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Abstract: Revision and update operators add new information to some old information represented by
a logical theory. Katsuno and Mendelzon show that both revision and update operators can be characterized
as accomplishing a minimal change in the old information to accommodate the new information. Arbitration
operators add two or more weighted informations together where the weights indicate the relative importance of
the informations rather than a strict priority. This paper shows that arbitration operators can be also characterized
as accomplishing a minimal change. The operator of model-fitting is also defined and analyzed in the paper.

1 Introduction

Arbitration is the process of settling a conflict between two or more persons. Arbitration occurs in many
situations. For example, settling a labor dispute by an outsider, reaching a verdict in a trial, evaluating
several alternative research hypotheses, negotiating an international peace agreement, or setting the price
of a product in a competitive market, all can be viewed as cases of arbitration.

Arbitration is more general than selection and should not be confused with it. Selection means
siding with one person in a conflict, while arbitration may mean siding with one person in some issues
and another person in other issues. Arbitration yields a settlement that best satisfies several people’s
conflicting interests, subject to certain rules.

Arbitration is often done by one or more impartial persons, the arbitrators, but sometimes there
is no clear arbitrator. For example, a product’s price in the free market is settled by a process, not by
well-defined arbitrators.

Arbitration is worthy of study on its own. This paper introduces a logical framework for the study
of arbitration. This framework is a step towards making arbitration amenable to computer solutions.
We will describe several cases of arbitration by appropriate sets of axioms and give sample arbitration
operators as well.

The set of knowledge or belief that we have can be formally represented by a knowledge base K
that consists of a set of logical formulas. If the set of formulas is deductively closed we also call the
knowledge base a theory. Each formula is meaningfully kept separate within the knowledge base. For
example, each may denote a different witness’ testimony, the opinions of different newspaper editors,
or the results of different scientific experiments. Knowledge bases can be constructed by successive set
additions. For example, as each witness tells his or her story during a trial, the court clerk records the
testimony. This can be represented by adding to the current knowledge base a formula describing the
witness’ testimony. The final knowledge base will be a set of formulas, with one formula for each distinct
testimony. Using sets instead of ordered sequences as in [Ry91] reflects the intuition that the order of
the witnesses’ testimonies should not matter.
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Arbitration may be used to test against the knowledge base several possible hypotheses. For example,
a jury may test several hypothetical reconstructions of the crime based on a knowledge base containing the
witnesses’ testimonies. Similarly, a scientist may test several research hypotheses based on a knowledge
base containing the results of different experiments. In neither case does arbitration change the knowledge
base. Normally, the jury will not tamper with the records of the testimonies, nor will the scientist falsify
the data. Arbitration in these cases resembles hypothetical querying [Gab85, Gin86, Bon90, Mey90,
Gra91, GM91].

We consider two ways of restricting the set of hypotheses from which the arbitrators have to choose.
In the first case the hypotheses are restricted by a single formula u. For example, for a jury, 4 may be a
conjunction of two facts, one of which may state that no person can be at two places at the same time
and the other may state that the heights and the fingerprints of adults do not change. In this case, the
jury’s verdict must be consistent with u, that is, each hypothetical reconstruction of the crime will be
a model of y. Intuitively, the model that best fits the entire knowledge base is the one on which the
jury is likely to reach a consensus. We call this special case of arbitration model-fitting. In the second
case the hypotheses are restricted by a set of formulas. The arbitrators have to select from the set those
formulas that best fit the whole knowledge base. For example, the jury may have to choose between
the prosecution’s argument and the defense’s argument, both of which may be represented by complex
formulas.

Arbitration is related to revision and update, which are fundamental concerns to databases [BS81,
FUVS83], to Artificial Intelligence [McC68, Rei92], and to belief revision [Mak85, Gar88]. Both revision
and update are processes that change a knowledge base or theory when new information is presented that
conflicts with it. As pointed out by Abiteboul and Grahne [AG85], by Keller and Winslett [KW85] and
by Katsuno and Mendelzon [KM89], the nature of the new information is important in distinguishing
between revision and update. In update the new information simply says that something we hold true is
not true any more at the present time, while in revision the new information says that something we hold
true was never true. In either case the new information is accommodated within the knowledge base but
in different ways.

Several authors propose concrete operators for revision and update including Borgida [Bor85],
Dalal [Dal88], Fagin, Kuper, Ullman and Vardi [FUV83, FKUV86], Grahne, Mendelzon and Revesz [GMR92],
Hansson [Han91], Nebel [Neb90], Ryan [Ry91], Satoh [Sat88], Weber [Web86] and Winslett [Win88]. In-
stead of proposing a concrete operator Alchourrén, Gardenfors and Makinson [AGM85, Gar88] give a set
of axioms or postulates that every adequate revision operator should be expected to satisfy. Similarly,
Katsuno and Mendelzon [KM92] present axioms for updates.

Arbitration may be used also as a knowledge base change operator [Rev93]. Suppose the old infor-
mation is a knowledge base K and the new information is a sentence ¢. Both revision and update resolve
possible conflicts between the two by giving priority to the new information. However, if neither the old
nor the new information is preferred, then arbitration over the knowledge base K U ¢ can resolve the con-
flicts. In this case the result of the arbitration may be preserved as the new knowledge base. Arbitration
as a knowledge base change operator is useful for heterogeneous databases, which often require merging
of large equally important sets of information to answer queries. This is also the motivation of the work
on combination by Baral, Kraus, Minker and Subrahmanian [BKM91, BKMS92].

We believe that the three types of knowledge base operators complement each other. They can be
even used alternately during a complex application. For example, consider again the example of the jury
trial. If during a cross examination a witness changes his or her testimony (eg. “I was mistaken, the
color of the car was probably red instead of blue”), then the testimony of this witness should be revised,
while not changing any of the other testimonies. Later on we may use update as well, for example when
a witness says “I was fired from my job after my testimony here last week”. Then of course we may use
arbitration in the end for finding the jury’s verdict.

It is obvious that there are often significant differences in the trustworthiness or the importance of
different sources of information. Therefore we are also going to consider a generalization of arbitration
where the formulas within a knowledge base can have different weights. The weights we use are distinct



from the “weights” of Fagin et al. [FUV83], which denote priority values, that is a strict ordering which
is followed while trying to satisfy the most number of formulas. Our intuition for using weights is quite
different. A formula within a knowledge base may have a large weight, but its consideration may be
defeated by several formulas with lower weights. The weights in this paper are also distinct from the
weights of Dalal [Dal88] which are assigned to propositional terms rather than to the set of models of
formulas. They are also different from the possibility values of Zadeh [Zad78] which are restricted to
range between zero and one instead of being arbitrary nonnegative real numbers.

Katsuno and Mendelzon [KM89, KM92] found an elegant model-theoretic characterization of revision
and update when the knowledge base is a propositional theory 7. They found that revision operators
that satisfy the AGM postulates are exactly those that select from the models of the new information the
closest models to any model of T'. Update operators select for each model I of T the models of the new
information that are closest to I. The new theory is the union of all such models. Grove [Gro88] also
gives a characterization in terms of a system of spheres for revision operators that works for first-order
knowledge bases as well. Analogously to these results model-fitting operators can be characterized as
those operators that select from the models of an integrity constraint the overall closest models to the
whole set of formulas of a knowledge base K.

The outline of the paper is the following. Section 2 lists some basic definitions in the case when
the knowledge base is a set of propositional formulas. Section 3 defines by postulates the operation
of model-fitting. Section 4 considers the generalization of model-fitting by adding weights. Section 5
defines arbitration by another set of postulates. Each of Sections 3 to 5 presents a model-theoretic
characterization of the operator defined. Sections 3 to 5 consider only propositional knowledge bases.
Section 6 discusses the case of arbitration of first-order knowledge bases. Section 7 compares arbitration
operators with the decision making protocols of Borgida and Imielinski [BI84] and the combination
operator of Baral et al. [BKM91, BKMS92]. Finally Section 8 lists some open problems.

2 Preliminaries

Let 7 be a finite set of propositional terms. We build propositional formulas from terms using the unary
connective — denoting boolean negation, and the binary connectives A and V denoting boolean and and
boolean or. We call each I C T an interpretation. Let M be the set of interpretations {I : I C T}. The
set of models of a formula ¢ denoted by Mod(¢) is defined as follows:

Mod(t) = {IeM:tel}
Mod(~¢) = M\ Mod(¢)
Mod(y vV ¢) = Mod(¢) U Mod(¢)
Mod (¢ A @) Mod(v)) N Mod(¢)
In this paper we will use the expression form(I1,...,I;) to denote the formula that has exactly the

models I1,..., I.

A knowledge base K is a set of formulas. A theory is a deductively closed set of formulas. If we
have a consequence relation cn and K is any knowledge base, then cn(K) is a theory. Let L denote
falsity, that is the formula with no models. We say that a theory T is consistent if and only if 1 €T. A
knowledge base K is consistent if and only if the theory ¢n(K) is consistent.

Gérdenfors considered the problem of theory change from an axiomatic point of view. In particular,
Gérdenfors described the following axioms for revising a consistent theory.

Let Tt denote the smallest deductively closed set containing T and u, and let T, denote the set
of all formulas. If % is any theory change operator, then for any consistent theory T" and formulas p and
¢ the following should hold:



(G1) T*u is a theory.

(G2) peT*u.

(G3) T*"u C T

(G4) Tf ~u & T, then Ty C T*pu.

(G5) T*u =T, only if u is unsatisfiable.
(G6) If u = ¢ then T*u = T*¢.

(GT) T*(un o) C (T"p)* ¢

(G8) T ~6 ¢ T*u then (T"u)*¢ C T*(u A 9).

Katsuno and Mendelzon were interested in studying propositional knowledge base revision. Since
Katsuno and Mendelzon also assume that the knowledge base is consistent, they make the simplification
of representing each knowledge base K by a single formula. This can be done because if the knowledge
base is propositional and consistent, then finding the models that satisfy K means finding the models
that satisfy the conjunction of the formulas in K, i.e., some propositional formula 1. Considering this
simplification leads to an interesting translation of Gardenfors’ axioms.

If o is any propositional knowledge base change operator, then for any consistent knowledge bases
represented by the propositional formulas ,1,%2 and for any propositional formulas p, 1, 2 and ¢
the following should hold:

(KM1) 4 o p implies p.

(KM2) If ¢ A p is satisfiable then ¢ o u <> 9 A .

(KM3) If p is satisfiable then ¢ o p is also satisfiable.

(KM4) If ¢ > 2 and py < po then 91 o uy ¢ 1P o po.

(KM5) (¢ o ) A ¢ implies ¢ o (1 A ¢).

(KMB6) If (¢ o ) A ¢ is satisfiable then 1 o (u A ¢) implies (¢ o ) A ¢.

Axiom (KM1) assures that the new knowledge will hold in the revised knowledge base. Axiom
(KM2) assures that if the new information is consistent with the current knowledge base, then the new
information will be simply inserted into the knowledge base. Axiom (KM3) assures that no unwarranted
inconsistency will be introduced. Axiom (KM4) says that the result of a revision operation should depend
only on the set of models of the sentences in the knowledge base, not on the particular syntax of those
sentences. This rule is called Dalal’s Principle of Irrelevance of Syntax. Axioms (KM5) and (KM6) assure
that the set of the models of the new information that are closest to the knowledge base are chosen as
the result of the revision. See [KM91] for more on the meaning and implications of these axioms, and for
proofs that the operators of Dalal [Dal88] and Fagin et al. [FUV83] are true revision operators, that is,
they satisfy all of the above axioms.

We say that a theory change operator * corresponds with a knowledge base revision operator o if
and only if for each propositional knowledge base ¥ and formula u, the condition ¢n(¥)*p = en(y o p).
The following proposition is from [KM91].

Proposition 2.1 [KM91] Let * be a theory change operator and o be its corresponding operator on
propositional knowledge bases. Then * satisfies axioms (G1-G8) if and only if o satisfies axioms (KM1-
KM6). o



A pre-order < over M is a reflexive and transitive relation on M. A pre-order is total if for every
pair I,J € M, either I < J or J < I holds. We define the relation < as I < J if and only if I < J and
J L 1.

The set of minimal models of a subset S of M with respect to a pre-order <, is defined as:

Min(S,<y) ={I € §:2I' € S where I' <y I}

Katsuno and Mendelzon gave the following model-theoretic characterization of revision and update
when the knowledge base represented by a single propositional formula. Let the symbol o denote revision
and the symbol ¢ denote update operators.

Suppose we have for each knowledge base 9 a total pre-ordering <, of interpretations for closeness to
1, where the pre-order <, satisfies certain conditions [KM91]. Revision operators that satisfy the AGM
postulates are exactly those that select from the models of the new information ¢ the closest models to
the propositional knowledge base ¥. That is,

Mod () o ¢) = Min(Mod (), <y)

For updates assume for each I some partial pre-ordering <; of interpretations for closeness to I.
Update operators select for each model I in Mod(y) the set of models from Mod(¢) that are closest to
I. The new theory is the union of all such models. That is,

Mod () o ¢) = U Min(Mod(¢), <r)

I€Mod (%)

Katsuno and Mendelzon’s characterization is often useful to give simple proofs that particular theory
change operators are revision or update operators. As an example of this from [KM91] consider Dalal’s
operator.

Dalal uses the number of terms on which two interpretations I and J differ as a measure of distance
between them. That is, dist(1, J) is the cardinality of the set (I\ J)U(J\I). For example, if I = {4, B,C'}
and J = {C, D, E}, then dist(I,J) = 4.

Dalal then defines the distance between a knowledge base ¥ and an interpretation I as the minimum
distance between any model in Mod () and I. Now take the pre-order <, defined by I <, J if and only
if dist(y, I) < dist(v, J).

For the revision 9 o u, Dalal’s operator always returns the set of <, minimal models of u. Hence by
Katsuno and Mendelzon’s characterization above, Dalal’s operator is a true revision operator.

It is clear that both Katsuno and Mendelzon [KM91] and Gardenfors [Gar88] eliminate from consid-
eration any case of changing inconsistent theories or knowledge bases.

3 Model-Fitting

This section gives first a formal definition of the set of model-fitting operations and a model-theoretic
characterization of it. Model-fitting is more general than revision because it allows the knowledge base
to be inconsistent.



We say that a knowledge base K is satisfiable (or consistent) if and only if the conjunction of all
propositional formulas in K is satisfiable. The set Mod(K) is the set of models of the conjunction of all
the propositional formulas in K. We say that K A p is satisfiable if and only if there is an interpretation
that satisfies all the formulas in K and also satisfies p. The formula K; — K, is true if and only if
Vyseks ek, P1 <+ 2 is true. The formula K; <+ K> is true if and only if K1 — K5 and K» — K; both
hold.

We say that a knowledge base change operator > is a model fitting operator if and only if > satisfies
the following axioms for each (not necessarily consistent) propositional knowledge base K, and formulas

p and ¢:

(M1) Kvpimplies p.

(M2) If K A u is satisfiable then K>y < K A p.

(M3) If u is satisfiable then K >y is also satisfiable.

(M4) If K1 < K> and p < ¢ then Ki>p < Ko ¢.

(M5) (K> u)A ¢ implies K>(u A ¢).

(M6) If (K> u) A ¢ is satisfiable then K >(u A ¢) implies (K > p) A ¢.
(M7) (K> p) A (K> p) implies (Ky U K) > p.

Here axioms (M1-M6) are generalizations of axioms (KM1-KM6) for propositional knowledge bases
that may be inconsistent. Axiom (M7) asserts that any model that is closest to both K; in u and to K»
in g must also be a closest model to K; U K» in u. The intuition behind axiom (M7) can be seen from
the following example. Suppose that we have two committees of five people each. Suppose that the two
committees both come up with a set of possible actions and that both sets of possible actions include
some action A. Then it is reasonable to suppose that if the two committees were joined, then it would
still come up with a set of possible actions that includes A.

The next theorem presents a model-theoretic characterization of model-fitting operators that satisfy
axioms (M1-M7). At first we define for each knowledge base K a relation that orders interpretations in
M with respect to their closeness to K. First we define a loyal assignment.

A loyal assignment is a function that assigns for each knowledge base K a pre-order <g such that
the following four conditions hold. For each I, J € M and knowledge bases K, K1, Ks:

(1) IfI,J € Mod(K) then I <k J does not hold.
(2) If I € Mod(K) and J ¢ Mod(K) then I <g J.
(3) If K; & K, then SK1:SK2-

(4) U I <k, Jand I <k, J then I <g,uk, J-

In the definition of loyal the first three conditions are generalizations of the conditions of the def-
inition of a faithful assignment in [KM92], while last condition is new. Using these definitions, the
characterization theorem can now be stated as follows.

Theorem 3.1 A knowledge base operator satisfies axioms (M1-M7) if and only if there exists a loyal as-
signment that maps each knowledge base K to a total pre-order <g such that Mod(K > p) = Min(Mod(u), <g

).

Proof Sketch: The first six axioms will depend on the first three conditions of loyalness, while the last
axiom will depend on the fourth condition of loyalness. A detailed proof is given in the appendix. g.



Theorem 3.1 is useful to prove in a simple way that particular theory change operators are model-
fitting operators. As an example, consider the following operator.

Using Dalal’s distance measure between interpretations (see Section 2), we define the overall distance
odist between a knowledge base K and an interpretation I as follows. For any propositional sentence
we define the distance as:

odist(y,I) = Jeg[l(izfil(zp) dist(I, J)

Illell fOI a kIlO ledge Dase ‘1< e defiIlE
Od1 t K .l = maXx Od1 t .l
S ( ’ ) K S (’(:[}7 )

Then we assign to each knowledge base K the total pre-order <g defined by I <g J if and only if
odist(K,I) < odist(K, J). It is easy to see that this is a loyal assignment.

Condition (1) is satisfied because if I,J € Mod(K) then odist(K,I) = odist(K,J) = 0, hence
I <g J does not hold. . Condition (2) is satisfied because if I € Mod(K) then odist(K,I) = 0 must
be true. If J ¢ Mod(K) then odist(y,J) > 0 for some ¢ € K, hence odist(K,J) > 0 and I <x J.
Condition (3) is satisfied because K; and K, have the same set of models. Finally for condition (4),
if I <k, J and I <k, J then odist(K1,I) < odist(K1,J) and odist(Ks,I) < odist(K2,J) must be
true. Then odist(K; U K2,I) = max(odist(K1,I), odist(K»,I)) < max(odist(Ky,J), odist(K2,J)) =
odist(K1 U K3, J). Hence I <g,uk, J must hold.

We now define the result of Mod(K >pu) to be the minimal models of yx according to the ordering
<k- Then by Theorem 3.1 this operator satisfies axioms (M1-M7) and is a proper model-fitting operator.

Example 3.1 As an application of model-fitting consider a database class with three students. Assume
that at the university where the class is held three database programming languages are available, namely
SQL, Datalog and O2. The instructor considers teaching either both SQL and Datalog or Datalog only.
This can be represented as p = (S A D A =0) V (=S A D A -0). The first student would like to
learn either SQL or Oz, the second would like either Datalog or O2 but not both, and the third would
like to learn all three. That is the students suggest to the instructor to teach ¢ = (S Vv O) A -D,
o = ("SADA-O)V (=SA-DAO)and ¢p3=SADAO.

Considering only the propositional terms S, D, and O, Mod(u) = {{S, D},{D}}, while Mod(y1) =
{{5},{0},{S,0}}, and Mod(¢») = {{D},{0}}, and Mod(¢s) = {{S,D,0}}. We calculate that
odist(y1,{S,D}) = 1 and odist(¢1,{D}) = 2 and odist(¢2,{S,D}) = 1 and odist(¢2,{D}) = 0 and
odist(ys,{S,D}) =1 and odist(y5,{D}) = 2.

Our knowledge base K = {11, 12,13}. Hence we find that odist(K, {S,D}) =1 < odist(K,{D}) =
2. Therefore, Mod(K >p) = {{S, D}}. This indicates that the instructor could best satisfy the class by
teaching both SQL and Datalog. O

Example 3.1 is a situation which calls for model-fitting instead of revision. Revision operators
satisfying [KM92] would fail because they would find that the conjunction of the three propositions
1, 12,13 is unsatisfiable. On the other hand, model-fitting handles this case quite nicely. Note that if
the instructor decides to teach Datalog only then one student will be very satisfied, but the other two
may well drop the class. Clearly this is not what we want. The choice of {S, D} is the model that best
fits the whole class, and will keep all students reasonably satisfied.



4 Weighted Model-Fitting

In this section we generalize the results of the previous section by considering weighted knowledge bases.
A weighted knowledge base is a function K from model sets to nonnegative real numbers. We denote
the weight of a model set M in weighted knowledge base K as K (M). The real numbers are intended to
describe the relative degree of importance of the model sets within the weighted knowledge base. Clearly
this is a generalization of the knowledge bases of the previous section, because we can translate a regular
knowledge base K = {¢1,...,¢,} into a weighted knowledge base K having for each model set M weight
K(M) =1if M = Mod(¢;) for some 1 < i <n and K(M) = 0 otherwise.

In this section we replace the union operation on regular knowledge bases by the weighted union
operation on weighted knowledge bases. If K, and K, are two weighted knowledge bases, we take their
welg}~1ted unlorl denoted~as K 1 UKQ, to be the weighted knowledge base K such that for each model set
M, K(M)=K{(M)+ K>(M).

We use the function Form to map weighted knowledge bases into regular knowledge bases. More
precisely, if S, ... S, are the model sets with nonzero weights in K, then the expression Form(K ) denotes
the regular knowledge base K that consists of the set of formulas form(S ) for each 1 <4 <n. Asin the
previous section, if u is a formula we say that K A u is satisfiable if and only if there is an interpretation
that satisfies all the formulas in K and also satisfies .

We say that a knowledge base operator is a weighted model-fitting operator if and only if it satisfies
the following axioms for all weighted propositional knowledge bases K, K1, K, and propositional formulas

p and ¢:

(W1) Kb p implies p

(W2) If Form(K) A p is satisfiable then K >y <+ Form(K) A p.

(W3) If y is satisfiable then K by is also satisfiable.

(W4) If u ¢ ¢ then Kb p & Kb ¢.

(W5) (K> p) A ¢ implies K >(u A ¢).

(W6) If (K pu) A ¢ is satisfiable then K >(u A ¢) implies (K > ) A ¢.

(WT) (K> p) A (Kyb p) implies (K; UK,) > p.

(W8) If (Ky b p) A (K> p) is satisfiable then (K € Ky) >y implies (Ko p) A (Ko ).

Here axioms (W1-W6) are generalizations of axioms (M1-M6) to weighted knowledge bases. Fur-
thermore, we have generalized (M7) into two axioms (W7) and (W8) that together express the following
condition: the closest models to K1 ﬂ'JKz in p are exactly the intersection of the closest models to K1 in
p and the closest models to K in p if the intersection is nonempty.

We say that a weighted knowledge base K is satisfiable if and only if the intersection of all model
sets with nonzero weights in K is nonempty. A weighted knowledge base is unsatisfiable if and only if it
is not satisfiable. We say that an interpretation I is a model of a weighted knowledge base K, written as
I € Mod(K), if and only if I is an element of each model set with nonzero weight in K.

A weighted loyal assignment is a function that assigns for each weighted knowledge base K a pre-
order <y such that the following four conditions hold. For each I, J € M and weighted knowledge bases
K, Kl 5 KQ:

(1) If I,J € Mod(K) then I <z J does not hold.
(2) If I € Mod(K) and J ¢ Mod(K) then I <z J.



(3) IfISIgl JandIS& J then ISKlbIZQ J.
(4) IfI<I€1 JandISXZ J then I<I€1©I€2 J.

The following theorem is a model-theoretic characterization of weighted model-fitting.

Theorem 4.1 A knowledge base operator satisfies axioms (W1-W8) if and only if there exists a weighted
loyal assignment that maps each weighted knowledge base K to a total pre-order <z such that Mod (K > pu) =
Min(Mod(n), <z)-

Proof Sketch: The first seven axioms will depend on the first three conditions of weighted loyal assign-
ments and vice versa, while the last axiom and the fourth condition of weighted loyal assignments will
depend on each other. A detailed proof is given in the appendix. O

Next we see an example of a weighted model-fitting operator. We define the weighted distance wdist
between a weighted knowledge base K and an interpretation I as:

wdist(K,I) = > K(M)* wdist(M,I)
Me2M

where the distance between a model set and a model is defined as:

wdist(M, I) = min dist(I, J)
JeEM

Next we define for each weighted knowledge base K the total pre-order < i such that I <z J if and
only if wdist(K,I) < wdist(K, J). It is easy to show that this is a weighted loyal assignment.

Condition (1) is satisfied because if I,J € Mod(ﬁ') then wdist(M, I) = wdist(M,I) = 0 for each
model set M with nonzero weight in K. Hence wdist(K,I) = wdist(K, J) = 0 and I <k J does not hold.
Condition (2) is satisfied because if I € Mod(K) then wdist(K,I) = 0 must be true. If J ¢ Mod(K) then
wdist(M, J) > 0 for some M with nonzero weight in K, hence wdist(K,J) > 0 and I <z J. Condition
(3) is satisfied because if I <z J and I <g J then wdist(Ky,I) < wdist(K;,J) and wdist(K»,I) <
wdist(K>, J) must be true. Then wdist(K; W Ko, I) = 3 1y com K (M) * wdist(M,I) = 3 3 com (K1 (M) +
Ko(M)) * wdist(M,I) = 3 yreom K1 (M) x wdist(M, I) + 3 1 rcom Ko(M) = wdist(M, I) = wdist(Ky,T) +
wdist(K», I) < wdist(K1, J) + wdist(Ks, J) = wdist(K, 8 K, J). Hence I <k, vk, J must hold. Condi-
tion (4) can be shown similarly to condition (3).

We now define the result of Mod(K > p) to be the minimal models of y according to the ordering
<%. Then by Theorem 4.1 the operator is a weighted model-fitting operator.

Example 4.1 As an example of weighted model-fitting consider a database class with the same instructor
as in Example 3.1 but with 35 students. The instructor’s offering can be represented by the same sentence
u as in Example 3.1.

Suppose that 10 students would like to learn either SQL or O2, 20 would like either Datalog or O2
but not both, and 5 would like to learn all three languages. The students’ requests can be represented
by a weighted knowledge base K in which the only model sets with nonzero weights are Mod (v1) with
weight 10, Mod(2) with weight 20 and Mod(1)3) with weight 5, where the formulas v1,12,13 are
as in Example 3.1. Now we calculate that wdist(K,{S,D}) = 35 and wdist(K,{D}) = 30. Hence
Mod(Kvp) = {{D}}. This indicates that in this case the instructor could best satisfy the class by
teaching Datalog only. O



Note that in the case of weighted model-fitting the instructor tries to satisfy the majority of the
class, instead of trying to satisfy each member to the best degree possible. The outcome changes from
Example 3.1 due to the large number of students who want to learn Datalog only.

Example 4.2 As another example, suppose that each sentence of a weighted knowledge base K describes
a different person. In particular the first person is a male married lawyer who likes to play golf, the second
is a female non-smoking married lawyer who likes to play golf, the third is a non-smoking single real estate
agent who does not like golf, the fourth is a male non-smoking married lawyer, and the fifth is a female
smoking married real estate agent. Using the variables F' for female, G for golfer, L for lawyer, M
for married, R for real estate agent and S for smoker, we can describe the persons by the following
propositional formulas.

Py = MALA-RANGA-F

Yo = MALA-RA-SAGAF
P35 = - MA-LAR-SA-G

Yy = MALAN-RA-SA-F
s = MA-LARASAF

Suppose now that somebody asks the following: what is a typical married lawyer like? Let y = M AL.
To answer the question, we need to consider only the sentences that describe married lawyers, that is
those 9; for which ¢; — p holds. It is easy to see that only sentences 11,2 and 14 are interesting. Hence
we temporarily reset the weights of these sentences to 1 and the weights of the other two sentences to 0.
Then intuitively typical married lawyers can be found by K by, because this chooses among all possible
models or descriptions of married lawyers those that are overall closest to the description of married
lawyers in the knowledge base.

Using the sample weighted model fitting operator we find that Mod(K >u) = {M, L,G}. Hence in
words the typical married lawyer according to the weighted knowledge base is a not a real estate agent
and is a male non-smoker who likes to play golf. O

5 Arbitration

In this section we describe arbitration as a generalization of weighted model-fitting. An arbitration
operator takes as input a weighted and a regular knowledge base. If K; and K, are such knowledge
bases then the arbitration of K~'1 by K5, denoted as K 1 A\ Ky, will return a knowledge base containing the
formulas within K5 that are closest to K;. Note that we are now interested in closest formulas instead of
closest models. To simplify the exposition, in this section we will assume that each formula in a regular
knowledge base is satisfiable.

In addition in this section if K7 and K, are knowledge bases we define Modset(K;) = {Mod(u) : p €
K}, and we take K1 C K5 to be true if and only if Modset(K;) C Modset(K>) in the regular sense, and
we take K1 N Ky = {1 € Ky : ua € Ky and Mod (1) = Mod(us2)}. If p is a formula, we take p € K3
to be true if and only if Mod(u) € Modset(K1) in the regular sense.

We say that a knowledge base operator is an arbitration operator if and only if it satisfies the following
axioms for all propositional knowledge base K>, weighted knowledge bases K; and K3 and propositional
formula p:

(A1) K; AKs C K.
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(A2) If 3 € K, such that p A Form(Kl) is satisfiable then
K AKy = {p€Ky:puN Form(Kl) is satisfiable}.

(A3) If K, is nonempty then K; A K5 is nonempty.

(A4) Tf Ky ¢+ K3 then K; A Ky <> K AKs.

(A5) (K1 AKy)N K3 C Ky A(KaN K3).

(A6) If (Ky A K3) N K3 is nonempty then Ky A(Ky N K3) C (K1 A Ky) N K.

(A7) (K1 AKy)N (K3 AK,) C (K1 UK3) AKy.

(A8) If (K; AK») N (K3 A Ks) is nonempty then (K; UK3) A Ky C (K1 A Ky) N (Ks AKy).

A generalized loyal assignment is a function that assigns for each weighted knowledge base K a
pre-order < such that the following five conditions hold. For all formulas p1, p2, ¢1,¢2 and weighted

knowledge bases K , K 1, Ks:

(1) If uy A Form(K) and pa A Form(K) are satisfiable, then p; <z p2 does not hold.
(2) If iy A Form(K) is satisfiable and s A Form(K) is unsatisfiable, then u; <z io-
(3) If M1 < U2 and ¢1 « ¢2, then M1 Sf( ¢1 if and only if 2 Sf{ ¢2.

(4) If py <p, po and py <p_ po then py <pg g pia-

(5) If 1 <p, po and py <p_ po then py <pg . po-

We can now give a characterization of arbitration operators in terms of closest formulas that is the
analogue of the characterization of model-fitting operators in terms of closest models. The proof of the
theorem is given in the appendix.

Theorem 5.1 A knowledge base operator A satisfies axioms (A1-A8) if and only if there exists a gener-
alized loyal assignment that maps each weighted knowledge base K to a total pre-order <y such that

Kl AKQ = Mzn(Kg, SX1) O

We now define an example arbitration operator and then apply it in some examples. We define the
distance between a weighted knowledge base and a formula to be:

gdist(K , 1) Z K (M) % gdist(M, 1)
Me2M

where the distance between a model set and a formula is:

dist(M, p) = i dist(I,.J
gdist(M, ) e o ist(I,.J)

Next we define for each weighted knowledge base K the total pre-order < <g such that py <z po if
and only if gdist(K,u1) < gdist(K, ps). Clearly this is a generalized loyal assignment. We also define
the result of Mod(K; A K>) to be the minimal models of K, according to the ordering < &,- Then by
Theorem 5.1 the operator is an arbitration operator.

Example 5.1 Consider a hypothetical election where there are two candidates and three voters. The
following statements are made by each.

First candidate: We should balance the budget and cut taxes.

Second candidate: We need a national health-care and higher taxes on the rich.

11



First voter: Balancing the budget should be first priority. If that is done, I'm willing to pay higher
taxes, but I’'m opposed to national health-care because it reduces patient choice.

Second voter: I want both a national health-care and lower taxes.

Third voter: T can’t pay health insurance because of the high taxes. We should either cut taxes or
introduce a national health-care. Balancing the budget during a recession is a bad idea.

We can represent this election situation by two propositional knowledge bases, a weighted knowledge
base K; describing the voters and a regular knowledge base K5 describing the candidates. We will use
the propositional letters B for balanced budget, H for national health-care and T for higher taxes. We
assume that taxes never stay the same, they either rise or fall. The only model sets in K; with nonzero
weight will be Mod (1), Mod(¢2) and Mod(1s), each with weight 1, and we also will have Ks = {u1, po},
where the models of the sentences are the following.

MOd(¢1) = {{B}a{BaT}}
MOd(¢2) = {{BaH}a{H}}
MOd(¢3) = {{}a{H}{HaT}}
MOd(/‘Ll) = {{B},{B,H}}
MOd(/‘L2) = {{Ha T}, {B7H7T}}

Intuitively, we need to find the candidate whose platform appeals more to the voters. That is, we
need to find out which platform is closest to the voters’ desires.

We assume that the voters tend to view candidates optimistically. They are likely to ask themselves:
“What would be the best scenario for me if this candidate is elected?”. In this case, the arbitration
operator defined above can be applied, and we calculate that:

gdjSt(MOd('lpl)J/‘Ll) =0, gdjSt(MOd(wl)allQ)
gdist(Mod(1)2), 1) = 0, gdist(Mod(1)2), p12)
gdist(Mod(v3), 1) = 1, gdist(Mod(¢)3), p12)

1
1
0

Hence gdjst(K' 1,p1) =1 and gdist(If'l, p2) = 2. Therefore K AKy = {p1}. This indicates that the
candidate advocating 1 appeals better to the voters in general. g

Note that both the first and the second voter will vote for the first candidate p;, even though it is
impossible that p; will satisfy both completely (as they optimistically expect). That is, when they vote,
the first voter expects {B} while the second voter expects {B, H} to happen. Clearly the two cannot
happen at the same time. This may seem like an error in our definition of arbitration, but it is not really.
Perhaps it simply shows that life is not as logical as some may wish it to be. The example illustrates
a potential problem during elections. Voters and news reporters wisely ask candidates to be specific on
issues, otherwise a candidate who does not commit to anything specific could win.

Example 5.2 Suppose instead of three voters, we have three groups of voters with 20, 15 and 65 members
respectively. Assume that members of group one, two and three feel the same way as the first, second, and
third voter in Example 5.1, respectively. This requires that the weights of Mod(1)1), Mod(1)2) and Mod (13)
be increased to 20,15 and 65 respectively. We calculate that gdist(Ky, u1) = 65 and gdist(Ky, p2) = 35.
Therefore K1 A Ko = {p2}. In this case the second candidate could win the election. o

6 Arbitration of First-Order Knowledge Bases

In this section we describe arbitration of knowledge bases that contain first-order sentences instead of
propositional formulas. Let the symbol w denote the set of all natural numbers, and the symbol & denote
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the symmetric set difference operation?.

Consider a first-order function free language £ built from the following primitive components: A
set A = {a; : i € w} of domain elements, a set X = {z; : i € w} of variables, a set R = {R; : i € w}
of relation symbols, A (and), — (negation), 3 (existential quantifier), = (equality), and the parenthesis
symbols. As a notational convenience, in the examples below we will also use the symbols V (or), —
(implication), ¢+ (mutual implication), # (inequality) and V (universal quantifier) defined in terms of the
primitive components of £ in the usual way.

With each relation symbol R; € R we associate the arity a(i). A k-ary term is a tuple with k
components, each in AU X. A literal is an expression of the form R;(x) where R; is in R and z is an
a(i)-ary term. A ground literal is a literal that has no variables in it. An atomic formula is a literal, or
an expression of the form z; = z;, or an expression of the form z; = a;, where {z;,z;} C X, and a; € A.

The set of all well formed formulas of £ is defined in the usual way, and it is denoted ®'. The subset
of sentences in ® is denoted ®. If ¢ is a formula where variable z; occurs free, then ¢(z;/a;) denotes
the formula ¢ with each free occurrence of z; substituted by a;. For ¢ € ®, define the schema o(¢) to be
the set of all relation symbols appearing in ¢.

The set of all ground literals is denoted by G. A database db is a set of ground literals. The schema
of db, denoted o(db) is the set of all relation symbols appearing in db. Let db; and dbs be databases.
Then we say that o(dbz2) dominates o(dby), if o(dby) is a subset of o(dbs).

The set of all databases is denoted DB. By DBgs we mean the set of all databases on schema s.
Furthermore, if B is a subset of the domain A, then DBE denotes the set of all databases on schema s
containing only values in B.

The interpretation of a sentence ¢ € ® w.r.t. a database db is a relation |= on DB x & defined for
db and ¢ if and only if o(db) dominates o(¢), in which case the recursive definition is:

db=(a;=a;) iff i=j
db E Ri(z) iff R;(z)e€ db
dbE(pAy) if dblEganddb =y
dbi=(~¢) iff (G\db) ¢
db |= (3z;¢) iff db = ¢(x;/a;) for somea; € A

By Mod(¢) we mean the set of all databases that are models of ¢, i.e., Mod(¢) = {db € DB : db = ¢}.
We say that ¢ finitely implies ¢, if Mod(¢) C Mod (). If s is a scheme and B is a subset of the domain
A, then Mod(¢)B denotes the set Mod(¢) N DBE.

A sentence base is a finite set of databases. The scheme of a sentence base is the union of the schemes
of the databases in it. The set of all sentence bases is denoted SB. If B is a subset of the domain A, then
SBE denotes the set of all sentence bases on scheme s containing only values in B.

A first-order knowledge base K is a finite set of first-order sentences. A weighted first-order knowledge
base K is a function from sentence bases to nonnegative real numbers. The scheme of K is the union of
the schemes of the sentences in it. The scheme of K is the union of the schemes of the sentence bases
with nonzero weights.

We now define an example arbitration operator for first-order knowledge bases. Let K be a first-order
knowledge base and K be a weighted first-order knowledge base. Let s be the scheme of K and let B be
the set of domain elements occurring in the sentence bases with nonzero weights in K. Then we define
the distance between K and any p € K as:

lA@B=(A\B)U(B\ A)
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d(K,p)= Y K(sb)xd(sb,u)
sbeSBE

where the distance between a sentence base and a formula is:

b = i db, db
d(sb, ) dbESb,dlr)Ilner}\/Iod(u)fd( »dbi)

where the distance between two databases is defined as the cardinality of their set differences. That
is:

d(db, db1) = card(db & db,)

Next we define for each weighted first-order knowledge base K the total pre-order < & such that
p1 < pe if and only if d(K, p1) < d(K, p2).

Then we say that p is <g-minimal in K, if y; € K and there is no pup € K such that us <z
and M1 ﬁf( H2.

It is easy to verify that this is a generalized loyal assignment, that is, it satisfies all the five conditions
of the previous section, with the knowledge bases taken to be first-order instead of propositional.

We then define an arbitration operator that always returns the set of minimal formulas according to
the above assignment. It can be shown similarly to Theorem 5.1 that this first-order arbitration operator
satisfies axioms (A1-A8).

Example 6.1 Suppose we have a database class with three students who make the following requests to
the instructor:

Alice: T want to use the same languages as Brian.

Brian: I want to use SQL only.

Carl: T want to use any language if and only if it is used by at least one other student in the class.

It is clear to all students that every student has to use some programming language, that the only
students in the class are Alice, Brian and Carl, and that the only programming languages that they can
choose from are SQL and Datalog.

The instructor is trying to decide whether to require everyone to use both SQL and Datalog or to
require everyone to use Datalog only. Which is better for this class?

At first we represent the student’s requests using first-order sentences as follows. We take the
scope of the quantifiers in the first-order sentences to be the set of integer numbers and strings of the
English alphabet. In the sentences we will use only the binary relation symbol u, whose first argument will
describe the name of a person and the second argument will describe the name of a database programming
language. We can represent:

Alice’s request by sentence 1 :
V. u(Alice, x) < u(Brian, x)
Brian’s request by sentence 1),:
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u(Brian, S) AV, u(Brian,z) -z =S
Carl’s request by sentence 1)3:
Ve u(Carl,z) < (3, u(y,z) Ay # Carl)
The assumption that every student in the class uses some language by ¢;:
Je,y,> u(Alice, ) A u(Brian,y) A u(Carl, z)
The assumption that the three students choose from the two languages by ¢s:
Vo u(z,y) = ((x = Alice Vo = Brian Vz = Carl) A (y =S Vy = D))
The teacher’s first option by p;:
Ve(x = Alice Vo = Brian V z = Carl) = (u(z,S) Au(z, D) A=3,(y # SAy # D Au(z,y)))
And the teacher’s second option by pus:
Ve(x = Alice V & = Brian V z = Carl) = (u(z, D) A =3y (y # D A u(z,y)))

Let ¢ = ¢1 A ¢ and let o} = ¢); A¢ and pj = pjA¢ forall 1 <i<3and 1< j < 2. It is implicit in
this problem that each of the students and the teacher agrees to ¢ also.

Note that we can restrict consideration to databases with scheme s = {u} and domain B =
{Alice, Brian, Carl,D,S}. We can represent the students’ requests by a weighted first-order knowl-
edge base K; which has in it only the sentence bases Mod (1})Z, Mod(5)E and Mod(v})B with nonzero

weights. Moreover, since each student should be considered equally, each of the three sentence bases
should have a weight of 1.

We can also represent the teacher’s options by a first-order knowledge base Ko = {u1, 15 }. Then the
problem can be solved by arbitrating K1 by K». For this we can use the arbitration operator defined in
this section.

As the table below shows, there are nine databases within each of the sentence bases Mod(¢})Z,
Mod (14)8 and Mod(y4)E. To save some space in the table we use the constant symbols A, B and C
instead of the names Alice, Brian and Carl. Also, only databases that are models of ¢ are shown in the

table. The presence of a database within a sentence base is indicated by a “y” in the appropriate column.

Note that only the database db; = {u(A4, S),u(4, D),u(B,S),u(B,D),u(C,S),u(C, D)} is in Mod(u})E
and that only the database dbs = {u(A, D),u(B,D),u(C, D)} belongs to Mod(u5)E. Therefore the dis-
tance between any database and p; will be just the distance between that database and db;. Similarly,
the distance between any database and ps will be the distance between that database and dbs. This is
how the values in the last two columns can be calculated for each given row. Now we can calculate by
taking the minimum of the appropriate values:

d(Mod(y1) 1) =0 d(Mod(yy)g, ) =0
d(Mod ()7, 1) =1 d(Mod ()7, ) = 2
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d(Mod(3)F, i) =0 d(Mod(¥5)7, p5) =0

By taking sums we have that d(Ky,u1) =1 and d(K, uz) = 2. Therefore we can conclude that the
first option is overall closer to the requests of the students. Hence it is better if the teacher asks everyone
to use both SQL and Datalog. o

Database db Evi | EY | Evs | d(db, ) | d(db,ps)
u(A,S),u(B,S),u(C,S), y y y 3 6
u(4A,S),u(B,S),u(C,D) y y 3 4
H(A,S),u( S),u(C,S),u(C,D) y y 2 5
u(A’S)5u(B’ )5u(C’S) 3 4
u(A,S),u(B,D),u(C,S),u(C,D) y 2 3
u(A,S),u(B,S),u(B,D),u(C,S) 2 5
u(A,S)’u(B’S)’u(B’D),u(C’D) 2 3
u(A,S),u(B,S),u(B,D),u(C,S),u(C,D) y 1 4
u(A,D),u(B,S),u(C,S) y 3 4
u(A,D),u(B,S),u(C,D) y 3 2
u(A,D),u(B,S),u(C,S),u(C,D) y y 2 3
u(A,D),u(B,D),u(C,S) y 3 2
u(A,D),u(B,D),u(C,D) y y 3 0
u(A,D),u(B,D),u(C,S),u(C,D) y 2 1
u(A,D),u(B,S),u(B,D),u(C,S) 2 3
u(A’D)7u(B7S)7u(B7D)5u(C7D) 2 ]'
u(A,D),u(B,S),u(B,D),u(C,S),u(C,D) y 1 2
u(A,S),u(A,D),u(B,S),u(C,S) y 2 5
u(A,S),u(A,D),u(B,S),u(C,D) y 2 3
u(A,S),u(A,D),u(B,S),u(C,S),u(C,D) y y 1 4
u(A,S),u(A,D),u(B,D),u(C,S) 2 3
u(A,S),u(A,D),u(B,D),u(C,D) 2 1
u(A,S),u(A,D),u(B,D),u(C,S),u(C,D) y 1 2
u(A,S),u(A,D),u(B,S),u(B,D),u(C,S) y 1 4
u(A,S),u(A,D),u(B,S),u(B,D),u(C,D) y 1 2
u(A,S),u(A,D),u(B,S),u(B,D),u(C,S),u(C,D) | ¥ y 0 3

7 Relationship with other Operators

Model-fitting operators are related to the various decision making protocols of Borgida and Imielin-
ski [BI84], which is the first syntax-independent proposal for handling inconsistencies that arise from
more than two sources. In [BI84] decision making in committees is used as a model for resolving incon-
sistencies. Unfortunately, the decision making protocols described in the paper do not go far enough in
resolving inconsistencies. In particular some protocols allow committees to vacillate, that is, to support
a decision p and at the same time also support its negation —p. This is different from model-fitting
operators, which by definition only allow consistent answers.

Arbitration operators and the combination operator of Baral et al. [BKM91, BKMS92] also have
a strong similarity in their aims. The combination operator was developed for helping building expert
systems, where the knowledge of several experts has to be combined. Arbitration can be also applied
in this case as mentioned in the introduction. However, there are significant differences in the way
arbitration and combination work.
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One important difference is that combination operators do not use weights. This makes it difficult to
emphasize properly two experts’ opinions who happen to agree. More importantly, combination operators
are syntax-sensitive, that is, they violate axiom (M4). Beyond these differences, there are a number of
others which can be best illustrated by giving an example. Before that let us first consider the original
definitions.

Definition 7.1 [BKMS92] Let P be a knowledge base and IC be a set of integrity constraints. A
subset () C P is said to be maximally consistent with priority to IC if and only if QQ U IC is consistent
and for every @ C Q' C P, it is the case that @' U IC is inconsistent. MAXCONS(P,IC) is the set of
maximally consistent subsets of P with priority to IC. o

Definition 7.2 [BKMS92] Let Kj,...,K; and IC be knowledge bases. Then the combination of
Ki,...,K}) subject to the integrity constraints IC is Comb({K1,...,Kg},IC) =qes MAXCONS(K; U
...UKy, IC). o

Let us consider again Example 6.1. We can represent this problem in the framework of [BKMS92]
as having three knowledge bases K1 = {41, ¢}, Ko = {2, ¢} and K3 = {13,¢}. Then for any integrity
constraint 7C' the combination of the three knowledge bases will be:

Comb({K1, K>, K3},IC) = MAXCONS(K1 U Ky U K3, IC) = MAXCONS ({11, %2, 13, ¢}, IC)

If we take IC to be the theory {1, p2, ¢}, then the result of the combination is undefined, because 11
and ps cannot be both true, hence no subset of the union of the three knowledge bases can be consistent
with IC.

If we take IC' = {u1 V p2, ¢} as the set of integrity constraints, then the only maximal consistent
subset of the union of the three knowledge bases with priority to IC will be {41,143, ¢}.

This example illustrates that while there are some similarities between combination and arbitration,
there are subtle differences as well. While the combination operator finds the largest set of students
whose wishes can be simultaneously satisfied, arbitration finds a solution that satisfies to the best degree
possible each student. Hence combination does not solve the teacher’s problem. Inasmuch as combination
suggests a solution it must be that Brian should be kicked out. However, a moment reflection tells us
that even that would not work, because if Brian is not taking the course, then Alice’s wish also will not
be fulfilled.

Since this paper was submitted for review Jinxin Lin and Alberto Mendelzon [JM94] and Paolo
Liberatore and Marco Schaerf [LSch95] have proposed other operators for merging information within
knowledge bases. Benczur, Novak and Revesz [BNR95] have also considered a different way of adding
weights to arbitration in the propositional case. A detailed comparison of these operators can be found
in [BNRY6].

8 Open Problems

An open problem is to consider instead of total orders partial orders among models and formulas, similarly
to [Win88]. Another open problem is to further analyze and compare the computational complexity of
various cases of revision, update, and arbitration with each other [ASV90, EG92, GMR92]. A third
interesting open problem is to consider the interaction of the three operators in a system that alternately
uses all of them. As one facet of this interaction, the weights of the formulas could now be considered to
be dynamic. For example, the weight of a witness’ testimony declines each time it is revised during cross
examination. This would effect subtly the result of any later arbitration operations that are done in the
system.
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A Proofs

Proof of Theorem 3.1: (Only-if) Assume that axioms (M1-M7) hold for a model-fitting operator ».
We define a loyal assignment as follows. For each knowledge base K we define a total pre-order <y in
terms of the > operator as follows. For each (not necessarily distinct) pair I, J of models, let I <g J if
and only if I € Mod(K > form(I,.J)).

We have to show three things: (1) that for each knowledge base K the assignment <g is a total
pre-order, (2) that the function from knowledge bases to assignments is loyal, and (3) that Mod(K > p) =
Min(Mod(p), <k )-

(1) We need to show that <g is total, reflexive, and transitive when K is satisfiable.

total By axioms (M1) and (M3) the Mod(K v form(I,J)) is a nonempty subset of {I, J}. Hence
any pair of models are comparable, making <y a total relation.

reflexive By axioms (M1) and (M3) the Mod(K > form(I)) is a nonempty subset of {I}. Hence
<k is also reflexive.

transitive Assume that the relation <y is not transitive, that is, for some I,.J;, and Js models
I<g Ji,Ji <k Ja2,and I £x Jo.

Then by the definition of <k, I € Mod(K > form (I, J2)). By axiom (M5), I ¢ Mod(K v form(I,Jy,J2))N
{I,J2}. Hence I ¢ Mod(K v form(I,J1,J2)). There are two possible cases. Either (i)
Ji € Mod(K v form(1, Jy,J2)) or (ii) J1 € Mod(K v form(I, J1,J2)).

In case (i), we know that I isnot in Mod(K > form(I, J1, J2))N{I, J1} and that Mod (K v form(I, J1, J2))A
form(I, Jy) is satisfiable. Then by (M6) also I ¢ Mod(K > form(I,Jy)). This contradicts the
assumption that I <g Ji.

In case (ii), by (M1) and (M3) we know that Jo = Mod (K v form(I, J1, J2)). Hence Mod(K > form(I, J1, J2))N
{J1, J2} is satisfiable but does not contain .J;. Hence by (M6) also J; & Mod(K v form(Jy, J2)).
This contradicts the assumption that J; <g Js.

(2) The first condition of loyalness follows easily from the definition of <g. To see the second condition,
assume that I € Mod(K) and J ¢ Mod(K). Then by axiom (M2), Mod(K > form(I,J)) = {I}.
Therefore I < J holds. The third condition of loyalness follows from axiom (M4). To see the
fourth condition assume that I <g, J and I <g, J both hold for knowledge bases K; and Kj.
Then I € Mod(Ky>form(I,J)) and I € Mod(K2v form(I,J)). Hence by (M7) I € Mod((K; U
K>) > form(1,J)) and therefore by the assignment we chose I <g,uxk, J must also hold.

(3) We need to show both the C and the D directions. If y is unsatisfiable, then Mod(K>pu) = 0 =
Min(Mod(u), <k). Hence assume that p is satisfiable.

(C) Assume that I € Mod(Kvpu) and I ¢ Min(Mod(p),<k). By (M1) I € Mod(u). Since I is

not a minimal model, according to the definition of minimal there must be another model J
in Mod(u) such that J <g I (i.e., such that J <k I and I £k J). By the definition of <g
then J € Mod(K v form(I,J)) and I ¢ Mod(K v form(I,J)).
Since both I and J are in Mod(u), u A form(I,J) = form(I,J). Hence I is also not in
Mod(Kv(u A form(I,J))). By (M5) and using ¢ = form(I,J) we know that Mod((K > pu) A
form(I,J)) implies Mod(K >(u A form(I,J))). Hence also I ¢ Mod((K>u) A form(I,J)).
Therefore, I cannot be in Mod (K > u), which is a contradiction.

(D) Assume now that I ¢ Mod(K v u) and I € Min(Mod(u),<k). By the definition of minimal,
I € Mod(p). Since p is satisfiable, by (M3) there is some model J in Mod(K > u), and by
(M1) also J € Mod(u). Since both I and J are in Mod(u), uA form(I,J) = form(1,J). Hence
by (M5) and (M6) and letting ¢ be form(I,J) we derive that Mod((K > u) A form(I,J)) =
Mod(Kvp)N{I,J} = Mod(K > form(I,J)).
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Since ¢ is satisfiable, by (M1) and (M3), Mod (K > form(I,J)) is a nonempty subset of {I, J}.
But the identity above and I ¢ Mod(K > ) implies that also I ¢ Mod(K v form(I,J)). Hence
J = Mod(K v form(I,J)). Therefore J <x I. Hence I cannot be a minimal model according
to <k, i.e., I & Min(Mod(p), <k). This is again a contradiction.

(If) Assume that for a knowledge base operator > there is a loyal function that assigns to each
satisfiable knowledge base K a total pre-order <k such that Mod(K v p) = Min(Mod(u),<k). We need
to show that > satisfies axioms (M1-MT7).

(M1) Axiom (M1) follows because the minimal model of p with respect to any total pre-order is always
by definition some subset of Mod(u).

(M2) Suppose K A p is satisfiable. Then it suffices to show that Mod(K A p) = Min(Mod(u), <k).
Suppose I € Mod(K A p). Then I € Mod(p) and I € Mod(K). Then by conditions (1&2) of
loyalness, J <k I does not hold for any J € Mod(K) and I <g J holds for any J ¢ Mod(K).
Therefore I must be a minimal model among Mod(u) according to <x. Hence I € Min(Mod(u), <k
) also holds. This shows that Mod(K A p) C Min(Mod(u), <k)

Now to show the other direction that Mod (K Ap) O Min(Mod(u), <k ) assume that I € Min(Mod(u), <k
) but I ¢ Mod(K A u). By axiom (M1) we know that I € Mod(u), hence also I ¢ Mod(K). Since

K A p is satisfiable, there is an interpretation J such that J € Mod(K A p), that is J € Mod(K)

and J € Mod(u). By the second condition of loyalness, J <k I holds. Hence I is not a minimal
model of p with respect to <g, which is a contradiction.

(M3) Axiom (M3) follows because as long as p is satisfiable there is some minimal model in Mod(u)
with respect to K.

(M4) Axiom (M4) follows from the third condition of loyalness.

(M5) Assume that (M5) is false. Then for some I model (1) I € Mod((K > u) Ad)) = Min(Mod(u), <k
)N Mod(¢) and (2) I & Mod(K >(u A ¢)) = Min(Mod(p A ¢), <k)-
Then I € Mod(¢) and I € Min(Mod(u), <kx) must hold. By the definition of minimal models
I € Mod(u) must also hold. Therefore, I € Mod (i A ¢) must hold. That and assumption (2) imply
there must be another model J such that J € Mod(u A ¢) and J <g I. Note that J € Mod(u)
must also hold and this and J <k I imply that I ¢ Min(Mod(u), <k), which is a contradiction.

(M6) Assume that (M6) is false. Then (K >u) A ¢ must be satisfiable and for some I model (1) I ¢
Min(Mod(p),<k) N Mod(¢) and (2) I € Min(Mod(u A ¢), <k).

Since we assume that (K > u)A¢ is satisfiable, there must be a model J such that J € Min(Mod(u), <k
YN Mod(¢). Then J € Mod(u A $) must hold. By assumption (2) and because < is total, I <x J
holds. Since J € Min(Mod(u), <kx) N Mod(¢), also J € Min(Mod(u), <k ) must hold. We claim
that I € Min(Mod(p), <g) must also hold. Suppose that it does not hold. Then there must be
amodel H € Mod(u) such that H <k I, i.e., H <g I holds and I <g H does not hold. Since
J is a minimal model in u, J <g H holds. Then by transitivity of I <x J and J <x H we have
I <k H, which is a contradiction. Hence I € Min(Mod(u),<x) must hold.

From assumption (2) and the definition of minimal models, it is clear that I € Mod(u) and I €
Mod(#). The latter and assumption (1) imply that I ¢ Min(Mod(u), <k ). This is a contradiction
to the claim that we proved in the previous paragraph. Hence assumptions (1-2) were wrong.

(M) If I is minimal in Mod(u) according to both K; and K, then for any J in Mod(u) both I <k, J and
I <k, J must be true. Then by the fourth condition of loyalness I is also minimal in Mod (K UK>).
This implies that axiom (M7) also holds.

O
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Proof of Theorem 4.1: The proof of this theorem will be similar to the proof of Theorem 3.1. Let > be
any weighted model-fitting operator. Then take for each weighted knowledge base K the total pre-order
<% to be the relation that assigns for each (not necessarily distinct) pair I, J of models I <gz J if and
only if I € Mod(K v form(I,J)).

We can argue similarly as in Theorem 3.1, but we also have to show the mutual dependence of the
fourth condition of weighted loyal assignments and axiom (W8).

To show the fourth condition of weighted loyal assignment when (W8) holds, assume that I <g, J
and I <k, J. Then I is and J is not in Mod(K; > form(I,J)), and I is also in Mod (K> form(I,J)).
Hence I = Mod((K1 > form (I, J))A(K2 > form(I,J))). Then by (W7) and (W8) also I = Mod((K1 W K>) > form (I, J)).
Then by the definition of assignments I <k, sk, J-

For the reverse, to show (W8) when the forth condition of loyal assignments holds, suppose that I is
both <g, and <g, minimal in Mod(u) and that axiom (W8) does not hold. Then there is some model J
that is <k, ¢ k, minimal in Mod(p) but w.l.g. not <k, minimal in Mod(p). Then I <k, J and I <k, J.
Then by the fourth condition of loyalness I <y, vk, J. Hence J cannot be <g, ¢ x, minimal in Mod (),
which is a contradiction. Hence (W8) holds. O

Proof of Theorem 5.1: (Only-if) Assume that axioms (A1-A8) hold for an arbitration operator
A. We define a generalized loyal assignment as follows. For each weighted knowledge base K; we define a
total pre-order <y in terms of the A operator as follows. For each (not necessarily distinct) pair p, po

of formulas, let u1 <z w2 if and only if u1 € K, A{p1, po}

We have to show three things: (1) that for each weighted knowledge base K; the assignment < i
is a total pre-order, (2) that the function from weighted knowledge bases to assignments is generalized
loyal, and (3) that K1 A K> = Min(K2, <g, ).

(1) We need to show that <y is total, reflexive, and transitive.

total By axioms (A1) and (A3) the result of Ky A{u1, po} is a nonempty subset of {1, po}. Hence
any pair of formulas are comparable, making <z a total relation.

reflexive By axioms (A1) and (A3) the result of K; A{yu;} is a nonempty subset of {y;}. Hence
<g, is also reflexive.

transitive Assume that the relation <y is not transitive, that is, for some p1, p2, and p3 formulas
m Sg, M2, p2 <g, p3, and p L ps.

Then by the definition of <p , u1 ¢ Ky A, ps}. By axiom (A5), pu1 & (K1 A{p, pa, us}) N

{p1,ps}. Hence py ¢ K, A{pa, p2,p3}.  There are two possible cases. Either (i) ps €
Ky A{pa, p2, ps} or (i) pe & K1 A{pr, p2, pa}-

In case (i), we know that p; is not in (K1 A{p1, po, ps})N{p1, po} and that (K A{p, pa, ps})N
{p1, p2} is satisfiable. Then by (A6) also uy & K3 A{u1, o }. This contradicts the assumption
that u, <g, B2

In case (i), by (A1) and (A3) we know that {us} = K1 A{uy, iz, s} Hence (K1 A{ g, pi, 3 })N
{p2, 3} is satisfiable but does not contain uy. Hence by (A6) also ps & Ki A{ua, us}. This
contradicts the assumption that ps <g ps.

(2) The first condition of generalized loyalness follows easily from the definition of <z . To see the

second condition, assume that u; A Form(K,) is satisfiable and p; A Form(K;) is unsatisfiable.
Then by axiom (A2), Ky A{pi,pa} = {pa}. Therefore uy <z po holds. The third condition of
generalized loyalness follows from axiom (A4). The see the fourth condition assume that u1 <pg p2

and p1 <g, p2 both hold for weighted knowledge bases K, and K. Then p1 € (Ifl A{p1, p2}) and
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p1 € (Ko A{p1, p2}). Hence by (A7) w1 € (K1 WKs) A{ur, po}) and therefore by the assignment
we chose 1 < R, B K, M2 must also hold.

To show the fifth condition of generalized loyal assignment, assume that p1 <pg, p2 and w1 <g
p2. Then py is and po is not in Ky A{p1, po}, and py is also in Ky A{p, po}. Hence {,ul} =

(K1 A{pa, p2}) N (Kz A, p2}). Then by (A7) and (A8) also {1} = (K1 WK3) A{p, po}. Then
by the definition of assignments 1 <y g, H2-

(3) We need to show both the C and the D directions. If K5 is empty, then K; A Ky = § = Min(Ka, <g
). Hence assume that K, is nonempty.

(C) Assume that py € KiAKy and py ¢ Min(K2,§K1). By (Al) 3 € K5. Since p; is not a
minimal formula, according to the definition of minimal there must be another formula ps in
K> such that ps <g pi (i-e., such that ps <z p1 and py £z, pe). By the definition of <p

then po € (K1 A{p1, po}) and pn & (K1 A, pa}).-

Since both uy and ps are in Ko, Ko N {p1, ua} = {p1, p2}. Hence py is also not in K1 A(K2 N
{p1,p2}). By (A5) and using K3 = {1, p2} we know that (K1 A K») N{p1, pa} C Ky ANKy N
{p1, p2}). Hence also p1 & ((K1 A Ka)N{p1,p2}). Therefore, py cannot be in K7 A Ky, which
is a contradiction.

(D) Assume now that u; € (K; AKs) and py € Min(Ks, <g,)- By the definition of minimal,

p1 € K. Since Ko is nonempty, by (A3) there is some formula ps in K; A Ks, and by (A1)
also pa € K. Since both p; and pp are in K, K N {p1, po} = {N1,I~02~}- Hence by (A5) and
(A6) and letting K3 be {u1,u2} we get that (K A Ko) N {p1, po} = K1 A(Ke N {1, pa}) =
K1 A pa, po}
By (A1) and (A3), Ky A{ui, po} is a nonempty subset of {1, u2}. But the identity above
and py ¢ (Ky AK,) implies that also py & (Ki A{py,pa}). Hence {us} = Ky A{py, pa}.
Therefore p2 <g pi1. Hence p; cannot be a minimal formula according to <g , i.e., u &
Min(K2,<g,). This is again a contradiction.

(If) Assume that for a knowledge base operator A there is a generalized loyal function that assigns
to each satisfiable knowledge base K a total pre-order < R, such that K; A Ky = Min(K,,< Igl). We
need to show that A satisfies axioms (A1-A8).

(A1) Axiom (Al) follows because the minimal formula of K> with respect to any total pre-order is
always by definition some subset of Ks.

(A2) Suppose that there is a formula p in Ks such that p A Form(K,) is satisfiable. Then it suffices to
show that {u € Ky : u A Form(K}) is satisfiable} = Min(Ka, <g ).

Suppose 1 € {u € Kz : p A Form(If'l) is satisfiable}. Then u; € Ky and p1 A Form(If'l)
is satisfiable. Consider any other formula us in Ks. If ua A Form(If'l) is satisfiable, then by
the first condition of generalized loyal assignments p2 <z p1 does not hold. If u2 A Form(K;)
is unsatisfiable, then by the second condition of generalized loyal assignments p1 <z, p2 holds.
Therefore p11 must be a minimal formula in K5 according to <, . Hence y; € M m(Kg, ) also
holds. This shows one direction of the equality.

To show the other direction {u € Ky : u A Form(K) is satisfiable} D Min(Ks, < R,) assume ji; &
{p € Ky : pu A Form(K,) is satisfiable} but p; € Min(K2,<g,). By axiom (Al) we know that

p1 € Ka, hence it must be the case that uq A Form(If'l) is unsatisfiable. By the second condition
of generalized loyalness, u <g, p1 holds. Hence p; is not a minimal formula of K> with respect to
<g,> which is a contradiction.

(A3) Axiom (A3) follows because as long as K is nonempty there is some minimal formula in K> with
respect to K.

(A4) Axiom (A4) follows from the third condition of generalized loyal assignments.
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(AS5) Assume that (A5) is false. Then for some yy formula (1) 1 € Min(Ks,<g )N K3 and (2)
M1 ¢ MZTL(KQ n Kg, SKI)

Then u; € K3 and py € Min(Ko, Slfl) must hold. By the definition of minimal models p; € K>
must also hold. Therefore, u; € Ko N K3 must hold. That and assumption (2) imply there must
be another formula ps such that ps € Ko N K3 and po < &, M- Note that us € Ko must also hold
and this and p2 <g, p1 imply that uy & Min(K2, <g ), which is a contradiction.

(A6) Assume that (A6) is false. Then (K; A K») N K3 must be nonempty and for some p; formula (1)
751 ¢ Min(Kg, SK1) N K3 and (2) JIAS MM’L(KQ NKs, Slfl)

Since we assume that (K~'1 A K»3) N K3 is nonempty, there must be a formula ps such that us €
Min(K2,<g,) N K3. Then ps € K> N K3 must hold. By assumption (2) and because <g, is total,
m <g, p2 holds. Since s € Min(Ko, glgl) N K3, also ps € Min(Ko, glgl) must hold. We claim
that pu1 € Min(K>,<g, ) must also hold. Suppose that it does not hold. Then there must be a
formula us € K> such that ps <g p1,ie, p3 <g, p holds and 1 <g ps does not hold. Since
p2 is minimal model in K», 2 < ps holds. Then by transitivity of p1 <z p2 and ps < ps we
have that p; < &, M3 which is a contradiction. Hence 3 € Min(K,, < Kl) must hold.

From assumption (2) and the definition of minimal models, it is clear that u; € K5 and p; € Ks.

The latter and assumption (1) imply that u1 & Min(K>,<g, ). This is a contradiction to the claim
that we proved in the previous paragraph. Hence assumptions (1-2) were wrong.

(A7) If yy is a minimal formula in K5 according to both K, and K3, then for any p» in K> both p <g, M2
and p1 <g_ po must be true. Then by the fourth condition of generalized loyal assignments p; is

also minimal in K; &/ K3. This implies that axiom (A7) also holds.

(A8) Suppose that i is both <z and <g, minimal in K> and that axiom (A8) does not hold. Then
there is some formula ps that is < Ry 0 Ry minimal in Ky but wl.g. not < R minimal in K.
Then p1 <g, p2 and p1 <g_ p». Then by the fifth condition of generalized loyal assignments
m <g,wgR, K- Hence ps cannot be <z 4 Rs minimal in K5, which is a contradiction. Hence (A8)
holds.

O
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