

i

) :|  

i

(x

i;1

; : : : ; x

i;k

i

):

where formula  

i

is a conjunction of constraints. A

constraint rule application of this rule given these con-

straint tuples as input produces the following derived

constraint tuple:

R

0

(x

1

; : : : ; x

k

) :| �(x

1

; : : : ; x

k

):

where � is a quanti�er-free formula that is equivalent

to

9 �  

1

(x

1;1

; : : : ; x

1;k

1

); : : : ;  

n

(x

n;1

; : : : ; x

n;k

n

);  :

where � is the list of the variables in the body of the

rule which do not occur in the head of the rule.

Remark: For Datalog

diff

queries the immediate con-

sequence operator may not be computationally e�ec-

tive because there may be an in�nite possible number

of substitutions for the variables in a rule. In con-

trast, constraint rule applications which can compute

non-ground output tuples are always e�ectively com-

putable.

The bottom-up constraint �xpoint evaluation of Dat-

alog queries starts from the input constraint tuples and

rules and repeatedly applies one of the rules until no



new constraint tuples can be derived and added to the

database. We call the set of input and derived con-

straint tuples the constraint least �xpoint of the query.

Note that a constraint tuple is equivalent to a possi-

bly in�nite number of regular tuples of constants from

the domain. Hence a �nite number of constraint tuples

could represent an in�nite least �xpoint. In fact, sim-

ilar to other cases of constraint Datalog programs [6],

it can be shown that:

Proposition 3.1 For any Datalog

di�

query the bottom-up constraint least �xpoint is equiv-

alent to the least �xpoint. 2

The next lemma shows that existentially quanti�ed

variable elimination can be done.

Lemma 3.1 Let S be any conjunction of di�erence

constraints over the variables x; y

1

; : : : ; y

n

. Then we

can rewrite 9xS into a logically equivalent S

0

of di�er-

ence constraints over y

1

; : : : ; y

n

.

Proof: S

0

will be the conjunction of all the di�er-

ence constraints in S that do not contain the variable

x and all the di�erence constraints that can be derived

from any pair of di�erence constraints in S using the

implication below for any y

i

and y

j

where y

0

= 0 for

0 � i; j � n.

y

i

� x � c

1

and x� y

j

� c

2

imply y

i

� y

j

� c

1

+ c

2

Given any two di�erence constraints with opposite

signs for x, their sum is returned by the implica-

tion. It is easy to see that if S consisted of di�erence

constraints, then S

0

will contain only di�erence con-

straints. The only case that merits special mention is

when y

i

and y

j

are the same variables. In that case

we will obtain 0 on the left hand side. If the bound on

the right hand side is less than or equal to 0, then this

constraint can be dropped, else we can return a ag

that S

0

is unsatis�able.

For any instantiation, if two di�erence constraints

are both true, then their sum also must be a true di�er-

ence constraint. Hence if S is true, then S

0

must be also

true for any instantiation of the variables x; y

1

; : : : ; y

n

.

For the other direction, suppose that S

0

is true for

some instantiation of the variables y

1

; : : : ; y

n

. Then

make the same instantiation into S. After the instanti-

ation, x will be the only remaining variable in S. Wher-

ever x occurs positively, the constraint implies a lower

bound for x, and wherever x occurs negatively the con-

straint implies an upper bound for x.

Suppose that the largest lower bound l is implied by

some constraint f and the smallest upper bound u is

implied by some constraint g in S. Since the sum of f

and g under the current instantiation is equivalent to

l � u and is in S

0

, which is true, we can �nd a value

between l and u inclusively for x that will make S also

true. 2

Although it would be possible to perform constraint

rule applications using Lemma 3.1, we would like to

give constraint rule applications more structure by con-

sidering an algebraic evaluation of the rule bodies.

That would lead to an algebraic rule application that is

equivalent to a set of constraint rule applications per-

formed in parallel.

Let S be any conjunction of di�erence constraints.

We simplify S so that it contains at most one di�er-

ence constraint with each di�erent left hand side. If

S has several di�erence constraints with the same left

hand side all but the one with the highest bound is su-

peruous and is deleted. We call the remaining set of

constraints the normal form of S.

Example 3.1 Let S be x � y � 5; x � y � 8; y � z �

2; z � y � 4, then we have three di�erent left hand

sides, namely x� y and y� z and z� y. From the two

constraints with the same left hand side x� y, we only

keep the stronger one, i.e. x�y � 8. Hence the normal

form of S will be x� y � 8; y � z � 2; z � y � 4.

Normal form conjunction of di�erence constraints

can be represented by a labeled directed graph, called

a di�erence graph or d-graph. The d-graph contains a

vertex for each variable and the constant 0 and a la-

beled directed edge from y to x with label c for each

constraint of the form x� y � c.

Each tuple of a relation R can be represented by a

d-graph, and each relation R can be represented by

a set of d-graphs over the same set of vertices. Next

we de�ne the following algebraic operations on sets of

d-graphs.

1. Rename: If relation R has d-graphs G and � is

a renaming of some of the variables by other vari-

ables, then the d-graphs of �(R) are �(G).

2. Select: If relation R has d-graphs G and � is a

selection of the form x� y � c, then the d-graphs

of �(R) are

fg [ f(y; x)

c

g j g 2 Gg

where (y; x)

c

is an edge from y to x with label c.

In each g if there is an edge (y; x)

d

with d � c,

then delete that edge from g.

Test for satis�ability of each d-graph. Delete the

unsatis�able d-graphs.

3. Project: If relation R has d-graphs G and R

0

is a

projection of R onto all variables except x

i

, then

the d-graphs of R

0

are

felim(x

i

; g) j g 2 Gg

where elim(x

i

; g) is the d-graph that is obtained

from g in two steps. In the �rst step, for each pair



of x

j

and x

k

add edge (x

j

; x

k

)

c

1

+c

2

to g if (x

j

; x

i

)

c

1

and (x

i

; x

k

)

c

2

are edges in g. In the second step,

delete x

i

and all edges adjacent to it. If there are

several edges between two vertices, delete all of

them except the one with the maximum label.

Test for satis�ability of each d-graph. Delete the

unsatis�able d-graphs.

4. Join: If R

1

and R

2

are relations with d-graphs G

1

and G

2

, then the join of them is a relation that has

d-graphs

fg(V

1

[ V

2

; E

1

[ E

2

) j g

1

(V

1

; E

1

) 2 G

1

;

g

2

(V

2

; E

2

) 2 G

2

g

The label of an edge is the maximum of the labels

in either E

1

or E

2

.

Test for satis�ability of each d-graph. Delete the

unsatis�able d-graphs.

3.1 Su�cient Termination Condition

We next present a su�cient condition for termination.

Theorem 3.1 For any l, if the bottom-up constraint

�xpoint evaluation of a Datalog

di�

program does not

create any constraint tuple containing a bound less than

l, then there is a modi�ed evaluation that returns the

constraint �xpoint in �nite time.

Proof: Let us consider any output relation

R(x

1

; : : : ; x

n�1

). Clearly, it does not a�ect the cor-

rectness of the evaluation if we normalize every derived

constraint tuple before adding it to R.

In every normalized tuple (equivalently d-graph) for

R there are clearly only n

2

di�erent left hand sides

(directed edges).

Let us �x any ordering of the n

2

possible left hand

sides. Using this �xed ordering, we can represent any

normal form constraint tuple S as a n

2

-dimensional

point in which the ith coordinate value will be (c+l+1)

if S contains a di�erence constraint with the ith left

hand side and bound c, and 0 if S does not contain any

di�erence constraint with the ith left hand side.

Using this representation, the condition that the

evaluation does not create a bound less than l can be

translated as saying that the evaluation only creates

points that are represented with only non-negative in-

teger coordinates. Therefore the sequence of derived

constraint tuples for R can be represented using a point

sequence:

p

1

; p

2

; : : :

We say that a point dominates another point if it

has the same dimension and all of its coordinate values

are � the corresponding coordinate values in the other

point.

It is easy to see that if point p

i

dominates point p

j

,

then p

i

and p

j

represent conjunctions S

i

and S

j

of dif-

ference constraints such that the set of solutions of S

i

is included in the set of solutions of S

j

. This shows

that the �xpoint evaluation could be modi�ed to add

only points that do not dominate any earlier point in

the sequence. By the geometric Lemma in [7], in any

�xed dimension any sequence of distinct points with

non-negative integer coordinates must be �nite, if no

point dominates any earlier point in the sequence. 2

4 Typed Datalog

di�

Programs

Tuple types are graphs that are similar to d-graphs

except that the labels on the edge are abstracted and

represented by colors. That is, a tuple type is a directed

graph whose vertices are labeled by variables and the

constant 0 and whose edges are colored blue, purple or

red.

In a type, a directed edge from y to x indicates that

there may be a constraint of the form x� y � c. If the

edge is red then the bound must be non-negative. If it

is blue, then the bound could be any integer.

More precisely, we say that a constraint tuple t has

type g with respect to a negative integer l, denoted by

t :

l

g, if whenever there is a constraint of the form

x � y � c in t, then there is a directed edge from y to

x in g. Further, if the edge is red, then c � 0, and if it

is blue, then c � l.

Example 4.1 Let t be the constraint tuple

R(x; y; z; u) :| x� y � �4; y � z � 1; z � u � �2.

Also, let g(V;E) be a type with vertices V =

f0; x; y; z; ug and edges E = f(y; x)

p

; (z; y)

r

; (u; z)

b

g

where superscripts b; p; r indicate that an edge is blue,

purple or red, respectively.

Then t :

(�3)

g is true. 2

A relation type is a set of tuple types.

We say that a constraint relation R has type G with

respect to an integer l, denoted by R :

l

G, if for each

constraint tuple t of R there is a g 2 G such that t :

l

g.

A typed program is a Datalog

di�

program with a type

declaration for each input constraint relation.

Example 4.2 The following typed Datalog

di�

program

has input relations P and Q and output relation R.

The rules are the following.

R(x; z; v) :| z � x � 50; v � z � �90:

R(x; z; v) :| P (u; y); Q(x; y; z); R(z; u; v):

Suppose that the type declaration with respect to l =

�100 of relation P is G

P

which contains a single graph

g

1

:

��

��

��

��

�

y

u

where (dashed line = red) and (solid line =

blue).

Similarly, the type declaration of Q is G

Q

contains

only the graph g

2

:



��

��

��

��

��

��

-

........................

-

......................

x

y

z

Note: The choice of these type declarations is arbi-

trary. We could have also declared other types. 2

Each typed Datalog

di�

program will accept only in-

puts that have the declared types. Therefore, each exe-

cution starts with checking whether the input database

has the right type. Hence, the following is important:

Lemma 4.1 Let R(x

1

; : : : ; x

k

) be any �xed relation

scheme. Then for any instance r with di�erence con-

straints and type declaration G of R and any integer l,

it can be checked in linear time in the size of r and G

whether r :

l

G.

Proof: Each tuple type in G can be simpli�ed by

deleting vertices other than x

1

; : : : ; x

k

and edges adja-

cent to them. If the vertices x

1

; : : : ; x

k

do not occur in

a tuple type, then they can be added to it as isolated

vertices.

After the simpli�cation we will have exactly k + 1

vertices and we can have (k+1)

2

edges which are either

blue, red, purple or absent. Therefore, there can be

only O(4

(k+1)

2

) di�erent tuple types in the worst case,

that is, some constant c. For each of the tuples in r we

have to check whether it has one of the types remaining

in G. Therefore, if r contains n tuples, then there are

O(n) number of checks whether a tuple has a tuple

type.

For checking whether a tuple t has a tuple type g,

we can do the following. We read the constraints in t

in sequence. For each constraint of the form x� y � c

we check that there is an edge in g from y to x. If c

is negative we also check that the color of the edge is

blue or purple. If c is less than l, we check that the

color of the edge is purple. Clearly, this yields a linear

time algorithm for type checking. 2

We introduce a precedence relationship among the

three colors. We say that red is greater than blue and

blue is greater than purple.

When a query is evaluated, each output relation will

have a type that is dependent on the program and the

type of the input relations. For typed rename-select-

project-join relational algebra expressions we de�ne in-

ductively on the structure of the expressions the out-

put relation type with respect to a �xed l throughout

as follows.

1. Rename: If relation R :

l

G and � is a renaming

of some of the variables by other variables, then

�(R) :

l

�(G).

2. Select: If relation R :

l

G and � is a selection of

the form x � y � c, then the type of �(R) with

respect to l is found as follows.

If c � 0, then add (y; x)

r

, else if c � l, then add

(y; x)

b

, else add (y; x)

p

. If edge (y; x) has after

the addition several colors, then preserve only the

maximum color.

3. Project: If relation R :

l

G and R

0

is a projection

of R onto all variables except x

i

, then the type of

R

0

with respect to l is

felim(x

i

; g) j g 2 Gg

where elim(x

i

; g) is the graph that is obtained

from g in two steps. In the �rst step, for each pair

of x

j

and x

k

add edge (x

j

; x

k

) to g if (x

j

; x

i

) and

(x

i

; x

k

) are edges in g. If both of the latter edges

are red then color the new edge red, else if one of

them is red and the other is blue, color it blue, else

color it purple. In the second step, delete x

i

and

all edges adjacent to it. If there are several edges

between two vertices, delete all of them except the

one with the maximum color. For example, a red

edge implies that b � 0 and a blue edge implies

that b � l. The conjunction of these implies that

b � 0, hence we keep the red edge, which indeed

has a higher precedence than the blue edge.

4. Join: If R

1

:

l

G

1

and R

2

:

l

G

2

, then the join of

them is a relation that has type with respect to l

fg(V

1

[ V

2

; E

1

[ E

2

) j g

1

(V

1

; E

1

) 2 G

1

;

g

2

(V

2

; E

2

) 2 G

2

g

The color of an edge is red if it is red in either E

1

or E

2

, else it is blue if it is blue in either, else it is

purple.

For Datalog

di�

programs we de�ne the types of

the output relations by algorithm Find-Datalog-Types

shown below. (We assume that the Datalog

di�

program

is in a recti�ed form, that is, each de�ned relation p ap-

pears in the head of rules with the same list of argument

variables. Recti�cation is a minor restriction because

any Datalog program can be written in an equivalent

recti�ed form [1].)

Algorithm Find-Datalog-Types

INPUT: A typed Datalog

di�

program.

OUTPUT: The types of output relations.

FOR each output relation p

m

DO

assign to p

m

the type ;

END-FOR

WHILE any changes in types DO

FOR each rule r with head p

m

DO

Find type G

r

of the rule body using

�; �; �;1 de�nitions above.

Union G

r

to the type of p

m

.

END-FOR

END-WHILE

RETURN(types of output relations)



Example 4.3 We illustrate the above de�nitions by

�nding with respect to l = �100 the type G

R

of the

output relation R of the Datalog

di�

program in Exam-

ple 4.2.

Initialization: G

R

= ;.

First Iteration: The body of the �rst rule is equivalent

to two selection operations on the relation that contains

all tuples over x; z; v. Hence we add to G

R

the following

tuple type g

3

:

��

��

��

��

��

��

-

........................
-

x v

z

The body of the second rule is equivalent to the rela-

tional algebra expression:

�

x;z;v

(�

x;z;v;y

(G

P

1 G

Q

1 (�

x=z

(�

z=u

(G

R

)))))

where the double projection is needed because our def-

inition of projection allows projection of one variable at

a time. Since initially G

R

is empty, the evaluation of

the rule body yields only an empty relation.

Second Iteration: The �rst rule does not add any

new tuple types.

The rule body of the second rule is now evaluated as

follows.

The two renamings of G

R

yields g

4

:

��

��

��

��

��

��

-

........................
-

vz

u

Joining G

P

; G

Q

and the renamed G

R

, that is g

1

; g

2

and g

4

yields g

5

by taking the union of the edges in the

three graphs:

��

��

x

��

��

y

��

��

z

��

��

u

��

��

v

$'

?

-

...................

-

...................

-

...................

-

The projection �

x;z;v;y

is done by eliminating u, and

we get g

6

:

��

��

x

��

��

y

��

��

z

$'

?

��

��

-

...................

-

...................

-

v

The projection �

x;z;v

is done by eliminating y, and

we get g

7

:

	

��




-

��

��

��

��

��

��

-

........................
-

x v

z

Hence g

7

is added to G

R

.

Third Iteration: The �rst rule does not add any new

tuple types.

The evaluation of the second rule will be similar as

in the second iteration, except that instead of g

4

and

g

5

we get graphs that also contain a self-loop from u to

u. Therefore, nothing new is added to G

R

in the third

iteration. Hence the algorithm exits the while loop and

returns the type G

R

= fg

3

; g

7

g. 2

The types are used to de�ne typed-safe programs as

follows.

De�nition 4.1 A typed Datalog

di�

program is typed-

safe if the types of its output relations do not contain

any purple edges.

The following lemma proves that the calculation of

the output relation types and testing for typed-safety

for Datalog programs can be done e�ciently.

Lemma 4.2 For any �xed k, it can be checked in

PTIME in the size of a Datalog

di�

program with max-

imum k-arity relations whether it is typed-safe. 2

Example 4.4 The program of Example 4.2 is typed-

safe because as we saw in Example 4.3 none of the types

in G

R

contains a purple edge. (Note that this program

is not a Datalog with gap-order program[7], hence it

could not be proved safe by previous results.) 2

Remark: Our main goal is to prove that given

Datalog

diff

programs are safe with respect to all

databases of a certain type. However, it is also pos-

sible to check whether a given Datalog

diff

program is

safe on a new database input without the user speci-

fying the input database types. To do this, we simply

�nd for each input relation R a type (i.e., for each d-

graph in R a tuple type and then taking union) and

also take l to be the minimum of zero and the smallest

constant that occurs in any di�erence constraint in the

query, and then proceeding as above.

4.1 Termination of Typed-Safe Programs

In the following, we distinguish between the algebraic

operators on types by writing them as _�; _�; _�;
_
1 and

the algebraic operators on sets of d-graphs by writing

them as �̂; �̂; �̂;
^
1. We will drop the accent marks when

it is obvious from the context which set of operators are

applied. We can show that the operators on sets of d-

graphs de�ned are semantically correct in the following

sense.

Lemma 4.3 The following are true for any di�er-

ence constraint relations R;R

1

; R

2

, rename condition

B, select condition C, and list of variables X, where

�; �; �;1 are the standard rename, select, project and

join operators over unrestricted (�nite or in�nite) re-

lations.

(1) Mod(�̂

B

(R)) � �

B

(Mod(R))

(2) Mod(�̂

C

(R)) � �

C

(Mod(R))

(3) Mod(�̂

X

(R)) � �

X

(Mod(R))

(4) Mod(R

1

^
1R

2

) � Mod(R

1

) 1 Mod(R

2

) 2



The next lemma shows that the operations de�ned

above yield always output relations that have the de-

�ned types.

Lemma 4.4 (Correctness of Rename-Select-

Project-Join Type De�nitions) The following are

true for any constraint tuples t; t

1

; t

2

, types g; g

1

; g

2

,

integer l and rename �, select �, project � and join 1

operators.

(1) t :

l

g then �̂(t) :

l

_�(g).

(2) t :

l

g then �̂(t) :

l

_�(g).

(3) t :

l

g then �̂(t) :

l

_�(g).

(4) t

1

:

l

g

1

and t

2

:

l

g

2

then t

1

^
1t

2

:

l

g

1

_
1g

2

. 2

Based on Lemma 4.4 we can say the following about

Datalog

di�

programs.

Lemma 4.5 (Correctness of Datalog Type De�-

nitions) The following is true for any typed Datalog

di�

program with input relations R

1

; : : : ; R

m

with types

G

1

; : : : ; G

m

and output relation R

0

with type G

0

(as

computed by algorithm Find-Datalog-Types) and inte-

ger l after any number of rule applications.

If R

i

:

l

G

i

for 1 � i � m then R

0

:

l

G

0

. 2

Now we can show termination for typed-safe

Datalog

di�

programs.

Theorem 4.1 The least �xpoint of any typed-safe

Datalog

di�

query is evaluable in di�erence constraint

form when the domain is the integers.

Proof: By Theorem 3.1 it is enough to show that

the evaluation of typed-safe Datalog

di�

programs does

not create constraint tuples with a bound less than l

for some l.

We take l to be the smallest bound in either the

program or the input database. Then by Lemma 4.5

all the output relations satisfy their types. Further, by

the de�nition of typed-safe programs the types do not

contain purple edges. Hence the output relations must

contain only constraints that have a bound � l. 2

5 Approximate Evaluation for unsafe

Datalog

di�

While typing can greatly increase the set of Datalog

di�

programs that can be used, there are many programs

that are still unsafe. For these programs, we can do an

approximate evaluation.

First, we note that what unsafe typed programs

have in common is that they contain types with purple

edges. Purple edges are created when two blue edges

are transitively composed into a single edge. Since the

blue edges indicate the possibility of negative bounds

in the corresponding constraint, the purple edges in-

dicate the possibility of creation of a negative bound

that is lower than any bound initially occurring in the

program or any input relation.

Once a purple edge is created it may be further com-

posed by other purple or blue edges leading to the cre-

ation of even smaller bounds. This leads to the idea

of placing a limit l on the allowed smallest bound. To

avoid smaller bounds than l, we may do two di�erent

modi�cations to the evaluation method.

Modi�cation 1: We modify the evaluation method

by adding to any output database relation a new con-

straint tuple only after changing the value of any bound

c to be max(c; l).

Modi�cation 2: We modify the evaluation method

by adding to any output database relation a new con-

straint tuple only after deleting from it any di�erence

constraint that has a bound less than l.

Let lfp(�(D); l ") and lfp(�(D); l #) denote the out-

put of the �rst and the second modi�ed evaluation al-

gorithms, respectively. We can show the following.

Theorem 5.1 For any Datalog

di�

program �, input

database D and constant l, the following is true:

lfp(�(D); l ") � lfp(�(D)) � lfp(�(D); l #)

Further, lfp(�(D); l ") and lfp(�(D); l #) can be eval-

uated in �nite time.

Proof: In the case of the �rst modi�cation, the mod-

i�ed tuple implies the original one. Therefore, after

any number of rule applications the output relations

obtained by the modi�ed algorithm also imply the out-

put relations obtained by the original algorithm.

In the case of the second modi�cation, the original

tuple implies the modi�ed one. Therefore, after any

number of rule applications the output relations ob-

tained by the original algorithm also imply the output

relations obtained by the modi�ed algorithm.

In both cases by Theorem 3.1 there is a modi�ed

evaluation that terminates. (In both cases, we need

also to add dominance checking as within the proof of

Theorem 3.1.) 2

We can use the above to get better and better

approximations using smaller and smaller values as

bounds. In particular,

Theorem 5.2 For any Datalog

di�

program �, input

database D and constants l

1

and l

2

such that l

1

� l

2

�

0, the following hold.

lfp(�(D); l

2

") � lfp(�(D); l

1

")

lfp(�(D); l

1

#) � lfp(�(D); l

2

#)

2



6 Conclusions

We studied two new approaches to the termination

problem in constraint databases. These approaches

greatly extend the set of queries that users may safely

use. An open problem is to design and implement con-

straint database systems with menu interfaces on top

of the logical languages studied here, similar to the

development of relational databases which implement

menu interfaces on top of SQL. The constraint query

languages then could be provided for naive users as was

the original aim in [6]. There are several system imple-

mentations that make good progress towards that goal

[10].
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