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Abstract: Database systems should allow users to insert new information (de-
scribed by a first-order sentence) into a database without specifying exactly how. The
database systems should be able to figure out what tuples to add or delete from the
current database to satisfy fully the user’s request. The guiding principle of accom-
plishing such insertions is the concept of model-theoretic minimal change. This paper
shows that this concept can be applied to constraint databases. In particular, any con-
straint database change operator that satisfies the axioms for revision [AGMS85], up-
date [KM92], or arbitration [Rev96] accomplishes a model-theoretic minimal change
in a well-defined sense. The paper also presents concrete operators for revision, update,
and arbitration for constraint databases with real polynomial inequality constraints.

1 Introduction

Most change operators in current database systems require the users to know
the exact contents of the database. Users are expected to know what tuples
are in the database and specifically command to delete, modify or add specific
tuples. However, it is very difficult to know exactly what is in a complex database
and database users should be freed from that burden. This is especially true in
constraint databases [KKR95]. Users should be able to change a database by
simply telling the database system what new information to incorporate into it.
The database system should be able to figure out by itself how to incorporate
the new information.

The idea of automatic change requires a solution to the well-known frame
problem of artificial intelligence: if some things are known to change, what other
things must change with them and what things must stay the same? A nice
solution to this problem is the principle of model-theoretic minimal change.
Let’s call the set of models of the world that are currently thought possible the
database. Each new information, described in some logical form, allows several
models of the world. The principle of minimal change states that the result
of adding the new information to a database should be the set of models of
the new information that are closest to some possible models in the current
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database. Hence the database change problem can be largely reduced to finding
good measures for distance between models of the world.

While the principle of minimal change is agreed upon by most people, to
say precisely what are good operators and distance measures between models
is difficult. Katsuno and Mendelzon [KM91, KM92] pointed out that there are
in fact two very different contexts for database change. They divided change
operators into two broad classes: revision and update. They characterized these
two classes of change operators by a set of axioms that they have to satisfy
and proved that members in each class accomplish a model-theoretic minimal
change, in different ways. To these classes, [Rev96] added a third class of change
operators: arbitration, which is also defined by a set of axioms. [Rev96] proved
that members in this class also accomplish a model-theoretic minimal change,
in a way distinct from both revision and update. Arbitration is motivated by
heterogeneous database systems which often require combining information from
various sources before answering queries (see also [BKMS92, BNR95, TSIMMIS,
LS95, Sub94, Wie92]).

The model-theoretic characterizations in [KM91, KM92, Rev96] were shown
only for propositional knowledgebases. It seems much more difficult to define op-
erators for first-order knowledgebases that can be similarly characterized. Fagin
et al. [FKUV86] present a revision operator for first-order logical databases but it
violates an important axiom in [AGMS85] on which the characterization depends,
namely it violates the Principle of Irrelevance of Syntax. Grahne et al. [GMR92]
present an update operator but it uses the active domain semantics, which may
be unnatural for constraint databases.

In this paper we present for a simple type of first-order database, namely con-
straint (or generalized) databases with rational order constraints [KKR95], revi-
sion, update, and arbitration operators that satisfy appropriate generalizations
of the axioms in [KM91, KM92] and [Rev96]. We also show that all operators
satisfying the relevant axioms have a model-theoretic characterization.

Potential applications of the paper occur mainly in manipulating spatial data
described by constraint databases. For example, a Geographic Information Sys-
tem (GIS) for agriculture would need update after overflooding of a river, or a
new crop being planted. Revision may be needed in light of new data, e.g. this
is a corn field, not wheat, and arbitration would solve many sensor fusion prob-
lems, e.g., merge of two different soil maps derived from two different satellite
measurements.

This paper is organized as follows. Section 2 reviews basic concepts in con-
straint databases and database change operators. Section 3 presents a syntax in-
dependent way of measuring the size of constraint databases. Section 4 presents a
syntax independent way of measuring distance. Sections 5-7 give model-theoretic
characterizations of revision, update, and arbitration. Section 8 considers the
case when the new information is a first-order sentence. Section 9 gives a con-
clusion and mentions open problems.



2 Basic Concepts

The following are basic definitions adopted from [KKR95].

Definition 2.1 Let @ be the set of atomic constraints of some constraint theory.
A generalized k-tuple over variables 1, ...,z is of the form: r(xy,...,zx) —
¢1 A ...\ ¢, where r is a relation symbol, and ¢; € & for 1 < 4 < n and uses
only the variables zy, ..., x.

A generalized relation r with arity k is a finite set of generalized k-tuples with
symbol r on left hand side.

A generalized database is a finite set of generalized relations.

A generalized knowledgebase is a finite set of generalized databases. O

Definition 2.2 Let D be the domain over which variables are interpreted. Then
the model of a generalized k-tuple t with variables x1, ...,z is the unrestricted
k-ary relation {(ai,...,a) : (a1,-..,ar) € D* and the substitution of a; for z;
satisfies the right hand side}.

The model of a generalized relation is the union of the models of its generalized
tuples.

The model of a generalized database is the set of the models of its generalized
relations.

The model of a generalized knowledgebase is the set of the models of its general-
ized databases. O

In this paper we will denote the models of a A by Mod(A) where A is a
generalized relation, database, or knowledgebase.

Katsuno and Mendelzon studied propositional knowledgebases. Each propo-
sitional knowledgebase is described by a single propositional formula. The models
of the formula are interpretations (truth assignments to propositional variables)
that make the formula true. Contrast that with our definition of a generalized
knowledgebase: instead of a set of interpretations we have a set of generalized
databases. This change is important because a crucial issue for [KM91] is to de-
fine the distance between pairs of interpretations. For us an important task will
be to define distances between pairs of generalized databases.

Let M be the set of all possible generalized databases. (In [KM91] M is the
set of interpretations.) A pre-order < over M is a reflexive and transitive relation
on M. A pre-order is total if for every pair I,J € M, either I < Jor J < T
holds. We define the relation < as I < J if and only if I < J and J £ I. The
set of minimal elements of a subset S of M with respect to a pre-order <y is
defined as:

Min(S,<y) ={I € S:AI' € S where I' <y, I}

Katsuno and Mendelzon gave the following model-theoretic characterization
of revision and update when the knowledge base is represented by a single propo-
sitional formula. Let the symbol o denote revision and the symbol ¢ denote
update operators.



Suppose we have for each knowledge base 1) a total pre-ordering <, of inter-
pretations for closeness to 1, where the pre-order <, satisfies certain conditions
[KMO91]. Revision operators that satisfy the AGM postulates are exactly those
that select from the models of the new information ¢ the closest models to the
propositional knowledge base . That is,

Mod (v o ¢) = Min(Mod(¢), <y)

For updates assume for each interpretation I some partial pre-ordering <y of
interpretations for closeness to I. Update operators select for each model I in
Mod(v) the set of models from Mod(¢) that are closest to I. The new theory is
the union of all such models. That is,

Mod(po¢)= | Min(Mod(¢),<r)

T€Mod(v)

A third type of theory change that is axiomatically defined in [Rev96] is
called arbitration. Let > denote arbitration. Then arbitration operators will be
characterized similarly to revision above, but the pre-order <, has to satisfy a
different set of conditions.

3 A Multi-Measure for Real Polynomial Constraint
Relations

In the context of aggregate operators, Kuper [Kup93] suggested area to measure
generalized databases, and Chomicki and Kuper [ChK95] suggested as a mea-
sure the asymptotic probability that an arbitrary point belongs to the model of
the generalized database. This section presents another measure for the area of
constraint databases assuming that the atomic constraints are real polynomial
inequalities.

The reason for introducing a multi-measure is that even a very large difference
between two regions in dimension i is unimportant compared to the smallest
difference in dimension i+ 1. For example, if two drawings in the R? plane differ
in any small line segment, then it should be considered more important than
that they also differ on any finite number of points. However, in case they agree
on all line segments, then the number of point differences can be very useful
to know. Hence we need a multi-measure that records all dimensional volumes
simultaneously, i.e. some vector of dimension &k + 1 for measuring k& dimensional
regions.

Definition 3.1 A region is elementary if and only if it is one of (a) a point (b)
a line without endpoints or (c¢) an open region. O

Definition 3.2 A partition of a region R is a disjoint set of elementary regions
Py,..., P, such that Mod(R) = Mod(P, U...UP,). O

Since the elements of a partition are disjoint, no two lines may cross each
other and no region may contain other elements in the partition. We call a point



extensional if it is within the partition but is not within any line or region of the
partition. We also call the number of line elements incident on a point within a
partition the degree of the point.

In 3-dimensional space the degree of each edge is two, nd the degree of each
corner is three. For any higher dimension we take the degree of a line (hyperplane
facet) to be the number of surfaces (higher dimensional hyperplane facets) that
have the whole line (hyperplane facet) as a boundary.

Definition 3.3 Let P be any partition of k-dimensional region R. For each
1 < i < n, the multi-measure of P;, denoted m(P;) is the following (ao, - - -, ax)
form vector:

(1) (0,...,0,1) if P; is an extensional point.

(2) (0,...,0,degree(P;) x length(P;),—(a + b)) if P; is a line without endpoints
where P; is incident upon points A and B and a = 1/degree(A) if A is extensional
otherwise a = 0, and b = 1/degree(B) if B is extensional otherwise b = 0.

(3) (0,...,arj,ap_(j+1),---,0) where ar_; = degree(P;) x volume(P;) and
ak—(j+1) = -boundary(FP;) if P; is any j > 2 dimensional open region.

The multi-measure of P is the sum of the vectors m(P;) for 1 <i <n. O

There are certain balances built into the above definition to make it partition
independent. For example, if we have a square region in the plane and cut it
diagonally by a line, then we introduced a new line segment (the diagonal). This
would increase the sum of measures considered under condition (2) above in a
positive direction, and those considered under (3) above in a negative direction
by the same amount. In general, we can prove the following.

Theorem 3.1 Let R be any region, then all partitions of R have the same
multi-measure. O

Definition 3.4 The multi-measure of a region R is m(P) where P is any par-
tition of R. O

Example 3.1 Let R be a region defined as follows: A(z,y) :— 3 < z Az <
12A3<yNny <12

Note that R is elementary because it is an open square region. Hence a trivial
partition of R is just itself. The measure of R is m(R) = (162, —36,0) applying
the definition. Another partition of R is shown in the figure below. Hence another
way of finding the measure of R is to sum up the measure of the disjoint regions
in the figure.
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Here B1-B4 are open regions and L1-L5 are lines without endpoints and
P1,P2 are extensional points. We find that m(B;) = (56, —(4v/2 + 18),0),
m(By) = (30,-16,0), m(Bs) = (60,-22,0), m(Bs) = (16,—(4v2 + 8),0),
m(Ll) = (0,6,—1/3), m(L2) = (07103_1/3)5 m(L3) = (0a4a _2/3)5 m(L4) =
(078:_1/3): m(L5) = (OaS\/i;_l/?’)a m(Pl) = (070: 1)7 m(PQ) = (anal)a The
sum of these measures is (162, —36,0) matching the value we found using the
other partition. O

Next, let’s see an example in 3-dimension.

Example 3.2 The open cube with opposite corners (0,0,0) and (9,9,9) has
multi-measure (729, —486,0,0). Suppose that the cube is partitioned into an
open cube with opposite corners (3,3,3) and (6,6, 6), a volume surrounding the
cube, and the sides, edges, and corners of the little cube. The surrounding region
will have multi-measure (702, —540, 0, 0), little cube will have (27, —54, 0, 0), each
of its six sides will have (0,2 x 9,—12,0), each of its twelve edges will have
(0,0,2 x 3,—2/3) and its eight corners will have (0,0,0,1). The sum of the
multi-measures of the partition is still (729,0,0,0). O

4 A Distance Measure between Relations

The distance measure between two regions Ry and R», denoted dist(Ry, R»), is
m((Ry U R2) \ (R1 N Ry)). It follows from Theorem 3.1 that for any two regions
R, and R, dist(R1,R2) is a unique multi-measure. The distance between two
constraint relations with the same relation symbol is the distance between regions
associated with them. The distance between two constraint databases is the sum
of the distances between the corresponding constraint relations in them, and the
measure of the constraint relations whose symbol occurs in only one of them.

Example 4.1 Suppose that we are given two constraint databases Iy and I,
describing land areas. I; is the constraint database:
Wood(z,y) —3<zAxz<10A3<yAy<15

and I is the constraint database:



Wood(z,y) —3<zAz<10AN3<yAy<10
Wood(z,y) —x=15Ay =15

Let’s call ¢, and ¢, respectively the (disjunction) of the formulas on the right
hand side of I; and I,. Let us use the partition shown in the figure below, where
T1,T3,T5 are open regions, ro, 74 are lines without endpoints, and rg is a point.
Clearly, it is possible to express each r; as a conjunction of atomic constraints
and ¢ as 1 VraVrsVryVrs and ¢2 as 1 Vra Vry Vrg. Now we can calculate
the distance between the two regions as dist(l1,I2) = m((I1 UL) \ (I1 N L)) =
m(ry Urs Urg) = (0,14,0) + (70,—-24,0) + (0,0,1) = (70,-10,1). O
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Jagadish [Jag91] considered as a distance measure between two-dimensional
regions composed of a set of rectangles the difference in their areas. This measure
cannot distinguish between the picture of a rectangle and the picture of the same
rectangle with a dot on top of it. Nor can it distinguish between an open and a
closed rectangle. In contrast, the distance measure introduced in this paper does
distinguish in the above cases.

5 Revision

Katsuno and Mendelzon [KM91] translated the AGM [AGMS85] postulates into
six equivalent axioms on propositional knowledgebases. Since we use generalized
knowledgebases, we translate the AGM axioms into a slightly different set of
axioms. We say that o is a revision operator on generalized knowledgebases if
for each generalized knowledgebase 9, u and ¢ the following hold:

(R1) Mod (¢ o p) € Mod(p).

(R2) If 4 M p is nonempty then Mod (v o p) = Mod (3 M ).

(R3) If pu is nonempty then v o g is nonempty.

(R4) If Mod(vp1) = Mod(vp2) and Mod (1) = Mod(us2) then Mod(1; o 1) =
Mod (s o ).

(R5) Mod(($ o) Né) C Mod(po (41 6)).

(R6) If (¢ o ) M ¢ is nonempty then Mod(¢ o (uM¢)) C Mod(() o ) M @).



In the above pM ¢ = {I € p:3J € ¢ such that Mod(I) = Mod(J)}. Note
that Mod(uM@) = Mod(u)NMod(¢). Next we define a concrete revision operator
based on the distance measure in Section 4. We define the distance between a
generalized knowledgebase 1 and a generalized database I as follows:

dist(), I) = min dist([
ist(w, ) = min dist(7, J)

In comparing multi-measures, we consider the elements from left to right
to be the most to least significant. Hence for example, (1,0,5) < (2,1,6) and
(5,—8,7) < (5,—7,2). Next we define with respect to any generalized knowledge-
base 9 a total pre-order <, as follows. For each pair of generalized databases I
and J let I <y J if and only if dist(¢, I) < dist(¢, J). Now the revision operator
o can be defined as:

Yop=Min(p,<y)

Example 5.1 Suppose that there are two options for landscaping an empty
area I;. (Note that I; is described by an empty database.) The first option Jy
is:
Wood(z,y) —0<zAxz<1A-10<yAy<O0
Wood(z,y) —1l<zAz<10AN-1<yAy<DO.
The second option Js is:
Wood(z,y) —0<zAz<1A-10<yAy <0
Wood(z,y) :—10<zAz<11A-10<yAy<O0.

Which landscape option is better to choose assuming that we want to do
minimal work, i.e. to forest a minimal area? In this example let u = {J1, J2}.
We need to find out which options in u are closest to I;. That is, we need to
find {I1} o u. Let ¢1 and ¢2 be the disjunctions of the right hand sides in J;
and J,. Let us use in this example the partition shown in the figure below. Here
¢r=r1VraVrsVrygVrsand ¢go =r1 VraVrsVrgVrr Vrs.
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Since the partition of I; is empty dist(l1,J1) = m((lL U Ji) \ (It N J1)) =
m(J1) =m(riUraUrsUraUrs) = (2,—4,0) + (0,2,0) + (18, —20,0) + (0,2,0) +



(18, —20,0) = (38, —40,0). Similarly, we calculate that dist(I1, Jo) = (40, —44,0).
Note that dist(Iy,J;1) < dist(I1,Jz), hence Jy <¢p} Ji. Therefore {I;} op =
{J1}. That means that we should choose the first landscape option, because it
will require less work to realize. O

Our next example is more complex in that the knowledgebase to be revised
contains several possible databases.

Example 5.2 Suppose that we have the option of purchasing the land either
completely cleared I; or with a patch of wooded area remaining I5. The price of
the two options is the same. Here the second purchase option can be described
as:

Wood(z,y) — 10<z Az <11A-10<y,y <0

What is the best landscape option to choose in this case? Let ¢ = {I, >}
To answer the question we need to do revision.

Calculating distances we find that dist(I2, Ji) = m(Ui<i<s”;) = (58, —62,0)
and dist(I2, J2) = (20, —22,0). We see that the minimum distance among pairs
of I’s and J’s is between I and Jo. Hence ¢ o u = {J>}, that is, in this case we
should choose the second landscape option (and implicitly buy the lot with the
wooded patch in it.). O

A generalized faithful assignment is a function that assigns for each gener-
alized knowledgebase 1) a pre-order <, such that the following conditions hold.
For each I,J € M and generalized knowledgebases 1,11, 1a:

(1) If Mod(I), Mod(J) € Mod (%) then I <y J does not hold.
(2) If Mod(I) € Mod(y) and Mod(J) ¢ Mod(¢) then I <y, J.
(3) If Mod(¢1) = MOd(’Lﬂz) then S¢1:S¢2.

The revision operator defined above is faithful. It is also possible to show that
it satisfies the axioms (R1-R6). In general, we can extend the characterization
theorem of Katsuno and Mendelzon as follows.

Theorem 5.1 A revision operator satisfies axioms (R1-R6) if and only if there
exists a generalized faithful assignment that maps each generalized knowledge-
base 1 to a total pre-order <y such that for every other generalized knowledge-
base p, Mod(v o p) = Mod(Min(u,<y)). O

6 Update

We say that ¢ is an update operator on generalized knowledgebases if for each
generalized knowledgebase ¢ and p and generalized database I the following
hold:

(U1) Mod(y) o ) C Mod(p).

(U2) If Mod(y) C Mod(u) then Mod(¢ o ) = Mod(v)).

(U3) If ¥ and p nonempty, then ¢ ¢ p is nonempty.

(U4) If Mod(y1) = Mod(¢z) and Mod(p1) = Mod(us2) then Mod (i1 o 1) =
MOd(I/)Q < /,1/2).



(U5) Mod((pop)1I) C Mod(yp o (pnI)).

(U6) If Mod(¢popr) C Mod(us) and Mod(ous) C Mod(py) then Mod(you,) =
Mod (1) © p2).

(U7) (Mod(({T} o) N ({T} o p2))) € Mod({I} o (i U s2)).

(U8) Mod((¢1 Upz) o) = Mod((¢1 o ) U (2 o ).

Note that axioms (Ul) and (U4-U5) are the same as axioms (R1) and (R4-
R5). Axiom (U2) is a weakening of axiom (R2) in the case when 1) is satisfiable.
Axiom (U3) is a weakening of axiom (R3) that is needed to avoid defining the
update of an empty knowledgebase. Axioms (U6-U7) replace axiom (R6). They
generalize (R6) slightly by admitting orderings where some pair of models of the
new information are not comparable as to closeness to the knowledgebase. Axiom
(U8) guarantees that each model in the knowledgebase is updated independently.

Next we define with respect to any generalized database I a pre-order <y as
follows. For each pair of generalized databases J and K let J <; K if and only if
dist(I,J) < dist(I, K). Next we define a concrete update operator o as follows:

You=|J Min(n,<r)
Iey

Example 6.1 Let us return to Example 5.2. Suppose the neighbor tries to figure
out what the new land will be like. The neighbor knows both the landscape
options and the two ways of purchasing the land. However, suppose that the
neighbor does not know that the price of the two purchase options is the same.
What can the neighbor conclude?

This would require calculating ¢ ¢ p, which turns out to be p. This is because
to I; the closest is J; and to I the closest is J>. Hence the neighbor can expect
that if I is purchased then J; and if I5 is purchased then J; will be the landscape
chosen. However, even though dist(I,, J2) < dist(I1,J;) as far as the neighbor
knows the price of I; may be much lower than the price of Iy to offset the extra
landscaping work required. Therefore, the neighbor can conclude only that one
of the two landscape options will be chosen, but cannot say for sure which one.
O

A generalized faithful assignment for updates satisfies the following condition:

For any generalized database I if I # J then I <; J.

The update operator ¢ defined above is faithful for updates and satisfies the
axioms (U1-U8). In general, we have that:

Theorem 6.1 An update operator satisfies axioms (U1-U8) if and only if there
exists a generalized faithful assignment that maps each generalized database I to
a pre-order <r such that for every generalized knowledgebases v, u, Mod (¢ou) =

Uremoayy Mod(Min(p, <r)). O

7 Arbitration

We call generalized arbitration operators, denoted by >, those operators that
satisfy axioms (R1) and (R3-R6) and axioms (A2) and (A7) below:



(A2) If ¢ is empty, then ¢ >y is empty.
(A7) Mod((11>p) 1T (2> p)) C Mod((11 Utha) b p).

Axiom (A7) asserts that any generalized database that is closest to both ¢
in pu and to ¥, in x must also be a closest generalized database to 11 U in u.
This is sometimes called the overall distance requirement. We define the overall
distance between a generalized knowledgebase ¢ and a generalized database I
as follows:

dist(¢p, I) = maxdist(I, J
odist(y), I) = max dist(I, J)

Note the change to max from min in the corresponding definition for revi-
sions. Similarly to the previous cases, we define with respect to any generalized
knowledgebase v a total pre-order <, as follows. For each pair of generalized
databases I and J let I <, J if and only if odist(v,I) < odist(¢, J). Then a
concrete arbitration operator is the following:
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Example 7.1 You are chosen to design the flag of a newly independent country
that has two factious parties each suggesting a different flag, namely flags M1
and M2 shown in the figure above. Upon some consideration of the materials
available, sewing techniques, dyes, aspect ratios and other esthetic reasons, you
limited the choices to M1 and M2 and four other flags shown above. At this
point you receive death threats from supporters of both parties “in case you
don’t choose the right flag”. Which flag would you choose?



In this case we need to find out which one of the six possible flags would irk
least both parties, i.e., be closest to their flag proposals. That of course we can
find out using arbitration. We will calculate >y where v = {M1, M2} and
pw={M1,M2, M3, M4, M5, M6}.

We can represent each flag by a relation Flag(z,y, z) where the x and y will
be points in the area of the flag and z its color. Let z = 10 be gray and z = 20 be
black. Since we use z,y, z coordinates we have a 3-dimensional problem. Each
flag can be represented as the union of the elementary regions r; in the gray and
ri in the black plane for 1 < 4 < 12, where the regions in the gray plane are
shown below. The elementary regions in the black plane are like the ones in the
gray plane but shifted up 10 units.
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We give some examples of representing flags using the above partition. We
assume that the boundary between any two differently colored regions is black,
i.e., they are sewn together by black stitches.

M1 =r1sVropVrasVraVrsVrgVrsVrey Vrg Vrs V rie V rige
M2=ri1VraVrsVraVrssVre VrsnVrsyVrogVriosVri V ris
M4 =riVraVrsVraVrsVreVrsVrsy Vreg Vrigy Vril Vrie

M6=riVraVrsVrisVrsVre VrnVrsyVreg VriosV i V ri2s

Next, let’s calculate the distance between some pair of flags.
djSt(M]., M4) = m((MlUM4)\(MlﬂM4)) = m(r1 VripVraVrepVrii Vrie VvV
r12 V T12p) = 2(m(ry) + m(rs) + m(riy) + m(ri2)) = 2((0,16,—(8 + \/3_2),0) +
(07 07 87 0) + (07 167 _(8 + \/3_2)7 0) + (07 07 2\/3_27 0)) = (07 647 _167 0)

Similarly we can calculate that dist(M2, M4) = dist(M1, M5) = dist(M2, M5) =
(0,64, —16,0). Also, dist(M1,M6) = dist(M2, M6) = (0,64, —16+/2,0). After
calculating the other distances, it is easy to see that the flags M4 and M5 give the
smallest maximum distances to the two original proposals. Hence after arbitra-
tion the new knowledge base will contain these two flags, i.e., ¥ >u = {M4, M5}.
(Note that M6 will not be in the solution because although its area distance
from M1 and M2 is as good as that of M4 and M5, its line distance is less than
optimal.) O

A generalized assignment is loyal if it satisfies the following:



(1) If Mod(1)1) = Mod(1)2) then <y, =<y,. (2) If I <y, J and I <y, J then
I <y,uy, J.

The above arbitration operator i is loyal and satisfies axioms (R1,A2,R3-R6,A7).
In general:

Theorem 7.1 A knowledgebase operator satisfies axioms (R1,A2,R3-R6,A7) if
and only if there exists a loyal assignment that maps each knowledge base 9 to
a total pre-order <, such that Mod(¢ > p) = Mod(Min(u,<y)). O

8 Changing a Knowledgebase by First-Order Sentences

The previous sections described revision, update, and arbitration when the new
information is a set of models. Grahne et al [GMR92] described a method of up-
dating knowledgebases composed of a set of relational databases by a first-order
sentence. [BNR95, Rev96] described similar methods for revision and arbitra-
tion by first-order sentences. We can extend these ideas to generalized knowl-
edgebases.

The idea is to allow new informations that are describable in a constraint-
query language. For example, if the new information is described in the language
of Datalog with dense order constraints, then it describes a query that is evalu-
able in closed-form on any dense-order constraint database. Hence the new in-
formation can be applied to any knowledgebase composed of a set of dense order
constraint databases. For example, the updated knowledgebase will be the union
of the constraint database outputs obtained when applying the new information
to the constraint database inputs.

9 Conclusions and Further Work

It would be interesting to test the above operators for real data sets that have a
fractal dimension [FK94]. It would be also interesting to compare the operators
with other measures, (for example Hausdorff distance [Dou92]) and also to test
how well people’s assessments correlate with the proposed distance measure and
operators.
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