
The Evaluation and the Computational Complexity of Datalog
Queries of Boolean Constraint Databases*

Peter Z. Revesz
Department of Computer Science and Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA

Abstract

In the database framework of Kanellakis et al. it was argued that constraint query languages
should meet the closed-form requirement, that is, they should take as input constraint databases and
give as output constraint databases that use the same type of constraints. This paper shows that
the closed-form requirement can be met for Datalog queries with Boolean equality constraints with
double exponential time-complete data complexity, for Datalog queries with precedence and monotone
inequality constraints in triple exponential-time data complexity. A closed-form evaluation is also
shown for (Stratified) Datalog queries with equality and inequality constraints in atomless Boolean
algebras in triple exponential-time data complexity.

1 Introduction

Constraint databases describe extensional database relations as quantifier-free first-order formulas. Con
straint databases in the form of non-ground facts have been used in constraint logic programming
[9, 10, 19] for almost ten years. Constraint databases also generated much interest recently in the
database community [11]. In the database framework of [12] it was argued that the closed-form require
ment for relational query languages should extend to constraint query languages. That is, constraint
query languages should take as input constraint databases and give as output constraint databases that
use the same type of constraints.

Boolean terms within logic programs were first considered by Buttner and Simonis [4]. Their method
relies on Boolean term unification [15]. Boolean constraints within constraint logic programs were first
considered in [12] where querying Boolean constraint databases with Boolean equality constraints over
free algebras was analyzed.

[12] proved that Datalog queries with Boolean equality constraint databases can be evaluated in
closed-form with II~-hard data complexity. (Data complexity is the measure of the computational com
plexity of fixed queries as the size of the input database grows [5, 21]. The rationale behind this measure
is that in practice the size of the database typically dominates by several orders of magnitude the size of
the query.)

In Section 2 we review Boolean algebras and two quantifier elimination methods in Boolean algebras.
We also describe a new quantifier elimination method. In Section 3 we consider Datalog queries. We first
describe a parametric fixpoint evaluation method for Datalog queries. Then we show that Datalog queries
with equality constraints can be evaluated in double exponential-time, with precedence and monotone
inequality constraints in triple exponential time, and with equality and inequality constraints in atomless
Boolean algebras in triple exponential time data complexity. We also show that all of these cases have a
double exponential time-hard data complexity lower bound. In Section 4 we consider Stratified Datalog

*This work was supported in part by NSF grants IRI-9625055 and IRI-9632871.

1

queries. We show that Stratified Datalog queries with equality and inequality constraints in atomless
Boolean algebras can be evaluated in closed-form in triple exponential time data complexity. Finally
Section 5 discusses other related work and gives some concluding remarks.

2 Basic Concepts

In this section we review the basic concepts of Boolean algebras, Boolean constraints, and quantifier
elimination in Boolean algebras. We also present one new quantifier elimination method.

2.1 Boolean Algebras

A Boolean algebra B is a sextuple (Ii, A, V ,', 0, 1), where Ii is a set called the domain, A, V are binary
functions, ' is a unary function and 0, 1 are two specific elements of Ii (called the zero and the identity
element, respectively) such that for any elements x, y, and z in /j the following axioms hold:

xVy
x V (y A z)

xV x'
xV0

0

yVx
(xVy)A(xVz)
1

xAy
x A (y V z)

xAx'
xAl

yAx
(xAy)V(xAz)
0
X

For Boolean algebras there is a representation theorem, known as Stone's theorem [3, 7]: "Every
Boolean algebra is isomorphic to Boolean algebra of sets (where A, V ,' are interpreted as n, U, and set
difference from 1, respectively) and every finite Boolean algebra is isomorphic to the power set of a finite
set". Thus, there is a unique (up to isomorphism) finite Boolean algebra for every cardinality 2m. The
Boolean algebra of cardinality 22

m is the one freely generated by m generators and is denoted by Bm- For
m = 0, we have Bo=({0, 1}, A, V ,', 0, 1).

Boolean Terms: We use T(F, VU C) for the set of terms built in the usual way from F, the set of
function symbols and the zero and the identity elements {A, V,', 0, 1}, Va set of variable symbols, and
C a set of constant symbols distinct from 0, l. Ground terms are those terms which do not have any
variable symbols appearing in them. A (B, u)-interpretation is a pair, where B is a Boolean algebra and
u is a mapping of the constant symbols C to the elements of B. For each t in T(F, VU C), given a
(B, u)-interpretation and an element of B for each variable symbol appearing in t, we can evaluate t in
the usual way and have it denote one element of B.

A Boolean equality constraint between terms ti and t2 in T(F, VU C) is a statement of the form
ti =B,u t 2 for a (B, u)-interpretation. A Boolean inequality constraint is a statement of the form ti #-B,u

t2 . A solution of an equality (or inequality) constraint is a substitution of elements of B for the variable
symbols that makes ti and t2 denote the same element (or distinct elements) of B when u is applied
to the constant symbols. We say the equality (or inequality) constraint is true if every substitution of
elements of B for the variable symbols is a solution. (We will sometimes omit B or u when it is obvious
from the context.)

Lemma 2.1 Let t(z1, z2 , ... , Zn) be a term, where the z's are the distinct variable or constant symbols
occurring in it. Then the following equation is true:

t(z1, Z2, ... , Zn) = (t(0, Z2, ... , Zn) A zD V (t(l, Z2, ... , Zn) A z1) . □

Disjunctive Normal Form: We use the convention that z 0 means z' and z1 means z, and that
the z's are ordered from z1 to Zn- Then, we also may write the equation in the previous lemma as

2

t(z1, z2, ... , Zn) = VaiE{0,1} (t(a1, z2, ... , Zn) A zf 1). By repeatedly using the above lemma and the nine
Boolean algebra axioms, it is possible to transform each term into the following disjunctive normal form:

t(z1, - -- ,zn) = V (t(a1, ... ,an) A zf 1 A zg2 A ... A z~n)
aE{O,l}n

where VaE{O,l}n denotes the disjunction of all 0, 1 substitutions for a1, ... , an- The function determined
by t(z 1, ... , Zn) depends only on the values of the 2n expressions t(a 1, ... , an), where each ai is either 0
or l. One can see that each of these 2n expressions has value either O or l. Hence, it is possible to see
that there are 22

n disjunctive normal forms with n variable and constant symbols.

Constructing Bm: We give a simple example of how to construct the free Boolean algebra Bm out
of a set of m constant symbols C = { c1, ... , cm}- First we build all possible ground terms. Next we find
all the equivalence classes of ground terms under the Boolean algebra axioms. Each equivalence class
is an element of Bm and corresponds to a disjunctive normal form. There are 22

m distinct equivalence
classes or elements of Bm. We call the constant symbols the generators, all possible conjunctions of
the generators the minterms of the algebra. All elements of the Boolean algebra can be expressed as a
disjunction of some minterms.

Example 2.1 Consider the free Boolean algebra B 3 generated by the constant symbols a, b, c. B 3 has
23 minterms. These minterms in descending order of binary superscript values are:

a A b A c, a A b A c', a A b' A c, a A b' A c', a' A b A c, a' A b A c', a' A b' A c, a' A b' A c'

By Lemma 2.1 each element of B3 can be written in a disjunctive normal form in which each minterm
either occurs as a disjunct or not. Hence there are 223 elements of the free Boolean algebra B3. □

Example 2.2 In a free Boolean algebra the generators don't come with an interpretation of the Boolean
algebra operators. We give an example of a (B, u)-interpretation. The symbol A is interpreted as set
intersection, Vas set union, and' as set difference from {1,2,3,4,5,6, 7,8}. Also,

u(a) = {1,2,3,4}
u(b) = {1,2,5,6}
u(c) = {1,3,5,7}

The interpreted Boolean algebra B is (Ii, A, V ,', 0, {1, 2, 3, 4, 5, 6, 7, 8}) where /j is the powerset of the
set {1,2,3,4,5,6, 7,8}. In B the minterms are all different elements:

aAbAc=B,rr {1},aAbAc' =B,rr {2},aAb' Ac=B,rr {3},aAb' Ac' =B,rr {4},
a' Ab Ac =B,rr {5}, a' Ab Ac' =B,rr {6}, a' Ab' Ac =B,rr {7}, a' Ab' Ac' =B,rr {8}

The free Boolean algebra B3 under the interpretation (B, u) became another specific Boolean algebra
with 8 different minterms that are not equal to 0, and a total of 28 elements. □

Example 2.3 Now let us look at a different interpretation (B,u 2) for the free Boolean algebra B 3. In
this interpretation assume the same meaning for the Boolean algebra operators as in Example 2.2, but
assume that u2 is the following:

u2(a) = {1}
u2(b) = {2}
u2(c) = {3}

In this case some of the minterms are equivalent. In fact,

aAbAc=B,rr 2 0,aAbAc' =B,rr2 0,aAb' Ac=B,rr 2 0,aAb' Ac' =B,rr2 {1},
a' AbAc=B,rr 2 0,a' Ab Ac' =B,rr2 {2},a' Ab' Ac=B,rr 2 {3},a' Ab' Ac' =B,rr2 {4,5,6,7,8}

Under this interpretation of the constants, only a subalgebra of the Boolean algebra in Example 2.2

3

is generated. This subalgebra has only 4 different minterms that are not equal to 0 and only 24 elements.
□

Atomless Boolean algebras have the property that between O and any element there is always another
element [3, 7, 14]. In Section 4 we will require that the interpretation yields an atomless Boolean algebra.
(We do not care which one, just that it has the above property.)

Example 2.4 Let Bh be the Boolean algebra whose elements are finite unions of half open intervals over
the rational numbers, including the emptyset and the set of all rational numbers Q. In Bh let A mean
intersection, V mean union, and ' mean complement with respect to the set of rational numbers. Further
let a, b, c be three constants allowed within the terms, and let their interpretation be defined by u3 as
follows:

u3(a) = [2, 10)
u3 (b) = [3, 35)
u3(c) = [4,21)

The minterms of the free Boolean algebra B 3 under the interpretation (B h, u3) are various elements
of Bh- For example, the minterm a Ab Ac would be the half open interval [4, 10). It is not an atom
because it contains the half open interval [5, 8) which is also an element of Bh- The Boolean algebra Bh

is a well-known example of an atomless Boolean algebra. □

2.2 Quantifier Elimination

In this section we consider existentially quantified formulas, which we define in the standard way [6].
We say that two formulas are equivalent in a given Boolean interpretation (B, u) if they have the same
set of solutions, i.e., substitutions for the free variables that make them true. The purpose of quantifier
elimination is to rewrite an existentially quantified formula into an equivalent quantifier-free formula [6].

One quantifier elimination method which originates with George Boole and which follows easily from
Lemma 2.1 is the following.

Lemma 2.2 For any Boolean interpretation (B, u), the formula 3x (f(x, Y1, ... , Yk) =B,u 0) is equivalent
tof(0,y1,---,Yk)Af(l,y1,--·,Yk)=B,u0- □

Another quantifier elimination method for atomless Boolean algebras was proven recently by Marriott
and Odersky [14]. This method eliminates an existentially quantified variable from a system of Boolean
equation and inequation constraints and returns as a solution another system.

Lemma 2.3 For any Boolean interpretation (B, u) where Bis atomless, the system of formulas

3x [f(x,y1, -- - ,Yk) =B,u 0,
91(x,y1, - - - ,Yk) -/-B,u 0,

.,
91(x,y1, - -- ,Yk) -/-B,u 0]

is equivalent to

f(0,y1, -- - ,Yk) A f(l,y1, - -- ,Yk) =B,u 0,
(f (l, Yl, - -- , Yk)1 A 91 (1, Y1, - - - , Yk)) V (f (0, Yl, -- - , Yk)1 A 91 (0, Y1, - - - , Yk)) -/-B ,u 0,

Boole's method is limited because it allows quantifier elimination only from formulas that have only
equality constraints. Marriott and Odersky's method is more general syntactically, but it works only

4

for atomless Boolean algebras. In the following, we present a new quantifier elimination method that is
syntactically between the two other methods but also works for any Boolean algebra. First we need some
more definitions.

We call a constraint of the form x A y' =B,u 0, abbreviated as x ':::.B,u y, a precedence constraint.

We say that 9 is a monotone Boolean function if 9(x1, .. . , Xn) ':::.B,u 9(y1, . .. , Yn) whenever Xi ':::.B ,u Yi
for each 1 ':5_ i ':5_ n. We call a constraint of the form 9(x1, ... , Xn) -/-B,u 0, where 9 is a monotone Boolean
function, a monotone inequality constraint.

The following are a some useful facts about the precedence relation [7]. For any elements x,y,z,w
in any Boolean interpretation (B, u),

X ':::.B,u X

X ':::.B,u y and y ':::.B,u X imply X =B,u y

X ':::.B,u y and y ':::.B,u Z imply X ':::.B,u Z

0 ':::.B,u X

(xAy)':5.B,uX

X ':::.B,u y and w ':::.B,u z imply (x Aw) ':::.B,u (y A z)

Now we can state and prove the new quantifier elimination method.

(reflexivity)

(antisymmetry)

(transitivity)

(zero element)

(augment)

(merge)

Lemma 2 .4 For any Boolean interpretation (B, u) and monotone Boolean functions 91 , ... , 91 and
y, z, v, w, u's that are constants or variables not necessarily distinct from each other but different from x,
the system of formulas:

3x [z1 ':::.B,u x, ... , Zm ':::.B,u x,
X ':::.B,u Yl, · · · ,X ':::.B,u Yk,
W1 ':::.B,u U1, - - - ,Ws ':::.B,u Us,

91(x,v1,---,Vn)-/-B 0,

is equivalent to

Z1 ':::.B,u Yl,···,Zj ':::.B,u Yi,···,Zm ':::.B,u Yk,
W1 ':::.B,u U1, - - - , Ws ':::.B,u Us,

91((y1 A - - - A Yk),v1, - - - ,vn) -/-B 0,

91((y1 A ... A Yk),v1, ... ,vn) -/-B 0.

Proof: Suppose that the first formula is true for some substitution for the variables other than x.
Then there exists a substitution for x that makes the first formula without the quantifier true. With that
substitution Zj ':::.B,u x and x ':::.B,u Yi are both true for all 1 ':5_ i ':5_ k and 1 ':5_ j ':5_ m. Hence by transitivity
Zj ':::.B,u Yi must be true. Further, by merge x ':::.B,u Y1, ... ,x ':::.B,u Yk imply that x ':::.B,u (y1 A ... A Yk)
This and the monotonicity of 9p imply that 9p(x,v1, ... ,vn) ':::.B,u 9p((y1 A ... A Yk),v1, ... ,vn) for each
1 ':5. p ':5. l.

Since the first formula is true, 9p (x, v1, ... , Vn) -/-B ,u 0 is true for each 1 ':5_ p ':5_ l. Suppose now that for
some p the constraint 9p((y1A- .. Ayk), v1, ... , Vn) -/-B,u 0 is false. Then 9p((y1 A .. . Ayk), v1, ... , Vn) =B,u 0
would be true, and by reflexivity 9p((y1 A ... A Yk), v1, ... , vn) ':::.B ,u 0 would be also true. Then by
transitivity 9p(x, v1, ... , vn) ':::.B,u 0 would be true. By the zero element rule 0 ':::.B,u 9p(x, v1, ... , vn)- The
last two conditions and the antisymmetry rule imply that 9p(x, v1, ... , vn) = B,u 0 which is a contradiction.
Hence 9p((Y1 A ... A Yk), v1, ... , vn) -/-B,u 0 must be true for each 1 ':5_ p ':5_ l. Therefore each constraint in

5

the second formula must be true using the same substitutions as in the first formula.

For the other direction, suppose that the second formula is true for some substitution for the variables
in it. Then Zj ':5:.B,u Y1, ... , Zj ':5:.B,u Yk imply using merge that Zj ':5:.B,u (y1 A ... A Yk) for each 1 ':5_ j ':5:. m.
The augmentation rule implies that (y1 A ... A Yk) ':5:.B,u Yi for each 1 ':5_ i ':5:_ k. Therefore, the same
substitution and the choice of Y1 A ... A Yk for x makes all the precedence constraints in the first formula
true. Also, this choice for x makes each monotone inequality in the first formula equivalent to the
corresponding monotone inequality in the second formula, which we assumed to be true. Hence the first
formula must be also true using the same substitutions. □

3 Datalog Queries with Boolean Constraints

3.1 Syntax and Semantics

The following definition of the syntax and semantics of Datalog programs with Boolean Constraints
extends the definition of Datalog without constraints in [20] and Datalog with only Boolean equality
constraints in [12].

Facts: Each input database consists of a set of facts (also called constraint tuples) that have the
form,

where the f and the gs are Boolean terms.

Rules: Datalog programs consist of a set of rules that have the form,

where Ro, ... , Rn are not necessary distinct relation symbols and the xs are either variables or
constants, and x is the set of variables in the rule. We call the left hand side of :- the head and the
right hand side of :- the body of the rule.

Several facts or several rules can have the same left-hand relation name. In the facts all variables in
the body also appear in the head. In the rules some variables in the body may not appear in the head.

In general any conjunction of equality and inequality constraints could be allowed in the facts and
rules. We have only defined a standard form for facts and rules. In the standard form each fact or rule has
only one equality constraint of the form f = B ,u 0. This is without loss of generality because each equality
constraint of the form f =B,u his equivalent to the constraint (/Ah') V (!'Ah) =B,u 0 and similarly
for inequality constraints. Further a set of equality constraints of the form Ji =B,u 0, ... , fn =B,u 0 is
equivalent to the single equality constraint Ji V ... V f n =B,u 0. To easier readability, in the examples
below we will sometimes use the general form instead of the standard form. The standard form will be
an important simplification in describing the evaluation procedure and the proofs.

Example 3.1 Let the constant c describe the set of computer science majors, m the set of mathematics
majors, and a, d, s the set of students who took an abstract algebra, a database systems, or a software
engineering class at a university. Suppose that all non-mathematics majors who took an abstract algebra
class are eligible for a mathematics minor, and all non-computer science students who took either a
database systems or a software engineering class are eligible for a computer science minor. This can be
expressed using the following facts.

6

math_minor(X)

cs_minor(X) X =B,u c' A (dV s).

Example 3.2 Continuing Example 3.1, suppose further that all students who are either computer science
majors or are eligible for a computer science minor can apply to the computer science master's program.
This can be expressed by the rule.

can_apply_cs_MS(X) :- cs_minor(Y),X =B, 17 cVY.

Example 3.3 Let relation range(X, R) describe that animal X occurs in the range R within a national
park. Suppose that animal a is infected with a virus which spreads by contact with other animals. The
following Datalog program defines the set of animals which are in danger of being infected by animal a.

inf ection_area(R)
inf ection_area(R)

in_danger(X)

range(a, R).
infection_area(Rl), range(X, R2), RI A R2 -/-B, 17 0, R =B, 17 RIV R2.

infection_area(Rl), range(X, R2), RI A R2 -/-B,17 0.

In this example a possible (B, u) interpretation would be the subsets of the two dimensional real
space R 2 , with the operator A meaning intersection, V meaning union, and ' meaning complement with
respect to the two dimensional real space. Animals could be identified by single points in R 2 , for example,
the first coordinate value could be some identification number and the second the year of birth. □

Each Datalog query consists of a set of facts (input database) and a set of rules (Datalog program).
For example, the set of facts in Example 3.1 and the rule in Example 3.2 together express a Datalog
query. The set of facts in Example 3.3 is a Datalog program, but it is not a complete query because we
did not give any facts. (An empty set of facts is acceptable, if it is truely intented. However, here we
just omitted to mention the facts.)

Semantics: Let II be any Datalog query using (B, u) Boolean constraints. We call an interpretation
of II any assignment I of a finite or infinite number of tuples over 50:(Ri) to each Ri that occurs in II,
where 8 is the domain of B.

We call valuation any function from (tuples of) variables to (tuples of) elements of B satisfying the
following: for all tuples ti and t2 , v(tl, t2) = (v(ti), v(t 2)), and for all constants c, v(c) = u(c).

The immediate consequence operator of a Datalog query Q, denoted TQ, is a mapping from interpre
tations to interpretations as follows. For each interpretation I:

Ro(a1, ... , ak) E TQ(0) iff there is a valuation v and a fact of the form
Ro(x1, ... ,xk) :- f(x1, ... ,xk) =B,u 0,g1(x1, ... ,xk) -/-B,u 0, ... ,gz(x1, ... ,xk) -/-B,u 0 in II such that
v(x1, ... ,xk) = (a1, ... ,ak) and
f(v(x1, ... ,xk)) =B, 17 0 is true, and 9i(v(x1, ... ,xk)) -/-B, 17 0 is true for each 1 :S j '.S l.

Ro(a1, ... , an) E TQ(I) iff there is a valuation v and a rule of the form
Ro(x1, ... ,xk) :- R1(x1,1, ... ,xl,k1), ... ,Rn(Xn,l, ... ,Xn,kJ,f(x) =B,u 0,g1(x) -/-B,u 0, ... ,gz(x) -/-B,u

0 in II such that
v(x1, ... , Xn) = (a1, ... , an) and Ri(v(xi,l, ... , Xi,kJ) E I for each 1 :Si :Sn and
v(x) = (a) and f(v(x)) =B, 17 0 is true, and 9i(v(x)) -/-B, 17 0 is true for each 1 :S j :S l.

Let TS(0) = TQ(0). Also let T~+i(I) = Tb(I) U TQ(Tb(I)).

An interpretation I is called a fixpoint of a query Q iff I= ui Tb(0).

Example 3.4 For example, let us assume the interpretation B for the Boolean algebra operators as in
Example 2.2, and for the constants u4 as follows:

7

u4(a) = {1,2,5,6}
u4(c) = {5,6, 7,8}
u4(d) = {2,4,6,8}
u4(m) = {1,2,3,4}
u4(s) = {3,6}

In this case we have the following:

TS(0) = { cs_minor({2, 3, 4}), math_minor({5, 6})}.

T~(0) = TS(0) U {can_apply_cs_MS({2,3,4,5,6, 7,8})}.

T~(0) = T~(0) = {cs_minor({2,3,4}),math_minor({5,6}),can_apply_cs_MS({2,3,4,5,6, 7,8})}.

Therefore the fixpoint of the Datalog query is T~(0). □

It is easy to see that we can do this evaluation for any Datalog query where (B, u) is a finite Boolean
algebra.

Proposition 3.1 Let Q be any Datalog query with equality and inequality constraints over some Boolean
interpretation (B, u) where Bis a Boolean algebra with N number of elements. Then Q can be evaluated
in O(Nc)-time for some constant c.

Proof: We evaluate the query using the consequence operator Tq. In the evaluation we try to
substitute all possible elements of the subalgebra into the variables of each fact to get TS(0). Then
we repeatedly try out all possible substitutions into the rules. We stop when the value of Tq does not
increase from one iteration to another.

In this evaluation, we add in each iteration except the last one at least one tuple to the current
value of Tq. Let r be the number of relation symbols and v be the maximum arity of any relation in
Q. Then Tq can have at most rNv tuples in it. Therefore O(rNv) number of iterations are enough to
evaluate Q. Further, in each iteration we have to try out all possible substitutions within each rule. The
maximum number of variables in each rule is also some fixed constant d. That means we need to try
out Nd substituitons for each rule. Checking whether a substitution of the variables satisfies a Boolean
equality or inequality constraint takes a linear time in the size of the term on the left hand side. Hence
the total evaluation time will be O(Nc) for some constant c. □

We also need sometimes to consider infinite Boolean algebras. We can not do a fixpoint evaluation
in an infinite Boolean algebra by trying out all possible substitutions. In this case we have to use some
quantifier elimination based fixpoint evaluation, which we describe in the next section.

It is also possible that B or u is not known. In this case a parametric constraint evaluation is used.
In the parametric evaluation of Datalog queries we use the free Boolean algebra generated by some set
of constants C which includes all the constant symbols in the query. The parametric evaluation will be
equivalent to the fixpoint evaluation, for any acceptable (B, u) interpretation. We will specify precisely
in each case what class of interpretations are acceptable.

3.2 Parametric Evaluation of Datalog Queries

Parametric Rule Application: Let us assume that we have a rule of the form:

and we also have given or derived facts for each 1 :S i :S n of the form:

8

where formula 'lpi is a conjunction of Boolean equality and inequality constraints.

A parametric rule application or firing of this rule given these facts as input will produce the following
derived fact:

where ¢ is a quantifier-free formula that is equivalent to

where * is the list of the variables in the body of the rule which do not occur in the head of the rule.

The bottom-up parametric evaluation of Datalog queries consists of repeatedly firing rules starting
from the input facts and rules, until no new facts can be derived. The set of derived facts will be a
parametric description of the fixpoint of the Datalog query.

Example 3.5 Let C be any set of constants that includes the constants a, c, d, m, s. Let us consider a
parametric evaluation of the Datalog query in Examples 3.1 and 3.2. We have to use the free Boolean
algebra Bo generated by the constant symbols in C. In this case we have the following.

Let 'tpcs_minor(X) be equivalent to X =B,u c' A (dV s). The formula 'tpcs_minor(X) is the right hand
side of a fact of cs_minar. Hence we can apply the rule by replacing cs_minor(Y) by 'lj;cs_minor after
renaming X by Y. Then we obtain,

can_apply_cs_MS(X) :-Y =B,u c' A (dV s),X =B,u cV Y.

Hence the derived fact for can_apply_cs_M Swill be:

can_apply_cs_MS(X) :- ¢(X).

where ¢(X) is a quantifier-free formula that is equivalent to :lY Y =B,u c' A (dV s),X =B,u cV Y.
The latter formula can be rewritten using the identities mentioned above as:

:lY (Y' A (c' A (dV s))) V (YA (c' A (dV s))') V (X' A (cV Y)) V (X A (cV Y)') =B,u 0.

Now we can apply Lemma 2.2, which will yield:

((1' A (c' A (dV s))) V (1 A (c' A (dV s))') V (X' A (cV 1)) V (X A (cV l)'))A

((0' A (c' A (dV s))) V (0 A (c' A (dV s))') V (X' A (cV 0)) V (X A (cV 0)')) =B,u 0.

In any Boolean algebra 1' = 0 and 0' = 1. Using this and the other Boolean algebra identities, the
above can be simplified to:

((c' A (dV s)') V X') A ((c' A (dV s))) V (X' Ac) V (X Ac')) =B,u 0.

Further simplifying, we get

9

((c' Ad' As') V X') A ((c' Ad) V (c' As) V (X' Ac) V (X Ac')) =B,u 0.

Finally, putting the constraint into DNF, we get for ¢(X) the following:

(X Ac' Ad' As') V (X' Ac' Ad) V (X' Ac' As) V (X' Ac) =B,u 0.

When we repeat the fixpoint iteration, no semantically new facts can be derived. Hence we the
fixpoint will be the two input fact and the above derived fact. As a check at the correctness of the
parametric evaluation, let's consider the (B,u) interpretation used in Example 3.4. After substitution for
the constants, we the above constraint becomes (X A{l})V(X' A{2, 4})V(X' A{3})V(X' A{5, 6, 7, 8}) =B,u

0. In any solution of this constraint X has to contain 2, 3, 4, 5, 6, 7, 8 and cannot contain l. The only
element of the Boolean algebra (B,u) in Example 3.4 that satisfies all of these constraints is the element
{2,3,4,5,6, 7,8}. This is the same that we obtained in the non-parametric evaluation. □

This bottom-up parametric evaluation is easily seen to be both sound and complete because the
quantifier elimination preserves the set of solutions. However, we still need to consider closed-form,
termination and computational complexity. Closed form means that the derived facts will contain the
same type of constraints that the input facts and rules.

It can be seen that using any of the three quantifier elimination methods preserves the closed-form.
Boole's method rewrites formulas with only equality constraints into formulas with equality constraints.
(Remember that several equality constraints can be rewritten into a single equality constraint in standard
form. Hence Boole's method can be easily extended for systems of equality constraint formulas.) Marriott
and Odersky's method rewrites standard form constraints into standard form constraints. Finally, the new
quantifier elimination method rewrites formulas with precedence and monotone inequality constraints into
quantifier-free formulas with precedence and monotone inequality constraints. The inequality constraints
are monotone, because it can be easily shown using the merge rule that if g(x, v1 , ... , vn) is a monotone
Boolean function, then g((y1 A ... A Yk), v1, ... , vn) is also a monotone Boolean function.

We can combine the same Datalog program with several different input database. It is interesting
to look at the computational complexity of queries with fixed Datalog programs and variable input
databases. This commonly used measure is called the data complexity of queries [5, 21]. Let us now
consider the computational data complexity upper bound of Datalog queries.

Theorem 3.1 Let Q be any Datalog query which contains only equality constraints in some Boolean
interpretation (B, u). Then Q can be evaluated bottom-up in closed form in double exponential time
data complexity.

Proof: Let v be the maximum arity of a relation in the given query program. Let m be the number
of constant symbols in the query. Since the program is fixed, v is some constant, but m may vary with
the size of the database. Our evaluation method will consist of a number of iterative steps. In each
step we add all new facts that can be derived from the already known facts and rules. By the proper
substitutions of database facts into the rules we get formulas on the right-hand side of the rules. From
these formulas we eliminate existentially quantified variables using Lemma 2.2.

We also have to show that the procedure terminates in O(22m)-time. To do that, we always keep
every fact in disjunctive normal form. Note that Lemma 2.2 does not introduce any new constant symbols,
hence the number of constant symbols m does not change during evaluation. The quantifier elimination
yields constraints that have up to m constant symbols and v variables. That means that the constraints
for each relation R can be represented by at most 22v+m facts by counting only disjunctive normal forms.
Hence, after each iteration step, every newly derived constraint can be compared easily with facts already
present in the database. If all newly derived constraints are already present, then the iteration can stop,
otherwise we add the new constraints. This procedure clearly must terminate because there are only

10

O(22v+m) number of facts that can be added for each relation with v arity. Since v is a fixed constant for
each fixed Q, the theorem holds. □

Theorem 3.2 Let Q be any Datalog query with constraints in some Boolean interpretation (B, u) where
B is an atomless algebra. Then Q can be evaluated bottom-up in closed form in triple exponential time
data complexity.

Proof: We can argue similarly to Theorem 3.1. The difference is that we use now the quantifier
elimination algorithm in Lemma 2.3 and we have to consider the inequality constraints. Clearly, this
quantifier elimination algorithm also does not introduce new constants. All derived facts may contain
only those constants that occur in the query. We have already argued that there can be 22v+m different
Boolean functions with v variables and m constant symbols. Now, each of these may occur within the

equality or in one of the inequality constraints in the standard form of a fact. Hence there can be 222
v+m+i

different facts. Hence we would need that many iterations at most for the parametric evaluation. □.

Theorem 3.3 Let Q be any Datalog query which contains only precedence and monotone inequality
constraints in some Boolean interpretation (B,u). Then Q can be evaluated bottom-up in closed form
in triple exponential time data complexity.

Proof: The argument is similar to Theorem 3.2. Let v be the maximum arity of any relation in the
given query program. Let m be the number of constant symbols in the program and the input database.
We can express v2 different precedence constraints between two variables, 2v22

m different precedence
constraints between a variable and an element of the free Boolean algebra Bm-

We have seen in Lemma 3.1 that there are 22v+m different Boolean functions. Hence there are also
O(22v+m) monotone Boolean functions. For any relation R in Q, in each fact of R some subset of these

monotone Boolean functions will occur within the monotone inequality constraints. There are O(222
v+m)

different subsets of these monotone Boolean functions. Therefore, considering the number of precedence
and inequality constraints possible and their different conjunctions not counting order, there are O(222

cm)

different facts of R for some constant c.

In the bottom-up evaluation we use Lemma 2.4. The bottom-up evaluation must terminate because
for each R the evaluation can add only O(222

cm) number of facts. □

3.3 Lower Bounds

For the lower bound, we consider Datalog queries with only equality constraints using the interpretation
(B, u) where u maps each constant to itself and B is Bm where m is the number of distinct constant
symbols that occur in the query.

At first we show that given a binary input relation next_gen which describes an ordering on the
generator symbols in the query, there is a Datalog query that gives as output a next relation which
describes the ordering of the minterms formable from these generators, assuming that the minterms are
ordered according to the binary value of the superscript a.

Lemma 3.1 Let 91, ... , 9m be constant symbols. Suppose that we are given the relations next_gen(g1, 92),
... ,next_gen(9m-l,9m) and last_gen(gm)- Then we can define in Datalog the relation next(X, Y) that
is true if and only if X and Y are minterms generated by g1 , ... , 9m and the minterm number of X is one
less than the minterm number of Y.

Proof: We define the next(X, Y) relation as follows. If in binary the ith digit of a minterm X is 1
then 9i should be a factor in it, and if it is 0 then gi should be a factor in X. We can express these as
X A 9i =B,u X and X A Yi =B,u X respectively.

11

next(X, Y)

next_minterm2(X, Y, I)
next_minterm2(X, Y, I)
next_minterm2(X, Y, 91)
next_minterm2(X, Y, I)

next_minterm3(X, Y, I)
next_minterm3(X, Y, 91)

next_minterm2(X, Y, M), last_9en(M).

next_minterm2(X, Y, J), next_9en(J, I), X A I' =B,17 X, YA I' =B,17 Y.
next_minterm2(X, Y, J), next_9en(J, I), X A I =B,17 X, YA I =B,17 Y.
X A9i =B,17 X,Y A91 =B,17 Y.
next_minterm3(X, Y, J), next_9en(J, I), X A I' =B,17 X, YA I =B,17 Y.

next_minterm3(X, Y, J), next_9en(J, I), X A I =B,17 X, YA I' =B,17 Y.
X A91 =B,u X,Y A9i =B,u Y.

□

Next we show that given as input the next relation on the minterms, there is another Datalog query
that gives as output a succ relation which describes an ordering on the elements of the free Boolean
algebra, assuming that the elements are ordered according to the binary value of the superscript of the
minterms. (Here a one (or zero) superscript means that the minterm is (or is not) in the disjunctive
normal form of the element.)

Lemma 3.2 Suppose that we are given the relations next(ti, t 2), ... ,next(t 2m_1, t2m) and first_minterm(9iA
... A 9:n) and last_minterm(91 A ... A 9m) that order the minterms of the free Boolean algebra Bm gen
erated by 91, ... , 9m· Then we can define in Datalog the relation succ(N, M) that is true if and only if
N and l'vl are elements of the free Boolean algebra Bm and the number of M is one less than the number
of N.

Proof: We encode each integer number from Oto 22
m - 1 as some element of Bm. Each number n

is represented by the element that contains the minterm ti if and only if in the binary encoding of n the
ith digit from the right is l. For example, the number 9 is represented in the free Boolean algebra B 2 by
the element { t4 , ti}. In the rest of the paper let en denote the element of Bm that represents the integer
number n.

We express the successor relation succ(N, l'vl) which is true if and only if l'vl, N represent the numbers
i,j respectively and i = j + 1 for any i,j < 22

m by the following rules.

succ(N, M)

succ2(N, M, I)
succ2(N, M, I)
succ2(N, M, I)
succ2(N, M, I)

succ3(N, M, I)
succ3(N, M, I)

zero(N,I)
one(N,I)

succ2(N, M, S), last_minterm(S).

succ2(N, M, J), next(J, I), zero(N, I), zero(M, I).
succ2(N, M, J), next(J, I), one(N, I), one(M, I).
zero(N, I), one(M, I), first_minterm(I).
succ3(N, M, J), next(J, I), zero(N, I), one(M, I).

succ3(N, M, J), next(J, I), one(N, I), zero(M, I).
one(N, I), zero(M, I), first_minterm(I).

NAI=B, 17 0.
NAI=B, 17 f.

In the above zero(N, I) and one(N, I) relations define respectively that element N contains or does
not contain minterm I. The rest of the proof is similar to that of the previous lemma. □.

Now we can express a yes/no program II in Datalog such that deciding whether II(d) is yes for
variable databased is double exponential time-hard.

Theorem 3.4 There is a fixed yes/no query program Q in Datalog with Boolean equality constraints
such that: If for each input database d, with constant symbols c1 , ... , cm, we take the u that maps these
constant symbols to themselves and we interpret B as Bm then deciding whether Q(d) is yes is double
exponential time-hard.

Proof: This lower bound is by simulation of deterministic double exponential time bounded Turing

12

machines. We can assume without loss of generality that the alphabet of the input tape is b0 , b1 , ... , bk
where b0 is the special tape symbol # denoting blank and the length of the input tape is m.

We will simulate a 22
m -1-time bounded deterministic Turing machine using a Datalog with Boolean

constraints over the free Boolean algebra Bm program.

Let the deterministic 22
m - 1-time bounded Turing machine be T = (K, u, 8, s0 , h), where K is the

set of states of the machine, u is the alphabet, 8 is the transition function, s0 is the id number of the
initial state, and h is the id number of the halting state.

First we use a relation T to describe the initial content of the tape. We record the length of the
input tape into the tape_size relation:

tape_size(em).

If 1 :Si :Sm and the ith tape cell is bi then we create a fact T(ei, ej)- If i > m, then the content of the
ith tape cell will be blank. We express this by:

T(M,bo)
greater(!, J)
greater(!, J)

tape_size(N), greater(N, M).
succ(I, K), greater(K, J).
succ(I, J).

Note that the representation ei of any number between O and m will need only at most log m
minterms. Each minterm can be expressed as the product of the m generators or their complements.
Each generator can be denoted in log m space. Hence each minterm can be expressed in m log m space
and each ei between O and m can be expressed in m log2 m space.

Since the alphabet of the tapes are fixed, we can assume that k < m. Also note that only the first
22

m - 1 tape cells will be given a value. That is enough because the simulation never needs to move
beyond the 22

m - 1st tape cell due to the time limit. We express the time limit as follows:

time_baund(X)
add_minterm(X, J)
add_minterm(X, I)

add_minterm(X, K), last.minterm(K).
:- add_minterm(X, I), next(I, J), X A J =B,u J.
:- first_minterm(I),X A I =B,u I.

Second we use a relation D to describe the transition function 8 of T We create for each possible
machine input state s1 , output state s2 , tape symbols c and w, and movement indicator m (being 0, 1 or
2), a fact D(e 81 , ec, e82 , ew, em) if according to 8 when the machine is in state s1 and pointing to c, then
either (1) the machine may go to state s2 and point to symbol wafter writing it on the tape and m = 0
meaning no move on the tape, or (2) the machine may move one tape cell right and m = 1 or to the left
and m = 2. (Note that if m = 1 or m = 2 then w can be any tape symbol; we will not use its value.)

Third we use a relation C to describe the configuration of the machine. The relation C (et, ei, e8)

describes that at time step t the machine is pointing to tape position i and is in state s. We can
assume that the Turing machine is pointing at time zero to the first tape cell. Therefore we create a fact
C(eo,e1,es 0).

Fourth we express the sequence of transitions of the machine by a relation R(et, ej, ec) which is true
if and only if at time t the jlh tape cell contains the tape symbol c. To initialize R we write the rule:
R(eo,j,c) :-T(j,c).

We express the requirements for a valid deterministic computation of the machine as follows.

13

m(I,I,eo)
m(I, O,e1)
m(I, 0, e2)

R(T2,I, W)
R(T2,I,Ci)
R(T2,I,Ci)
R(T2,P,Cp)
R(T2,P,Cp)

yes

succ(I, 0).
succ(0,I).

succ(T, T2), C(T, I, S1), R(T, I, Ci), D(S1, Ci, S2, W, eo)
succ(T, T2), C(T, I, S1), R(T, I, Ci), D(S1, Ci, S2, W, e1)
succ(T, T2), C(T, I, S1), R(T, I, Ci), D(S1, Ci, S2, W, e2)
succ(T, T2), C(T, I, S1), R(T, P, Cp),greater(I, P).
succ(T, T2), C(T, I, S1), R(T, P, Cp),greater(P, I).

The last rule expresses that by time 22
m - 1 the machine is in the halting state h. □

The next Corollary follows from Theorem 3.4 and Theorems 3.1, 3.2, 3.3.

Corollary 3.1 Datalog queries with only equality constraints have a double exponential time-complete
data complexity. Datalog queries with only constraints in an atomless Boolean algebra and Datalog
queries with only precedence and monotone inequality constraints have a double exponential time-hard
data complexity and can be evaluted in triple exponential-time data complexity. □

4 Stratified Datalog Queries

4.1 Syntacs and Semantics

Semipositive Programs: We call semipositive those Datalog programs that allow negation of input rela
tions [l, 5, 2]. Semantically each semipositive Datalog program II is also a mapping from input databases
to interpretations. On any input database d the output of the semipositive Datalog program is IT(d)
where IT is the Datalog program in which each negated occurrence of an EDE relation R is replaced with
the complement of R. The complement of a relation R with arity a when the domain is /j is the relation
lia \ R.

Stratified Datalog Programs: Each stratified Datalog program II is a list of semipositive programs
II1, ... , Ilk satisfying the following property: no relation symbol R that occurs negated in a IIi is an IDB
in any IIj with j 2:: i. Each IIi is called a stratum of II.

Semantically each stratified Datalog program is a mapping from databases to interpretations. In
particular, if II is the list of the semipositive programs II1, ... , Ilk with the above property, then the
composition ITk (... IT1 () ...) is the semantics of II. The output of a stratified Datalog query is called the
perfect model of the query [20].

Proposition 4.1 Any Stratified Datalog query Q with equality and inequality constraints over some
interpretation (B,u) where Bis a finite Boolean algebra with N elements can be evaluated in O(Nc)
time for some constant c.

Proof: The evaluation of a stratified Datalog query that is composed of k semipositive Datalog queries
reduces to the evaluation of k Datalog queries followed by the evaluationof the complement of the negated
relations. By Proposition 3.1 each Datalog query can be evaluted in O(Nc) time. Let R be any relation
with arity a. Suppose that R contains a subset of the tuples in lia where /j is the domain of (B, u). Then
the complement of R can be found in 0(Na log(Na)) time. This is because we can sort the set of tuples
in R and also find the set of tuples in order and then test for each whether it is already in the relation
or not. Hence each complementation that is needed to go from one stratum to another can be also done

14

Theorem 5.1. If we have an efficient translation between any Boolean algebra and some Boolean algebra
of sets, then the evalution of Datalog queries with :S constraints in the first can be reduced to an evalution
of Datalog queries with :S constraints in the second. In all cases, the key reason for the time improvement
is that the number of distinct minterms that can be built from m atoms is only 2m, that is, an exponential
factor lower than the normal number.

There has been little consideration of Boolean inequality constraints in the literature apart from the
paper by Marriott and Odersky [14], and Helm, Marriott and Odersky [8]. Investigating other cases of
Boolean inequality constraints that admit simple quantifier elimination remains an important topic.

The decidability of elementary Boolean algebras was proven by Tarski [18] and their complexity
was analyzed by Kozen [13]. However, none of [13, 14, 18] considered the computational complexity
of evaluating Datalog and Stratified Datalog queries. The known computational complexity results for
Datalog and Stratified Datalog queries of other types of constraint databases can be found in [17].

References

[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] K.R. Apt, H. Blair, A. Walker. Towards a Theory of Declarative Knowledge. In: Foundations of
Deductive Databases in Logic Programming, Morgan-Kaufmann, 1988.

[3] S. Burris, H.P. Sankappanavar. A Course in Universal Algebra, Springer-Verlag, 1981.

[4] W. Buttner, H. Simonis. Embedding Boolean Expressions into Logic Programming. Journal of Sym
bolic Computation, 4:191-205, 1987.

[5] A.K. Chandra, D. Harel. Structure and Complexity of Relational Queries. Journal of Computer- and
System Sciences, 25:99-128, 1982.

[6] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[7] P. Halmos. Lectures on Boolean Algebras. Springer-Verlag, 1974.

[8] R. Helm, K. Marriott, M. Odersky. Constraint-based Query Optimization for Spatial Databases.
Journal of Computer- and System Sciences, vol. 51, no. 2, pp. 197-210, 1995.

[9] J. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM Symposium on Principles of
Programming Languages, 111-119, 1987.

[10] J. Jaffar, M.J. Maher. Constraint Logic Programming: A Survey.].Logic Programming, 19 & 20,
503-581, 1994.

[11] P.C. Kanellakis. Constraint Programming and Database Languages: A Tutorial. Proc. 14th ACM
Symposium on Principles of Database Systems, 46-53, 1995.

[12] P. C. Kanellakis, G. M. Kuper, P. Z. Revesz. Constraint Query Languages. Journal of Computer- and
System Sciences, vol. 51, no. 1, pp. 26-52, 1995.

[13] D. Kozen. Complexity of Boolean Algebras. Theoretical Computer- Science, 10:221-247, 1980.

[14] K. Marriott, M. Odersky. Negative Boolean Constraints. Theoretical Computer- Science, 160: 365-380,
1996.

[15] U. Martin, T. Nipkow. Boolean Unification the Story so Far. Journal of Symbolic Computation,
7:275-293, 1989.

[16] P. Z. Revesz. Datalog Queries of Set Constraint Databases, In: Proc. Fifth International Conference
on Database Theory, Springer- Verlag LNCS 893, pp. 425-438, January 1995.

[17] P. Z. Revesz. Constraint Databases: A Survey. In: Semantics in Databases, L. Libkin and B. Thal
heim, eds., Springer-Verlag, to appear.

16

in 0(Nd) time for some constant d. Since we have a fixed number of semipositive queries within the
stratified Datalog query, the entire evaluation can be done in 0(Ndk) time. □

4.2 Parametric Evaluation of Stratified Datalog Queries

Lemma 4.1 Let Q be any semipositive query with constraints in some Boolean interpretation (B,u)
where B is an atomless Boolean algebra. Then Q can be evaluated bottom-up in closed form in triple
exponential time data complexity.

Proof: Let v be the maximum arity of any relation in the given query program. Let m be the
number of constant symbols occuring in the program and the input database. At first we need to find
the complement of each negated relation.

Each negated relation R consists of a set of facts, where the right hand side of each fact is a
conjunction of Boolean constraints. Let's take now the disjunction of these right hand sides as a formula
¢. We put ¢' again into DNF form. Then each disjunct of¢' will be the right hand side of a fact in the
complement of R. Since this process does not introduce any new constants and we can delete semantically

2 c(v+m)

equivalent constraints, there would be at most 0(2 2) different facts in the complement of R, and
each fact will have at most 0(2 2

c(v+m) size. After the set of facts for the negated relations is found, we can
use the parametric evalution for Datalog queries. Hence the rest of the proof follows from Theorem 3.2.
□

Theorem 4.1 Let Q be any Stratified Datalog query with constraints in some Boolean interpretation
(B,u) where Bis an atomless Boolean algebra. Then Q can be evaluated bottom-up in closed form in
triple exponential time data complexity.

2 c(v+m)

Proof: By Lemma 4.1 each stratum can be evaluated in 0(2 2) time. Since no new con-
stants are introduced by the evaluation in any semipositive query, the process can be repeated for each
semipositive query, yielding an evaluation of Q in the required time. □

Unfortunately, relations with only equality constraints and relations with only precedence and mono
tone inequality constraints are not closed under complementation. Hence Stratified Datalog queries with
these type of relations are not considered in this section.

5 Comparison with Related Works

Datalog queries with equality constraints were also considered in [12], where the data complexity was
proven to be rrg-hard, which is weaker than the double exponential time-complete result of this pa
per. In [16] Datalog queries with set variables and s:; constraints were considered and a deterministic
exponential-time complete data complexity was shown. This case can be viewed as a subcase of Datalog
with equality constraints under the interpretation of intersection for A, union for V, set complement for
negation, and subset-equal for ::;, and where each constant represents an atom. The main theorem in [16]
can be stated as follows.

Theorem 5.1 Let Q be any Datalog query with precedence constraints in a Boolean interpretation
(B, u) where B is the algebra of sets, that is (Ii, n, U,' , 0, 1) where the complement is interpreted as set
difference from 1, Ii is the powerset of all the atoms, and 1 is the set of atoms, and u maps each constant
to an atom. Then Q has a deterministic exponential time-complete data complexity. □

We note that mapping to atoms means mapping to singleton sets in a Boolean algebra of sets. There
are other cases when an exponential factor of improvement in the evalution time may be possible when u
is restricted to mappings to atoms. For example, we can use Stone's representation theorem to generalize

15

[18] A. Tarski. Arithmetical classes and types of Boolean algebras. Bulletin American Mathematical So
ciety, 55:1192, 1949.

[19] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[20] J.D. Ullman. Principles of Database and Knowledge-Base Systems, Vols 1&2, Computer Science
Press, 1989.

[21] M. Vardi. The Complexity of Relational Query Languages. Proc. 14th A CM Symposium on the Theory
of Computing, 137-145, 1982.

17

	The_Evaluation_and_the_Computational_Com copy_Page_01
	The_Evaluation_and_the_Computational_Com copy_Page_02
	The_Evaluation_and_the_Computational_Com copy_Page_03
	The_Evaluation_and_the_Computational_Com copy_Page_04
	The_Evaluation_and_the_Computational_Com copy_Page_05
	The_Evaluation_and_the_Computational_Com copy_Page_06
	The_Evaluation_and_the_Computational_Com copy_Page_07
	The_Evaluation_and_the_Computational_Com copy_Page_08
	The_Evaluation_and_the_Computational_Com copy_Page_09
	The_Evaluation_and_the_Computational_Com copy_Page_10
	The_Evaluation_and_the_Computational_Com copy_Page_11
	The_Evaluation_and_the_Computational_Com copy_Page_12
	The_Evaluation_and_the_Computational_Com copy_Page_13
	The_Evaluation_and_the_Computational_Com copy_Page_14
	The_Evaluation_and_the_Computational_Com copy_Page_16
	The_Evaluation_and_the_Computational_Com copy_Page_15
	The_Evaluation_and_the_Computational_Com copy_Page_17

