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Abstract This paper presents a transportation spatio-temporal system that efficiently converts
traffic video data into vehicular motion information in spatio-temporal databases for a variety
of transportation applications. The proposed transportation spatio-temporal system interpolates
the vehicle trajectory data (i.e., time, location, and speed), which are extracted from video, and
integrates them with spatial road information for storage of dynamic transportation environ-
ments. The proposed transportation spatio-temporal system can mitigate data storage and
retrieval issues related to storing large amounts of traffic video. Moreover, users can manage
and operate multiform and multidimensional traffic data in a spatio-temporal transportation
environment. The proposed approach is demonstrated for typical transportation applications.
The experimental results show that the proposed transportation spatio-temporal system has
excellent potential for addressing issues related to storage of large amounts of traffic video
data.
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1 Introduction

Some earlier transportation-related applications (e.g., urban planning) required only static
spatial databases which are typically referred to as geographic information systems (GISs).
For instance, Miller [1] used a GIS for the evaluation of traffic analysis zone (TAZ) effects, the
design of optimal zoning systems, and the derivation of better zonal distance measures. Also,
various intelligent transportation systems (ITS) often use static GIS map databases for location
referencing and frequently exchange spatial information with other map databases [2]. How-
ever, traffic data collection technology has advanced faster than the technology used for
transportation databases [3]. For example, typically discrete vehicle trajectory data are stored
in flat-files or relational databases and roadway spatial data are stored in standard GIS
platforms. In essence, the two types of data are stored separately, which results in a loss of
information about the spatial relationships between the moving vehicles and the roadways. The
spatio-temporal relationships between the moving vehicles cannot be readily identified. A
number of critical transportation applications need to consider explicitly traffic parameters that
vary continuously over time. In these situations spatial database systems can be used, but they
tend to deal with temporal data sets in an inefficient way through the use of discrete time points
or intervals.

Today, video cameras are widely used for traffic monitoring and data collection. The
combination of space and time information is a defining feature of digital video [4]. However,
storing traffic video data requires large storage space, which can be quite expensive. Accord-
ingly, traffic video data are saved into video segments, scenes, shots, or frames [5] in order to
reduce storage costs. Also, it is very difficult to extract key spatio-temporal data, such as
individual vehicle trajectories and traffic aggregate data, from traditional video storage media
[6, 7]. Ideally, this would be done automatically, but this information is typically obtained
using manual methods. Consequently, it is difficult for current video database systems to
automatically scan traffic video data and identify important transportation-related spatio-
temporal information. For example, a user may wish to know vehicle trajectories as a function
of key events (e.g., railway gate activity at a highway-railway at-grade crossing). Such data
queries are problematic for current video databases.

Many transportation applications require spatio-temporal databases [8, 9] for the data
storage and retrieval of large sets of moving objects. Current spatio-temporal databases can
integrate dynamic temporal effects with a description of spatial dimensions [10, 11]. However,
in terms of tracking moving vehicles over a road network, current studies [12, 13] have
focused only on translating discrete GPS points to a particular road segment. The use of
vehicular data, which are extracted from traffic video, in standard spatio-temporal databases
has not been explored in previous research studies.

2 Motivation and purpose

Given traffic data’s multiform and multidimensional nature, it is hypothesized that a more
efficient traffic data archiving approach is required to adequately address the temporal
dimension for GIS-based transportation management systems. Also, it is hypothesized that
by using a combined spatio-temporal database transportation engineers will be able to readily
access and query multiform and multidimensional traffic data. A variety of traffic parameter
values including time period, lane, and vehicle type can be retrieved from this type of database.
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Moreover, information on individual vehicles, which are often required for driver behavior
analyses, can be obtained.

This paper clarifies two main ideas for archiving video data. First, discrete vehicle trajectory
data (i.e., video at some predefined number of frames per second) from video cameras are
extracted from the video at set time periods and subsequently interpolated into Bcontinuous^
vehicle trajectory information. This translation from discrete to continuous is accomplished
through a data model. This data model can be used to define the movement of vehicles as a
function of time (t) and space (x, y) parameters. Second, the resulting continuous traffic data
can be stored readily in existing spatio-temporal databases. The focus of this paper is the use of
constraint databases, because constraint databases can describe continuous spatio-temporal
data in user-defined high-dimensions. In addition, they allow various high-level query lan-
guages, such as SQL and Datalog, to be utilized. The end result is that the continuous
trajectory information can be used to identify key traffic parameters of interest, including
travel time over user-defined space and time intervals, space-mean speed, time-mean speed,
volume, and density. These parameters are calculated from the stored vehicle trajectories and
are not necessarily stored in spatio-temporal databases. Intuitively, this information retrieval
approach will be more robust. For example, different users may wish to identify travel time at
different spatial time frames (e.g., 5 min average, 60 min average) or density at different
increments (e.g., vehs/200 ft or vehs/1000 ft) and this would be readily accomplished.

The aim of this paper is to describe the development and features of an efficient transpor-
tation spatio-temporal system. The proposed transportation spatio-temporal system can convert
traffic video data into transportation spatio-temporal databases. The system allows the user to
choose various data interpolation options. In addition, not only standard SQL queries, but also
high-level queries can be specially designed and conducted for transportation applications.

3 Overview of the spatio-temporal traffic video data archiving and retrieval
system

The overall design of spatio-temporal traffic video data archiving and retrieval system is
illustrated in Fig. 1. It may be seen that the design and development of the transportation
spatio-temporal system consists of the following five main parts:

Fig. 1 Overview of the spatio-temporal traffic video archiving and retrieval system
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Step 1 Vehicle Trajectory Data Extraction
Using state-of-the-art video-capture methods [14, 15], the traffic video data

extraction step obtains vehicle trajectory data (i.e., instantaneous location, time, and
speed data points for each individual vehicle) at discrete points of time for each
vehicle in the video.

Step 2 Individual Vehicle Speed Interpolation
Linear and nonlinear data models are developed to translate the discrete speed

values of each vehicle into continuous speed functions (i.e., continuous vehicle
trajectory).

Step 3 Time-Mean Speed Estimation
An advanced statistical methodology is applied to estimate the continuous time-

mean speed based on the discrete vehicle speeds. The discrete vehicle speeds are
collected at a detector station on the highway segment while vehicles travel over a
detector station.

Step 4 Data Transformation and Integration
Due to the use of linear constraint databases, continuous nonlinear data models,

including individual vehicle data models and time-mean speed models, are required
to transfer into the transportation spato-temporal system as a piecewise-linear form.
Also, the highway spatial data of GIS shapefiles and the continuous vehicle trajectory
data from the above individual vehicle data interpolation step are integrated into a
spatio-temporal database.

Step 5 Traffic Information Retrieval
A high level traffic information query interface guides the users in performing

spatio-temporal queries of the integrated dynamic transportation information.

4 Step 1 – Vehicle trajectory data extraction

In this step, vehicle trajectory data (i.e., instantaneous location, time, and speed data points for
each individual vehicle) at discrete points of time are obtained from the video.

4.1 Basic steps

Because high resolution cameras, good quality video-capture cards, and advanced
video-capture-based approaches are increasingly becoming available to transportation
agencies, it has become cost-effective to extract accurate multiple-vehicle trajectory
data from video. For instance, the advanced machine vision system used in the Next
Generation Simulation (NGSIM) program [14] automatically extracted vehicle trajec-
tories from highway traffic video data. The machine vision algorithms [16, 17] used
for vehicle detection and tracking were developed to obtain a comprehensive dataset
populated with individual vehicle trajectory at a rate of 10 frames per second. The
software Vehicle Video-Capture Data Collector (VEVID) [15] can digitize full-motion
video at an even higher frame rate of up to 30 frames per second.

Wei et al. [15] described a general approach for extracting vehicle trajectory data from
video for traffic modeling. These research projects [14, 15] developed methods for extracting
vehicle trajectory data over small time intervals (e.g., 0.1 s) from video for various traffic
applications. Other research studies [18, 19] used vehicle trajectory data extracted from video
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to calibrate transportation microscopic simulation, such as lane changing models, lane-choice
models, car-following models, and lane-vehicle-allocation models.

Figure 2 shows the five steps associated with traffic data collection and extraction using the
video-capture method:

Step I: Identify reference points along the roadway of interest, and measure and record the
distances between reference points

Step II: Set up a camera in a position above the roadway of interest, and collect and store
video related to the traffic phenomena of interest

Step III: Digitize critical video segments using Audio Video Interleave (AVI) or Video for
Windows with a user-specified frame rate

Step IV: Input the AVI file and the distance information about the reference points into
advanced machine vision software, such as VEVID, which can automatically
extract the vehicle trajectory data

Step V: Store the vehicle trajectory data in the database

4.2 Quality control approach

In order to obtain each individual vehicle trajectory with a sufficient clarity, the NGSIM-
VIDEO program [14, 20] requires high-resolution video images. The ideal resolution is 3 pixels
per foot or higher, and the resolution must be at least 1 pixel per foot. Considering unstable
situations during data collection (e.g., camera movement or wind disturbance), video stabili-
zation is a pre-processing effort for data extraction. Video stabilization software [20] is used to
crop of the image area or automatically select certain features with a zoom-in at a fixed
location in successive video images. The data collector can determine the appropriate roadway
segment in frame, and ensure a consistent view of the roadway area for data extraction over the
whole time period.

Prior to the actual video extraction, video images are rectified on the basis of camera
intrinsic parameters, boundary coordinates, rotation and translation matrices, and OpenCV (a
software system of computer vision) functions. Compressed with the Xvid Codec (a software
system of video compression) and a standard image compression rate (8000 Kb), the resulting
videos are MPEG-4 standard AVI files [20]. Once the configuration file of the resulting videos
is loaded and the database for archiving the vehicular trajectory information is connected,
NGSIM-VIDEO would launch the vehicle trajectory data extraction. The configuration file in
XML contains the AVI file names and locations, the camera’s intrinsic parameters and
transformation matrices, the direction polygon with directional points, and other input
parameters.

Fig. 2 Traffic data collection and extraction using video-capture techniques
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Some modes concerning the vehicle trajectory extraction are developed to support
automatic detection and correction of trajectory data. These modes include visuali-
zation display, parameter adjustment, reverse, edit, truncate, and alert. The visuali-
zation display mode of the automatic tracking process can create a visible trajectory
line that trails each vehicle and displays a box that defines a vehicle boundary for
each vehicle and a vehicle ID inside each track box. Also, the camera boundary
zones where vehicles are moving from one camera to the other can be outlined as
occlusion zones. The parameter adjustment mode allows users to change the param-
eters to improve the detection and tracking quality of the vehicle trajectory.

When the distance covered by the study area is long, the task of tracking vehicles is
usually divided into a forward tracking and a reverse tracking part. A reverse mode can
reverse the tracking video images and make the vehicle appear to travel backward. If
the user wants to change the direction polygon or is not satisfied with the vehicle
length or width of the tracking box, then the edit mode is an alternative way to change
those parameters. Moreover, the user can completely remove the trajectory of a vehicle
from databases and re-track a particular vehicle in a certain image frame. The creation
of an alert can direct users to manually correct trajectories, and the manual process can
also track a vehicle that is not detected automatically. Hence, the above automatic and
manual tracking processes of data extraction can guarantee the tracking accuracy of
each vehicle in a clean way and avoid data extraction errors from missing detection and
occlusion zones in video images with heavy traffic.

5 Step 2 – Individual vehicle speed interpolation

In this step, a methodology is developed to translate the discrete speed values for each
individual vehicle obtained from the video into continuous speed functions. In other words,
this step estimates a continuous vehicle trajectory for each vehicle obtained from the traffic
video.

5.1 Proposed methodology

As discussed above, the first step is to identify discrete space and time points from
each of the vehicles in the traffic video. The next step is to convert each vehicle’s
discrete trajectory information into a Bcontinuous^ estimate so that the speed, at any
point in time and space, may be estimated. In this paper this is done using cubic-
spline models where the data between the Bmissing^ points are interpolated.

The use of cubic-splines for data interpolation has been used in a wide variety of
applications [21–25]. The common function of cubic-spline S(x) in [26] is:

S xð Þ ¼

s1 xð Þ if x1≤ x ≤ x2
s2 xð Þ if x2≤ x ≤ x3
⋅ ⋅
⋅ ⋅
⋅ ⋅
sn−1 xð Þ if xn−1≤x≤xn

8>>>>>><
>>>>>>:

ð1Þ
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where Si is defined as a third degree polynomial below in Eq. (2):

si xð Þ ¼ ai x−xið Þ3 þ bi x−xið Þ2 þ ci x−xið Þ þ di ð2Þ
Where:

i=1, 2,…, n-1;
xi is the interval value; and
ai, bi, ci, and di are the coefficients in the i

th piece (i.e., the weights of interpolating known
data).

The first and second derivatives of these n–1 equations (1≤i≤n−1) are fundamental to the
process, and they are:

s
0
i xð Þ ¼ 3ai x−xið Þ2 þ 2bi x−xið Þ þ ci ð3Þ

s
0 0
i xð Þ ¼ 6ai x−xið Þ þ 2bi ð4Þ

The curve S(x), the first derivative S′(x), and the second derivative S″(x) must be continuous
across its entire interval [x1, xn], and each sub-function must join at the data knots for 2≤i≤n−
1:

Si xið Þ ¼ Si−1 xið Þ S
0
i xið Þ ¼ S

0
i−1 xið Þ S

0 0
i xið Þ ¼ S

0 0
i−1 xið Þ

h ¼ xi− xi−1

The piecewise function S(x) interpolates all discrete data points, S(xi) = yi for 1≤i≤n−1 and
si(xi) = yi in every interval. When substituting Mi=Si

′ ′(xi) and h into the above derivations, the
results (1≤i≤n−1) are concluded below:

ai ¼ Miþ1−Mi

6h

bi ¼ Mi

2

ci ¼ yiþ1−yi
h

−
Miþ1 þ 2Mi

6

� �
h

di ¼ yi

In general, there are four types of cubic-splines: exact-slope spline, natural spline, zero-
slope spline, and not-a-knot spline. Given the slopes in x1 and xn are known, i.e., s1

′ (x1)=k1
and sn

′ (xn)=k2, the exact-slope spline is an optional approach to interpolate data. The not-a-
knot spline does not specify any extra conditions at the end points, and this method
requires that the third derivative of the spline S ′ ′ ′(x) is continuous at x2 and xn-1. The
natural spline has the known condition, i.e., s1

′ ′(x1)=sn
′ ′(xn)=0. Lastly, the zero-slope spline

has zero slopes in x1 and xn, i.e., s1
′ (x1)=sn

′ (xn)=0.

5.2 Previous research on vehicle trajectory data

Many approaches have been developed for vehicle trajectory and movement analysis. Most
trajectory analyses focus on data pattern visualization on map or location data aggregation in
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grid cells or clusters by using a density or location-based method. For example, Guo et al. [27]
developed a spatially constrained graph partitioning approach to establish topological rela-
tionships among trajectories. Liu et al. [28] interpolated, integrated, and calibrated GPS
location data with a digital road network to identify vehicle traveling paths. In order to reduce
the complexity of each trajectory route, the Douglas-Peucker algorithm [29] was created to
simplify or generalize trajectory by removing points while retaining the general shape [30].
Lee et al. [31] partitioned each trajectory into sub-trajectories, and then classified or clustered
vehicle trajectories using a density-based method. Also, Rinzivillo et al. [32] utilized different
similarity measures at different cluster levels to progressively discover patterns.

Instead of simplifying, characterizing, grouping, or comparing trajectories for the
extraction of data patterns, the proposed method interpolates each vehicle speed by
using the piecewise-linear model and cubic-splines. The research problem is how to
create continuous trajectory data to achieve a dynamic transportation information
environment for traffic data archives and retrievals. Gindele et al. [33] used the Bézier
curve method to obtain some intermediate values of vehicle trajectory for the driver
behavior estimation. However, the Bézier curve fitting is a data approximation method,
not a data interpolation method. Using a data approximation method, the control points
lie close to the curve. That is to say, unlike a data interpolation method, the curve does
not usually pass through all control points. Although Egerstedt and Martin [34]
developed some smoothing splines for trajectories [34], these trajectories are from air
traffic. Hence the data interpolation of discrete vehicle trajectory has not been well
studied.

5.3 U.S. 101 example

U.S. 101, known as the Hollywood Freeway in Los Angeles CA, was chosen as the test bed
for this study. This highway was part of the NGSIM program [14] and the discrete vehicle
trajectory data are readily available. GIS shapefiles, which contain important spatial informa-
tion and geometry features, were obtained from the NGSIM site. In addition, discrete vehicle
trajectory data extracted from video, differentiated by time, location, speed, vehicle class, lane
identification, etc. were available.

The vehicle trajectory data was collected by video cameras on June 15, 2005, and two
data sets were created from the NGSIM data. The first, known as Data Set 1 (D1),
consists of the vehicles that were active during the 15-minute period between 7:50 and
8:05 am. There were 1993 vehicles and their associated 1,048,576 speed points in this
data set. The second, known as Data Set 2 (D2), consists of vehicles that were active
during the 15-minute period between 8:05 and 8:20 am. There were 2017 vehicles and
their associated 1,403,094 speed points in this data set. The combined data set has a total
of 4010 separated vehicles, with an associated 2,451,670 speed points, and is known as
Data Set 3 (D3) in this paper.

5.4 Experimental analysis

To measure the accuracy of the proposed approach, the Root Mean Square Error
(RMSE) metric and the Median Absolute Deviation (MAD) metric, as shown in
Eqs. (5) and (6) respectively, are used in this paper. It may be seen that the RMSE
for the jth vehicle captures the squared error between the observed and estimated
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values for each discrete point along the trajectory. The smaller the RMSE or MAD
value, the more accurate the data interpolation technique.

RMSE j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N j

i¼1
Y i j−Ŷ i j

� �2

N j

vuut
∀ j ¼ 1 to J

ð5Þ

Where:

RMSEj is the Root Mean Square Error for the jth vehicle trajectory
J is the number of vehicle trajectories being studied
Nj is the number of discrete speed data points for the jth vehicle trajectory
Yij is the observed speed data points for the ith speed data point of the jth vehicle

trajectory; and
Ŷij is the estimated speed value obtained from the linear or cubic-spline interpolation

model for the ith speed data point of the jth vehicle trajectory.

MADj ¼ Median Y i j−Ŷ i j

� �
−Meidan Y k j−Ŷ k j

� ���� ���� �
∀ i ¼ 1 to N j; k ¼ 1 to N j; j ¼ 1 to J ð6Þ

Where:

MADj is the Median Absolute Deviation for the jth vehicle trajectory
J is the number of vehicle trajectories being studied
Nj is the number of discrete speed data points for the jth vehicle trajectory
Yij is the observed speed data points for the ith speed data point of the jth vehicle

trajectory; and
Ŷij is the estimated speed value obtained from the linear or cubic-spline interpolation

model for the ith speed data point of the jth vehicle trajectory.

Figure 3 illustrates this approach for a single vehicle trajectory. The individual observed
data points (Yi) are shown by blue stars and blue dots. The user identifies the time interval for
interpolation. For this example, the time interval is 0.2 s and consequently only the data points
indicated by the blue stars are used for data interpolation. The data points on the interpolated
curve (Ŷi) are shown by orange stars and blue stars.

Equations (7) and (8) show the overall RMSE and MAD average for all vehicles in the first
data set (i.e., J=1993) respectively. The average RMSE results for each of the four data

Fig. 3 Cubic-spline interpolation
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interpolation models of individual vehicular speed as a function of time interval are shown in
Table 1. Note that the exact-slope spline interpolation results are not shown. This is because
this approach requires acceleration values (i.e., the slopes of vehicular speed data) and these
are unknown. Note that the required accelerations may be estimated using the speed and time
values.

RMSE ¼
X J

j¼1
RMSE j

J
ð7Þ

Where:

RMSEj is the Root Mean Square Error for the jth vehicle trajectory
RMSE is the average Root Mean Square Error across all vehicles; and
J is the number of vehicle trajectories being studied.

MAD ¼
X J

j¼1
MADj

J
ð8Þ

Where:

MADj is the Median Absolute Deviation for the jth vehicle trajectory
MAD is the average Median Absolute Deviation across all vehicles; and
J is the number of vehicle trajectories being studied.

The time interval among interpolated data set has a significant influence on the interpolation
accuracy. Table 1 shows the results of the average RMSE for a similar analysis utilizing D1and
D2, and Table 2 shows the results of the average MAD for a similar analysis utilizing D1 and
D2. It can be seen that as the time interval increases, so too do both of the average RMSE and
MAD. The results are expected because a greater time interval for interpolation implies a
greater loss in information. It was found that all the approaches were more accurate for the

Table 1 Interpolation model estimation using RMSE

Time interval Piecewise-linear (ft/s) Not-a-knot (ft/s) Natural (ft/s) Zero-slope (ft/s)

D1 D2 D2−D1 D1 D2 D2−D1 D1 D2 D2−D1 D1 D2 D2−D1

t=0.2 s 0.21 0.15 −0.06 0.16 0.11 −0.05 0.16 0.11 −0.05 0.16 0.11 −0.05
t=0.3 s 0.30 0.24 −0.06 0.23 0.18 −0.05 0.23 0.18 −0.05 0.23 0.18 −0.05
t=0.4 s 0.43 0.33 −0.10 0.37 0.29 −0.08 0.37 0.29 −0.08 0.37 0.29 −0.08
t=0.5 s 0.55 0.44 −0.11 0.50 0.41 −0.09 0.50 0.40 −0.10 0.50 0.40 −0.10
t=0.6 s 0.71 0.56 −0.15 0.69 0.54 −0.15 0.68 0.54 −0.14 0.68 0.54 −0.14
t=0.7 s 0.85 0.66 −0.19 0.84 0.66 −0.18 0.83 0.66 −0.17 0.83 0.65 −0.18
t=0.8 s 0.98 0.75 −0.23 0.99 0.76 −0.23 0.98 0.76 −0.22 0.98 0.76 −0.22
t=0.9 s 1.09 0.84 −0.25 1.13 0.86 −0.27 1.11 0.86 −0.25 1.11 0.85 −0.26
t=1.0 s 1.19 0.92 −0.27 1.25 0.95 −0.30 1.23 0.94 −0.29 1.23 0.94 −0.29

1.0 ft/s=0.3048 m/s
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trajectories in dataset D2 than dataset D1 as measured by the difference of the average RMSE
values between D1 and D2 (i.e., D2−D1) in Table 1 and the difference of the average MAD
values between D1 and D2 (i.e., D2−D1) in Table 2. For each interpolation model estimation
with RMSE, the difference in accuracy (e.g., |D2−D1|) increases as the time interval rises when
the time frame is larger than 0.2. However, for each interpolation model estimation with MAD,
the difference in accuracy (e.g., |D2−D1|) may keep the same value as the time interval rises.

In terms of the interpolation model estimation with RMSE, it may be seen that the Bbest^
interpolation method depends on the time interval. For time units of up to 0.7 s the zero-slope
and natural approaches are the best. The Bnot-a-knot^ approach is third, and the piecewise-
linear approach is the worst. For small temporal intervals, the more complicated interpolation
approaches work best. When the time frame is larger than 0.7 s, the piece-wise linear function
is best or one of the best approaches. For this situation the simpler model performs very well.
Given the same speed distribution profile, it is hypothesized that when the temporal interval
becomes too large (e.g., greater than 0.7 s), the loss of information is such that the advantages
of the more complex model are lost. In this case a simpler model would be preferred.

However, the RMSE has the high influence of outliers in data on performance evaluation,
and the presence of outliers does not change the value of the MAD [35–38]. Due to the
resistance to the outliers of the vehicular trajectory data, the interpolation model estimation
with MAD in Table 2 shows that the piece-wise linear function is best or one of the best
approaches, when the time frame is larger than 0.2 s. The zero-slope approach is second or one
of the second best approaches, when the time frame is larger than 0.4 s. In addition, it has been
found in previous research that the linear interpolation method for 2 days spatial data from a
real estate data set also works better than the more sophisticated 2D spatial interpolation
methods [8].

Figure 4a and b show the histograms of the observed speed distribution between 7:50 and
8:05 am (D1 data set) and between 8:05 and 8:20 am (D2 data set), respectively. There are
considerably different data characteristics (such as mean, standard deviation, 95 % confidence
interval, percentage range, peak percentage, data size, and so on) between the results for
datasets D1 and D2. It may be seen that the vehicles in data set D2 have much lower speeds
and are in more congested conditions. Intuitively, it is more difficult to interpolate data when

Table 2 Interpolation model estimation using MAD

Time interval Piecewise-linear (ft/s) Not-a-knot (ft/s) Natural (ft/s) Zero-slope (ft/s)

D1 D2 D2−D1 D1 D2 D2−D1 D1 D2 D2−D1 D1 D2 D2−D1

t=0.2 s 0.03 0.02 −0.01 0.03 0.01 −0.02 0.03 0.01 −0.02 0.03 0.01 −0.02
t=0.3 s 0.06 0.03 −0.03 0.06 0.04 −0.02 0.06 0.04 −0.02 0.06 0.04 −0.02
t=0.4 s 0.12 0.06 −0.06 0.12 0.08 −0.04 0.12 0.08 −0.04 0.12 0.08 −0.04
t=0.5 s 0.16 0.09 −0.07 0.17 0.13 −0.04 0.17 0.13 −0.04 0.17 0.12 −0.05
t=0.6 s 0.23 0.15 −0.08 0.25 0.19 −0.06 0.24 0.18 −0.06 0.24 0.18 −0.06
t=0.7 s 0.29 0.19 −0.10 0.31 0.23 −0.08 0.30 0.23 −0.07 0.30 0.23 −0.07
t=0.8 s 0.34 0.23 −0.11 0.37 0.27 −0.10 0.36 0.27 −0.09 0.36 0.27 −0.09
t=0.9 s 0.39 0.27 −0.12 0.42 0.31 −0.11 0.42 0.31 −0.11 0.41 0.31 −0.10
t=1.0 s 0.43 0.31 −0.12 0.47 0.36 −0.11 0.46 0.35 −0.11 0.46 0.35 −0.11

1.0 ft/s=0.3048 m/s
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conditions are changing fast. In addition, the longer the aggregation interval, the more of a
challenge it is to interpolate the data. The contrast in the histograms, as shown in Fig. 4,
implies that the interpolation accuracy is related to the characteristics of a data set. It is
hypothesized that the transition points would be site specific and would vary by time of day
– that is, users would have to conduct preliminary analyses to identify the best approach for
their particular application.

5.5 Sensitivity test

On the basis of the above data analysis, the zero-slope approach was identified as the best
cubic-spline for individual vehicle speed interpolation. In order to test how robust the
piecewise-linear and cubic-spline interpolation methods were in the face of data noise, the
random function (Randn) in MATLAP was used to generate a scaled data noise for the
piecewise-linear interpolation approach and the cubic-spline with zero-slope. Figure 5 illus-
trates 10 % scaled data noise on the speed of the vehicle (ID: 609) with a 1.0 s time interval.

Different percentages of data noise were added into the data set D3 by using Eq. (9) to
make a cross table with three dimensions. The three dimensions for the average RMSE
measure include time interval, percentage of data noise scaled, and interpolation method, as
shown in Table 2.

Fig. 4 a Speed profiles between 7:50 and 8:05 am, and b Speed profiles between 8:05 and 8:20 am
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EYi j ¼ Yi j 1þ ERi j*EP
� 	 ð9Þ

Where:

Yij is the observed speed data points for the ith speed data point of the jth vehicle trajectory
with a time interval t (t may be 0.2, 0.3, …, or 1.0 s)

ERij is the data noise that is normally distributed with mean 0 and variance 1 for the ith speed
data point of the jth vehicle trajectory with a certain time interval

EYij is the adjusted speed value with data noise for the ith speed data point of the jth vehicle
trajectory; and

EP is the percentage of data noise assigned into the entire data set.

In Table 3 it can be seen that the average RMSE and MAD increases with the
percentage of data noise of each time interval. That result is expected because a
greater percentage of data noise implies a greater loss in data accuracy. When 3 %
of data noise is scaled into the data set, all average RMSE values are larger than
1.0 ft/s; when 6 % of data noise is scaled, all average RMSE values are larger
than 2.0 ft/s; and when 9 % of data noise is scaled, all average RMSE values are
larger than 3.0 ft/s. Similarly, when 3 % of data noise is scaled into the data set,
all average MAD values are larger than 0.5 ft/s; when 5 % of data noise is scaled,
all average MAD values are larger than 1.0 ft/s; and when 8 % of data noise is
scaled, all average MAD values are larger than 1.5 ft/s. These results imply that
the time interval increase has a detrimental influence on the average RMSE and
MAD values with a small percentage of data noise scaled as compared to the
larger percentage of data noise scaled. For example, the average RMSE value with
1 % percentage of data noise in the linear method is 0.42 and 1.2 ft/s for time
intervals 0.2 and 1.0 s, respectively. In contrast, the average RMSE values for the
10 % data noise scenario were very similar at 3.48 and 3.54 ft/s for time periods
0.2 and 1.0 s, respectively.

In terms of vehicle speed with 1 % or more data noise, the average RMSE values
of the zero slope method are not less than those of the piecewise-linear method. The
only exception was the 1 % data noise scenario for time intervals 0.3, 0.4, and 0.5 s.

Fig. 5 Scaled data noise of individual vehicle speed
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None of the average MAD values of the zero slope method are less than those of the
piecewise-linear method. The reason may be that the cubic-spline with a complicated
formula is more sensitive to noise than the simpler linear model. Based on this
sensitivity analysis, the piecewise-linear model for individual vehicle speed interpola-
tion was chosen as the preferred method.

6 Step 3 – Time-mean speed estimation

On the basis of the discrete vehicle speeds collected at a highway detector station, advanced
statistical models are applied for the evaluation of the continuous time-mean speed. In
addition, the comparison of the advanced statistical models is discussed in this step. Finally,
this step innovatively approximates data curves as a piecewise-linear form with high accuracy
using an algorithm.

6.1 Introduction

Any individual vehicle at any time has a certain (parked or moving) location and a
certain (zero or non-zero) speed. This implies that time-mean speed, as an aggregate
data of individual vehicle speed values, is continuous over time and space. However,

Table 3 Speed noise scaled with different time intervals and percentages using RMSE and MAD

72 Geoinformatica (2016) 20:59–94



traditional time-mean speed [3, 39] is the arithmetical average of the speed data of all
vehicles observed crossing a location along a roadway over a specified time period.

Due to the collection of discrete speed data and the use of a spatio-temporal database, a
continuous time-mean speed model can be developed to better meet transportation data
requirements. The continuous time-mean speed model is a more useful method of storing
data than traditional discrete time-mean speed data storage approaches because the data can be
readily accessed in a form that is advantageous to the data requirements of multiple users.
Considering the use of linear constraint databases, the continuous time-mean speed model is
required to transfer into the transportation spatio-temporal system as a piecewise-linear form
for data archives.

6.2 Model choice analysis

Local polynomial regression without data pre-classification has several advantages. The local
polynomial models were minimax efficient for both interior and boundary points and were
optimal in the minimax sense [40]. Local polynomial regression has better performance near
the boundary of data points than the traditional kernel regression methodologies, such as the
Nadaraya-Watson estimator [41, 42] and the Gasser-Müller estimator [43]. The Nadaraya-
Watson estimator produces an undesirable bias, and the Gasser-Müller estimator must pay a
price in variance to manipulate a random design model. Further, local polynomial regression
with high curvature adapts well to the bias problems at boundaries [44, 45]. The
Nadaraya-Watson and Gasser-Müller estimators converged more slowly at the boundary
[46], although the convergence rate of the estimators was the same for boundary points
and interior points. Ruppert and Wand [47] showed that a multivariate case had a similar
result. Cheng et al. [48] found that no linear estimator could beat local polynomial
models on the boundary in a minimax sense, and no other estimator could make a
significant improvement.

In contrast to local models, global models (such as neural networks and time series)
typically require offline training because they do not solely rely on data pattern recognition
[49]. The local modeling can avoid the negative interference exhibited by the global models.
Moreover, the local linear method is preferable to the local constant regression in traffic data
analysis [49, 50]. In regards to local constant regression, Smith et al. [51] and Faouzi [52],
respectively, implemented the k-nearest neighbor method and kernel estimator in
transportation.

In addition, Gaussian process was viewed as an infinite-dimensional generalization
of the multivariate normal distribution [53], and this approach was used for data
estimation [54–57]. Comparing Gaussian process with nonparametric regression
methods, Yakowitz and Szidarovszky [58] found that nonparametric regression
methods were more robust and reliable for the data analysis and error estimation
when the data was not produced from an intrinsic random function with the right
variogram. Gaussian process was marginally better only if the sample data met the
intrinsic random function hypothesis and had the Btrue^ variogram family. The above
analysis gives the reasons why local polynomial regression models are selected for the
time-mean speed estimation in this paper.
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6.3 Definition

There is a basic difference between a parametric approach and a nonparametric approach. The
former assumes a pre-specified functional form for the density estimator, while the latter does
not. The density estimation in nonparametric regression can effectively describe the overall
pattern in a set of data. Suppose that in a sample of random pairs (x1, y1),…, (xn, yn), the
response variable yi is assumed to satisfy [50]:

yi ¼ m xið Þ þ υ1=2 xið Þεi ð10Þ
Where:

m is a function to be estimated
υ is a variance function
εi is an independent random variable with zero mean and unit variance
xi is a random variable having common density ƒ; and i =1,…, n.

A local polynomial estimator m̂ x; p; hð Þ [59–61] can be developed via Blocally^ fitting a pth
degree polynomial ∑j=0

p βj(xi−x)j to (xi, yi) using weighted least squares. Bandwidth h is
assumed to approach zero at a rate slower than n −1, that is:

lim
n→∞

h ¼ 0 lim
n→∞

nh ¼ ∞

The function of the local polynomial estimator for the true function Y is shown below:

Ŷ ¼ m̂ x; p; hð Þ ¼ eT1 XT
xWx Xx

� 	−1
XT

xWxy ¼ eT1 β̂ ¼ β̂0 ð11Þ

Where:

e1 is a (p+1)×1 vector having 1 in the first entry and zero
elsewhere

y=(y1,⋯,yn)
T is a vector of responses

Wx=diag{Kh(x1−x),⋯,Kh(xn−x)} is an n×n diagonal matrix of weights

X x ¼
1 x1−x ⋯ x1−xð Þp
⋮ ⋮ ⋱ ⋮
1 xn−x ⋯ xn−xð Þp

2
4

3
5 is an n×(p+1) design matrix, n is the number of

observations

β̂ ¼ β̂0;⋯; β̂p

� �T
is able to minimize the locally weighted polynomial

regression∑
n

i¼1
yi− ∑

p

j¼0
β j xi−xð Þ j

( )2

Kh xi−xð Þ; and

Kh(⋅)=K(⋅/h)/h is a kernel function scaled by h (the kernel function
is usually a unimodal symmetric probability with
∫K(x)dx=1).

Figure 6 displays the important aspects of local polynomial regression theory. Let Y (i.e.,
the green curve) represent the true model, and let Ŷ (i.e., the red curve) represent a local
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polynomial regression line based on the observed points. The bandwidth h is a nonnegative
number controlling the size of the local neighborhood. Kh(xi – x) is the weight assigned to yi,
and this weight depends on the height of the kernel function centered about the particular point
x. The data closer to x carry more influence in the value of m(x) for a general form of the
regression function m(x). There are some shape choices about kernel function [62], and these
shapes may be Epanechnikov, Biweight, Triweight, Normal, Uniform, Triangular, etc.

6.4 Bandwidth selection

The bandwidth choice is particularly important to highlight the significant structure in
a set of data. Jones et al. [63] executed a survey of several bandwidth selections for
density estimation. The methods of bandwidth selections included the Biased Cross-
validation (BCV) [64], Least Squares Cross-validation (LSCV) [65], Rule-of-Thumb
(ROT), Solve-the-equation (STE) [59, 66–69], and Smoothed Bootstrap [70]. Jones
et al. [63] showed that the ROT had a small variance, but an unacceptably large
mean; LSCV had a good mean, but too large a variance; BCV suffered from unstable
performance; and that both STE and smoother bootstrap had a correctly centered
distribution in mean and an acceptable variance.

Ruppert et al. [71] compared three plug-in bandwidth selection strategies [50],
including ROT, STE, and Direct Plug-in (DPI) via data simulation and analysis. Also,
they clarified the rules and calculation steps about these bandwidths. They found that
both DPI and STE had acceptable performance. Most importantly, the DPI was less
complicated because it required neither a root-finding procedure nor a minimization
step. Based on previous research, the DPI approach was selected for calculating
bandwidth in this paper.

6.5 Order choice

In terms of the order of polynomial fit for the asymptotic performance of m̂ �; p; hð Þ; Fan et al.
[50] showed that fitting polynomials of higher order led to a possible bias reduction and a

Fig. 6 Local polynomial regression model
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variance increase. They also showed that odd order fits were preferable to even order fits
because they resulted in lower variance. Further, they identified that even order fits
experienced a lower efficiency in terms of bias reduction, particularly in boundary regions
and highly clustered design regions. In addition, they identified that higher order poly-
nomial fits (i.e., greater than a cubic fit) required a very large sample to realize a
significant improvement. Based on this previous research, this paper uses p=1 or p=3.
A local cubic fit (when p=3) has more degrees of freedom for estimating a high curve
region in a set of data than a local linear fit (when p=1), although a cubic fit has a
higher requirement concerning its calculation and sample variability than a local linear fit
does [62].

It is advantageous to keep both the local linear model and the local cubic model
for data estimation. The local cubic model can provide an adequate fit to better
capture sharp data curvatures. When the local cubic regression model tends to overfit
the data or lack numerical stability for a given date set, the local linear model can be
fit easily to the data. Moreover, the above DPI approach can find an appropriate
bandwidth to control data overfitting, balance the variance and bias of a data set and
minimize mean squared error.

6.6 U.S. 101 example

The values of vehicle speeds were collected at the detector station (717490) of the test bed (i.e.,
U.S. 101 Highway in Los Angeles, CA) from 4:30 to 6:30 pm on June 8, 2005 [14]. Figure 7
shows a schematic of the detector placement at a detector station located at a five-lane highway
section used in this paper. Each station can record the time that each vehicle occupies the
detector as the vehicle travels over it. The detector also counts the number of vehicles traveling
over it. The occupancy and the flow rate of vehicles are then used along with the mean vehicle
length to determine speed (speed = flow/occupancy/mean vehicle length). The data for
occupancy, flow, and speed are aggregated and computed over a specified period of time
and only the aggregated data are stored. The speed data at this station were averaged over five-
minute periods. As shown in Fig. 8, the discrete speed data are estimated as a continuous time-
mean speed curve using the local linear or cubic regression model.

Fig. 7 Loop detector station
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6.7 Piecewise-linear approximation

An important innovation in this paper is the use of a piecewise linear approximation algorithm
to approximate the data curves as a piecewise-linear form with high accuracy. The above
continuous time-mean speed curves were divided into 361 data points. The latter discrete
points were used as input for a piecewise-linear approximation [11], and these data points are
referred as speed-time pairs. The piecewise-linear approximation compresses the discrete data
points into a piecewise-linear function, which allows for data interpolation and faster queries.
In the piecewise-linear approximation with data points (xi, yi), with i=1,2,…,n, the relation
between the piecewise-linear function ƒ(xi) and yi satisfies:

f xið Þ−yij j≤Ψ for each xi; yið Þ ð12Þ
The maximum error threshold Ψ controls the maximum difference between the original

data points and the piecewise-linear function. This means that the original data points are
always within a narrow band with a widthΨ around the piecewise-linear function, as shown in
Fig. 9.

Fig. 8 Time-mean speed estimation using local polynomial models

Fig. 9 Piecewise-linear approximation
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6.8 Experimental analysis

The above speed data were used for the accuracy estimation of the local linear and cubic
models. The bandwidth (h) was calculated by the above DPI approach (i.e., h=11.5). The
Mean Squared Error (MSE), RMSE, and Mean Absolute Error (MAE) [37] were used to
measure the accuracy of the experimental data, and their definitions are listed below:

MSE ¼
X n

i¼1
Y i−Ŷ i

� �2

n
ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
Y i−Ŷ i

� �2

n

vuut
ð14Þ

MAE ¼
X n

i¼1
Y i−Ŷ i

��� ���
n

ð15Þ
Where:

Yi is the observed speed of the ith speed-time pair
Ŷi is the estimated speed, calculated by the piecewise-linear sub-function for the ith speed-

time pair; and
n is the number of the speed-time pairs (n=361 in this experiment data).

Table 4 provides the accuracy results of the linear and cubic models. It may be seen that the
cubic model is more accurate than the linear model. Using the piecewise-linear algorithm with
Ψ=0.05, a previous study [72] transferred the above local linear and cubic speed curves in
Fig. 9 into a piecewise-linear function with 14 sub-functions and a piecewise-linear function
with 24 sub-functions, respectively. The RMSE was computed, using Eq. (14), for each sub-
function, where n is the number of the speed-time pairs related to a certain sub-function, Yi is
the speed of the pairs, and Ŷi is the speed calculated by the sub-function. The result of each
sub-function RMSE was less than 0.04, indicating a very good model fit. The use of the local
cubic model for data queries will be explored in more depth in Section 8 of this paper.

7 Step 4 – Data transformation and integration

As discussed previously, the focus of this paper is the transformation of continuous nonlinear
traffic data models and the integration of highway spatial data and vehicle trajectory data. The

Table 4 Model estimation

Model MSE RMSE MAE

Local linear model 0.0023 0.048 0.042

Local cubic model 0.0020 0.045 0.040
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data transformation and integration consists of two parts: (1) the linear approximation of
vehicular instantaneous speed and time-mean speed, and (2) the determination of instanta-
neous motion direction.

7.1 Speed linear approximation

By using the speed points per 0.1 s, the piecewise-linear approximation algorithm can
automatically create the piecewise-linear functions. Note that if the time interval of the speed
data is larger than 0.1 s, the data may be interpolated by the data interpolation methods in
Section 5. A smaller error threshold (Ψ) in the piecewise-linear algorithm can produce more
sub-functions for speed curve approximation with more accuracy. From the data set D3 in
Section 5.3, the instantaneous speed data of five vehicles (vehicle ID is 2, 4, 5, 6, and 8) in 50 s
are shown in Fig. 10. With the 50 s’ speed data and the error threshold Ψ=0.05 as the input
conditions, the piecewise-linear algorithm produces speed approximations as shown in Fig. 11.
It may be seen that, visually at least, the approximation models closely follow the actual
vehicle trajectories measured in the field.

Figures 12 and 13 show the average RMSE and MAD of the estimated sub-functions per
vehicle in the entire data set D3. The average RMSE is the average Root Mean Square Error
across all sub-functions, and the average MAD is the average Median Absolute Deviation
across all sub-functions. The RMSE has the same format as Eqs. (5) and (7). Figure 12 shows
that all average RMSE values are less than 0.015 ft/s. The MAD has the same format as
Eqs. (6) and (8). Figure 13 shows that all average MAD values are less than 0.0095 ft/s.

7.2 Vehicular motion direction

According to the above speed interpolation methods, the speed over continuous time can be
used to estimate vehicular distance. For example, the first sub-function of the vehicle (ID is 2

Fig. 10 Individual vehicle speed
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and time is from 0.5 to 1.1 s) in Fig. 11 estimates the vehicular instantaneous speed as 40.0 ft/s.
The travel distance can be estimated as the product of the speed (i.e., 40.0 ft/s) and time step
(i.e., 0.6 s) or 24.0 ft. In order to determine vehicular motion direction, the above piecewise-
linear approximation is also used to analyze the longitude and latitude of vehicular location
points. From the data set D3 the instantaneous location data of five vehicles (vehicle ID is 2, 4,
5, 6, and 8) are demonstrated in Fig. 14. With the location data and the error thresholdΨ=0.05
as the input conditions, the piecewise-linear algorithm generates continuous location linear
approximations for the estimation of vehicle motion direction with a short time interval choice,

Fig. 11 Speed linear approximation

Fig. 12 Speed linear approximation estimation using RMSE
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as shown in Fig. 15. Certainly, a larger error threshold (Ψ) in the piecewise-linear algorithm
would automatically produce less linear sub-functions of vehicle motion direction, but the
entire accuracy of linear approximation would decline.

Figures 16 and 17 show the average RMSE and the average MAD of the estimated sub-
functions per vehicle in the entire data set D3. Figure 16 shows that all average RMSE values
are less than 0.034 ft for the motion direction estimation of the 4100 vehicles in D3. Figure 17
shows that all average MAD values are less than 0.018 ft for the motion direction estimation of
the 4100 vehicles in D3.

Fig. 13 Speed linear approximation estimation using MAD

Fig. 14 Individual vehicle location sample
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8 Step 5 – Traffic information retrieval

Once the previous four steps are complete, the user can then retrieve traffic information related
to the stored vehicle trajectories at any desired temporal and spatial interval. Spatio-temporal

Fig. 15 Location linear approximation

Fig. 16 Location linear approximation estimation using RMSE
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databases can offer not only distance-based static data operations, similar to GIS programs
[73], but also dynamic and/or temporal operations as discussed below.

8.1 Constraint relation

To illustrate, consider the use of the test-bed spatial data represents the U.S. 101 highway in the
transportation spatio-temporal system. The input constraint relations are:

Car (id, x, y, s, t), which stores the multiple vehicular motion information at moving
location (x, y), time (t), and instantaneous vehicle speed (s). The instantaneous vehicle
speeds are described by piecewise-linear functions. Take, for example, the dynamic
vehicle in a constraint function form is given below:

Car id; x; y; s; tð Þ : id ¼ 2; y≥−269; y < −263:8; x−s*t < 136:14; x−s*t ≥122:64; s ¼ 0:2t þ 35:2; t ≥0; t < 3:
Car id; x; y; s; tð Þ : id ¼ 2; y≥−269; y < −263:8; x−s*t < 137:64; x−s*t≥124:14; s ¼ −0:8t þ 38:2; t≥3; t < 5:
Car id; x; y; s; tð Þ : id ¼ 2; y≥−269; y < −263:8; x−s*t < 136:64; x−s*t≥123:14; s ¼ 0:4t þ 32:2; t≥5; t < 10:
Car id; x; y; s; tð Þ : id ¼ 2; y≥−269; y < −263:8; x−s*t < 128:64; x−s*t≥115:24; s ¼ −0:02t þ 36:4; t≥10; t < 30:

Road (x, y), which records the static transportation network.
Take, for example, the static road in a constraint function form is given below:

Road x; yð Þ : −0:0214x−y ¼ 301:79; x≥117:75; x < 325:34:
Road x; yð Þ : 0:015x−y ¼ 313:646; x≥325:34; x < 489:93:
Road x; yð Þ : 0:0459x−y ¼ 328:778; x≥489:93; x < 640:68:
Road x; yð Þ : x−0:002y ¼ 641:28; y≥−299:37; y < −52:73:

Fig. 17 Location linear approximation estimation using MAD
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8.2 Query case

Some example queries are provided below:

Query 1 Find the locations of car 1 at times 2.6, 4.55, 6.5, 8.5, 10.505, 12.51, and
14.49 s, respectively. This query is expressed in Datalog [74] as follows:

Location (x, y): Car (1, x, y, s, 2.6).
Location (x, y): Car (1, x, y, s, 4.55).
Location (x, y): Car (1, x, y, s, 6.5).
Location (x, y): Car (1, x, y, s, 8.5).
Location (x, y): Car (1, x, y, s, 10.505).
Location (x, y): Car (1, x, y, s, 12.51).
Location (x, y): Car (1, x, y, s, 14.49).

Figure 18 illustrates the result of Query 1 in the MLPQ (Management of Linear
Programming Queries) system [9]. The spatial attributes of the roadway are shown by
the yellow lines, the pink rectangles show the estimated trajectory of the given vehicle in
terms of location and time (e.g., every .2 s), and the filled-in blue sections are road
greenbelts.

Fig. 18 Individual car tracking and query in the MLPQ system
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Query 2 Find the spacing between cars 2 and 6, which travel along the horizontal direction,
at time 5 s. The query is given below:

Spacing (sp): Car (2, x2, y, s, 5), Car (6, x6, y, s, 5), sp+x6−x2==0.

The output result of Query 2 is 154.57 ft. Different spacing values can be retrieved from the
spatio-temporal database by inputting different time values.

Query 3 Find the volume at location 610.45 ft within the time interval 30 to 50.9 s. The
query is designed below:

Reach_line (id, x, t1): Car (id, x, y, s, t1), x==610.45, t1≥30, t1<50.9.
Reach_time (id, max (t1)): Reach_line (id, x, t1).
Car_time(id, t2): Reach_time (id, t2), t2≥30, t2<50.9.
Volume (id): Car_time (id, t2).

The volume query results depend on the input location x and time intervals. The transpor-
tation spatio-temporal system outputs 5 as the above volume query result and car ID numbers
(including cars 6, 7, 9, 10, and 11).

Query 4 Find the vehicular travel times for space-mean speed calculation when cars pass the
roadway segment (the location range of road segment is between 150 and 600 ft on
the horizontal axis).

Because the space-mean speed is computed as the length of the roadway
segment divided by the average time required for traveling the segment [3, 75],
Query 4 can be expressed as follows. First, the query time when all the cars reach
the location 167.3 ft is:

SpaceA (id, x1, t1): Car (id, x1, y, s, t1), x1≥167.3.
TimeA1 (id, x2, min (t1)): SpaceA (id, x2, t1).
TimeA2 (id, x2, t2): TimeA1 (id, x2, t2), x2==167.3.
Sum_timeA (sum_min (t2)): TimeA2 (id, x2, t2).

Second, the query time when cars pass the location 203 ft is:

SpaceB (id, x3, t3): Car (id, x3, y, s, t3), x3≤203.
TimeB1 (id, x4, max (t3)): SpaceB (id, x4, t3).
TimeB2 (id, x4, t4): TimeB1 (id, x4, t4), x4==203.
Sum_timeB (sum_max (t4)): TimeB2 (id, x4, t4).

The output results are those times when the cars reach the road location 167.3 ft and pass
the road location 203.0 ft. The output results also include the sum of these times, which are
87.16 and 122.17 s, respectively. Hence, the average travel time is (122.17–87.16)/12=
2.9175 s, and the space-mean speed is (230–167.3)/2.9175=21.491 ft/s (i.e., 6.55 m/s).

This example illustrates one of the main advantages of the proposed approach. Because the
vehicle trajectory data is stored, the space-mean speed for any combination of distance and
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time can be estimated accurately and quickly. This obviates the need to store specific
combinations of space-mean speed information and interpolated aggregated data that are the
hallmarks of traditional traffic data collection and storage systems.

Query 5 Find the time-mean speed at the loop detector station on the highway segment at
times 10, 20, 40, 70, and 110 s, respectively. This query is expressed as follows:

Time-meanSpeed (ts): LocalCubicModel (id, ts, t), t==10.
Time-meanSpeed (ts): LocalCubicModel (id, ts, t), t==20.
Time-meanSpeed (ts): LocalCubicModel (id, ts, t), t==40.
Time-meanSpeed (ts): LocalCubicModel (id, ts, t), t==70.
Time-meanSpeed (ts): LocalCubicModel (id, ts, t), t==110.

The loop detector station is set up in the MLPQ system, as shown in Fig. 19. After cars
travel over the loop detector, the MLPQ system gives the output results of the time-mean speed
(i.e., 89.42 ft/s when t=10 s, 81.93 ft/s when t=20 s, 83.76 ft/s when t=40 s, 92.84 ft/s when
t=70 s, and 101.99 ft/s when t=110 s). These results are evaluated using the local cubic model
(see Section 6). Other results about time-mean speed can be retrieved by changing time at the
loop detector station or location of the loop detector station on the road segment. Thus the
MLPQ system can provide a time-mean speed at any time on any highway segment. Certainly,
on the basis of Query 4 and Query 5, the MLPQ system can give the difference between time-
mean speed and space-mean speed to meet traffic data requirement analysis.

Fig. 19 Moving vehicles traveling over a detector station in the MLPQ system
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9 Summary of advantages

This section discusses the advantages of traffic data completeness and data redundancy
minimization in the proposed spatio-temporal archiving and retrieval system. Also, the
discussion involves a comparison analysis of traffic motion information archived in different
databases, and a contrast analysis of static discrete traffic data sources and the dynamic
transportation information environment.

9.1 Data completeness

Data completeness requires that data sources in databases should cover all information (i.e., all
data types and the complete information of each data type) to meet the current and future
demands of various data users. In the approach proposed in this paper, the traffic stream is
observed at multiple spatial points within some pre-specified distance intervals over time. This
may be contrasted with current techniques, which utilize a single spatial point [75]. Figure 20
shows the traffic stream over continuous time and space as a set of steps. Each step represents
the occurrence of an individual vehicle and the edge of each step represents the trajectory of
the vehicle.

Existing transportation software systems [77–80] store discrete traffic aggregate data (such
as volume, density, space-mean speed, time-mean speed, headway, queue length, spacing, and
so on) in relational databases. Aggregate data incompleteness in space and time may lead to
poor performance of traffic engineering models in transportation software systems. For
example, due to the lack of volume over continuous time and space, not all travelers can gain
desired travel time query information from volume-based travel time estimation models in
advanced traveler information systems (ATIS) [11]. The ability of the user to define the space
and time aggregation levels for traffic parameters for each application is an important
advantage of the proposed approach.

The transportation spatio-temporal system [81], developed in this paper and based on
MLPQ, has a number of advantages over traditional data storage systems currently being used
in the transportation profession. This system can offer complete individual vehicle trajectory
and traffic aggregate data over continuous space and time. Complete traffic data sources are
useful for the description of traffic flow phenomena and for the calculation of various
transportation engineering models. Such a spatio-temporal system can be particularly advan-
tageous in understanding highway flow breakdown (e.g., incident detection), and dynamical
traffic congestion because a detailed picture of traffic parameters over both time and space is
better than these parameters in time alone.

Fig. 20 Traffic stream with a spatio-temporal pattern [76]
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Besides individual vehicular and traffic aggregate parameters, the transportation spatio-
temporal system can be used to estimate a variety of traffic parameters over user-defined time
and space conditions. For example, users could examine speed differences among moving cars
at an intersection for any period of time, identify vehicles traveling above the speed limit
during any period, and determine the number of trips during any period in the road network.

9.2 Data redundancy

Traditional discrete traffic aggregate data archiving systems result in the loss of a large amount
of aggregate traffic data and, conversely, can increase data redundancy in databases. Efficient
data operations require data consistency and data synchronization in databases by minimizing
or avoiding data redundancy [82].

In relational databases, traffic data redundancy often causes data anomalies, data corruption,
and data retrieval errors. For example, updating a certain volume value requires a change in the
values of other traffic parameters [3], such as average daily traffic (ADT), average weekly traffic
(AWT), annual average daily traffic (AADT), and annual average weekly traffic (AAWT). It is
difficult for existing transportation management systems to keep data synchronization between
volume values and the above four traffic parameters. The frequent operations of traffic data in
databases easily cause data inconsistency or anomalies and data retrieval errors.

Due to the storage of individual vehicular time, location, and instantaneous speed data in
the proposed spatio-temporal databases, the traffic parameters, at user-defined aggregation
levels, can be retrieved readily using database query designs. Hence the proposed spatio-
temporal system provides traffic data archiving methods that eliminate data redundancy.

9.3 Database comparison

The above analysis of data query retrieval, completeness, and redundancy demonstrate that
dynamic spatio-temporal databases have significant advantages over video databases. For
instance, the proposed spatio-temporal databases offer continuous spatial data and accurate
location data (i.e., longitudinal and latitudinal data) similar to what standard GIS can do. From
15 min of traffic video (278 MB), the size of the vehicular data extracted is 83 MB, not
including the corresponding GIS shapefiles. After integrating the vehicular data into the GIS
shapefiles, the constraint data model of spatio-temporal databases requires only 1 MB data size
for the archiving of dynamic transportation data.

Table 5 Characteristics of traffic motion information archived in different databases

Attributes of motion
information

Spatio-temporal
databases

GIS/spatial
databases

Relational
databases

Video
databases

Time Continuous Discrete Discrete Tiny interval

Location Continuous Continuous Discrete Inaccurate

Data type Complete Limited Limited Very limited

Visualization Dynamic Static Static Dynamic

Data size Small Large Large Very large

Retrieval efficiency No waiting time Calculation
needed

Calculation
needed

Video playing
time
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More importantly, the spatio-temporal data integration, which is a central feature of the
proposed methodology, allows the aggregated traffic data to be retrieved in near real-time. To
retrieve similar data from current systems (e.g., aggregated traffic data and archived video

Fig. 21 Static traffic data sources

Fig. 22 Adjustable dynamic transportation information
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data) would be extremely labor-intensive and time consuming – to the point that it is rarely
done in practice. Moreover, due to the lack of map data in video frames or segments, video
databases cannot provide exact longitudinal and latitudinal data. Table 5 summarizes different
attributes of traffic motion information archived in different databases as follows:

9.4 Data operation

In contrast to static traffic data sources in existing transportation systems, as shown in
Fig. 21, the proposed spatio-temporal system offers an adjustable dynamic transpor-
tation information environment, as shown in Fig. 22. It means that the data collection
of individual vehicle trajectory would be more important than traffic aggregate data
for data collection and storage for transportation applications. The integration of
highway spatial data and vehicle trajectory data create the spatio-temporal logical
relationships among the entire transportation motion data.

10 Concluding remarks

Video cameras can easily collect traffic information, but storing the raw video data generally
requires a huge storage space. More importantly, it is difficult to retrieve the values of traffic
parameters from video data for the calculations of transportation engineering models or the
development of transportation software, not to mention traffic data operation or adjustability.
The proposed transportation spatio-temporal system is designed to overcome the storage
problem by converting traffic videos into a spatio-temporal database. Because the transporta-
tion spatio-temporal system was developed on top of the MLPQ system, it allows high-level
Datalog and SQL queries, including specific predefined queries related to traffic management.
The queries of the transportation spatio-temporal system can search the complete continuous
motion information of the moving vehicles.

Further research may lead to the analysis of different traffic situations that result in
heavy traffic congestion or collisions [83]. The ultimate goal of traffic management
system development is to improve traffic and road conditions for drivers and their
vehicles.
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References

1. Miller HJ (1999) Potential contributions of spatial analysis to geographic information systems for transpor-
tation. Geogr Anal 31:373–399

2. Butler AJ, Dueker KJ (2001) Implementing the enterprise GIS in transportation database design. URISA J
13(1)

3. Roess RP, Prassas ES, McShane WR (2011) Traffic Engineering, 4th edn. Pearson Prentice Hall,
Upper Saddle River

4. Gong Y (2003) Audio and visual content summarization of a video program, chapter 10. In: Furht B,
Marques O (eds) Handbook of video databases: design and applications

90 Geoinformatica (2016) 20:59–94



5. Wactlar HD, Christel MG, Gong Y, Hauptmann AG (1999) Lessons learned from building a terabyte digital
video library. IEEE Comput 32:66–73

6. Aslandogan YA, Yu CT (1999) Techniques and systems for image and video retrieval. IEEE Trans Knowl
Data Eng 11:56–63

7. Agma J, Traina M, Traina C Jr. (2003) Similarity search in multimedia databases, chapter 29. In: Furht B,
Marques O (eds) Handbook of video databases: design and applications, pp. 712–245

8. Li L, Revesz PZ (2004) Interpolation methods for spatiotemporal geographic data. Comput Environ Urban
Syst 28(3):201–227

9. Revesz PZ (2010) Introduction to database: from biological to spatio-temporal. Springer, New York
10. Chen CX (2001) Data models and query languages of spatio-temporal information. Ph.D. Dissertation,

University of California, Los Angeles, CA
11. Yue H (2009) Advanced traveler information inquiry, archiving, and decision making system, the 4th

Chinese Oversea Student BChun Hui Cup^ Entrepreneurship Competition, Project Presentation
12. Yin H, Wolfson O (2004) A weight-based map matching method in moving objects databases, the 16th

International Conference on Scientific and Statistical Database Management
13. Liu J, Wolfson O, Yin H (2006) Extracting semantic location from outdoor positioning systems.

International Workshop on Managing Context Information and Semantics in Mobile Environments
14. Cambridge Systematics, Inc. (2005) NGSIM U.S. 101 data analysis (7:50 a.m. to 8:05 a.m.), Prepared for

Federal Highway Administration
15. Wei H, Feng C, Meyer E, Lee J (2005) Video-capture-based approach to extract multiple vehicular trajectory

data for traffic modeling. J Transp Eng 131(7):496–505
16. Skabardonis A, Alexiadis V (2005) Traffic data through the Berkeley highway laboratory. Workshop on

Traffic Modeling, Sedona, AZ
17. Kim Z, Gomes G, Hranac R, Skabardonis A (2005) A machine vision system for generating vehicle

trajectories over extended freeway segments, the 12th World Congress on Intelligent Transportation Systems
18. Tao RH, Wei H, Wang YH, Sisiopiku VP (2004) Modeling speed disturbance absorption following state-

control action-expected chains: integrated car-following and lane-changing scenarios, the 83rd Annual
Meeting of Transportation Research, Washington, D.C

19. Wei H (1999) Observed lane-choice and lane-changing behaviors on an urban street network using
video-capture-based approach and suggested structures of their models. Ph.D. dissertation, Univ. of
Kansas, KS

20. U.S. Department of Transportation, Federal Highway Administration (2007) NGSIM-VIDEO user’s manual,
Publication No. #FHWA-HOP-07-009

21. Patamanska G, Slavov N (2007) Using cubic spline interpolation to estimate vertical soil water profile. Bulg
J Agric Sci 13:317–323

22. Boyko A, Pavlova V (1986) Restoration of soil moisture reserve profile using spline interpolation instru-
ment. Tr VNISKHM 21:102–111

23. Thant A, Khaing A (2009) Application of cubic spline interpolation to walking patterns of biped robot.
World Acad Sci Eng Technol 50:27–34

24. Su B, Tan J (2007) Sweeping surface generated by a class of generalized quasi-cubic interpolation spline. Int
Conf Comput Sci (2):41–48

25. Dubau C (2011) Optimal property of the shape of aeolian blade profile using cubic splines. J
Comput Anal Appl 13(1):254

26. Recktenwald G (2000) Numerical methods with MATLAB: implementation and application. Prentice Hall,
Upper Saddle River

27. Guo D, Liu S, Jin H (2010) A graph-based approach to vehicle trajectory analysis. J Locat Based Serv 4:
183–199. doi:10.1080/17489725.2010.537449

28. Liu S, Liu C, Luo Q, Ni L, Krishnan R (2012) Calibrating large scale vehicle trajectory data.
Living Analytics Research Center (LARC), Technical Report Series: LARC-TR-01-12

29. Douglas D, Peucker T (1973) Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature. Can Cartographer 10:112–122

30. Jeung H, Yiu ML, Zhou X, Jensen CS, Taoshen H (2008) Discovery of convoys in trajectory databases.
VLDB Endowment 1:1068–1080

31. Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of
the 2007 ACM SIGMOD International Conference on Management of Data, ACM Press, pp 593–604

32. Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008) Visually driven analysis
of movement data by progressive clustering. Inf Vis 7:225–239

33. Gindele T, Brechtel S, Dillmann R (2010) A probabilistic model for estimating driver behaviors and vehicle
trajectories in traffic environments, the 13th International IEEE Annual Conference on Intelligent
Transportation Systems, Madeira Island, Portugal

Geoinformatica (2016) 20:59–94 91

http://dx.doi.org/10.1080/17489725.2010.537449


34. Egerstedt M, Martin CF (2001) Optimal trajectory planning and smoothing splines. Automatica
37:1057–1064

35. Shcherbakov MV, Brebels A (2011) Outliers and anomalies detection based on neural networks forecast
procedure. In: Proceedings of the 31st Annual International Symposium on Forecasting, ISF-2011, pp 21–22

36. Pham-GIAT, Hung TL (2001) The mean and median absolute deviation. Math Comput Model 34:921–936
37. Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, Kamaev VA (2013) A survey of

forecast error measures. World Appl Sci J 24 (Information Technologies in Modern Industry, Education &
Society):171–176, ISSN 1818–4952

38. Rousseeuwa PJ, Crouxa C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):
1273–1283

39. Highway Capacity Manual (2000) Transportation Research Board; Bk&CD-Rom edition, ISBN-10:
9991332944, Chapter 7–3

40. Hastie T, Loader C (1993) Local regression: automatic kernel carpentry. Stat Sci 8(2):120–129
41. Nadaraya EA (1964) On estimating regression. Theory Probab Appl 10:186–190
42. Wathson GW, Leadbetter MR (1964) Hazard analysis I. Biometrika 51:175–184
43. Gasser T, Müller HG (1979) Kernel estimation of regression functions. In: Gasser T, Rosenblatt M (eds)

Smoothing techniques for curve estimation. Springer, Heidelberg, pp 23–68
44. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London
45. Fan J, Marron JS (1994) Fast implementations of nonparametric curve estimators. J Comput Graph Stat 3:

35–56
46. Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20(4):

2008–2036
47. Ruppert D, Wand M (1994) Multivariate locally weighted least-squares regression. Ann Stat 22(3):

1346–1370
48. Cheng MY, Fan J, Marron J (1997) On automatic boundary corrections. Ann Stat 25(4):1691–1708
49. Sun H, Liu HX, Xiao H, He RR, Ran B (2003) Use of local linear regression model for short-term traffic

forecasting. Transp Res Board 18(1836):59–71
50. Fan J, Gijbels I (1996) Local polynomial modeling and its applications. Chapman & Hall, London
51. Smith B, Williams B, Oswald K (1999) Parametric and nonparametric traffic volume forecasting.

Transportation Research Record. CDROM
52. Faouzi E (1996) Nonparametric traffic flow prediction using kernel estimator. Proceedings of the 13th

International Symposium on Transportation and Traffic Theory, Lyon, France, July 19, pp 24–26
53. Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge,

Massachusetts
54. Anjyo K, Lewis JP. RBF interpolation and Gaussian process regression through an RKHS formulation. J

Math Ind 3 (2011A-6):63–71
55. Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Proceeding of the Neural

Information Processing Systems, vol 8. MIT Press
56. Stein ML (1999) Interpolation of spatial data: some theory for Kriging. Springer, New York
57. Ranjan P, Haynes R, Karsten R (2011) A computationally stable approach to gaussian process interpolation

of deterministic computer simulation data. Technometrics 53(4):366–378
58. Yakowitz SJ, Szidarovszky F (1985) A comparison of Kriging with nonparametric regression

methods. J Multivar Anal 16:21–53
59. Scott DW, Tapia RA, Thompson JR (1977) Kernel density estimation revisited. Nonlinear Anal Theory

Methods Appl 1:339–372
60. Cleveland W (1979) Robust locally weighted regression and smoothing scatter plots. J Am Stat Assoc 74:

829–836
61. Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87:998–1004
62. Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London
63. Jones MC,Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am

Stat Assoc 91(433):401–407
64. Scott DW, Terrell GR (1987) Biased and unbiased cross-validation in density estimation. J Am Stat Assoc

82:1131–1146
65. Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates.

Biometrika 71:353–360
66. Sheather SJ (1986) An improved data-based algorithm for choosing the window width when estimating the

density at a point. Comput Stat Data Anal 4:61–65
67. Park BU, Marron JS (1990) Comparison of data-driven bandwidth selectors. J Am Stat Assoc 85:66–72
68. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density

estimation. J R Stat Soc Ser B 53:683–690

92 Geoinformatica (2016) 20:59–94



69. Engel J, Herrmann E, Gasser T (1995) An iterative bandwidth selector for kernel estimation of densities and
their derivative. J Nonparametric Statist 4:21–34

70. Faraway JJ, Jhun M (1990) Bootstrap choice of bandwidth for density estimation. J Am Stat Assoc 85:1119–
1122

71. Ruppert D, Sheather SJ, Wand MP (1995) An effective bandwidth selector for local least squares regression.
J Am Stat Assoc 90:1257–1270

72. Yue H, Jones E, Revesz PZ (2010) Local polynomial regression models for average traffic speed
estimation and forecasting in linear constraint databases, 17th IEEE International Symposium on
Temporal Representation and Reasoning, Paris, France, pp 154–161

73. Yue H, Jones E (2010) Archiving capability of spatio-temporal data in different Highway Railroad
Grade Crossing (HRGC) databases, Annual Intelligent Transportation System Conference,
Houston, USA

74. Kanellakis P, Kuper G, Revesz PZ (1995) Constraint query languages. J Comput Syst Sci 51(1):
26–52

75. Kerner BS (2009) Introduction to modern traffic flow theory and control: the long road to three-phase traffic
theory. Springer, Berlin

76. Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, Berlin
77. Al-Deek H, Abd-Elrahman A (2002) An evaluation plan for the conceptual design of the Florida transpor-

tation data warehouse, University of Central Florida, Technical Report No. 16-50-706
78. Dahlgren J, Garcia RC, Turner S (2001) Completing the circle: using archived operation data to

better link decision to performance, California Path Research Report No. UCB-ITS-PRR-2001-23
79. Liu HX, He R, Tao Y, Ran B (2002) A literature and best practices scan: its data management and archiving,

University of Wisconsin at Madison Technical Project No. 0092-02-11
80. Yue H, Yang R (2005) Development of Intelligent Transportation Systems (ITS) and plan of integrated

information system. Journal of Wuhan University of Technology 29(4):560–563
81. Yue H, Revesz PZ (2012) TVICS: an efficient traffic video information converting system, 19th

IEEE International Symposium on Temporal Representation and Reasoning, Leicester, UK, pp
141–148

82. Schwinn A, Schelp J (2003) Data integration patterns. Business Information Systems Conference, Colorado
Springs, USA

83. Anderson S, Revesz PZ (2009) Efficient max count and threshold operators of moving objects.
Geoinformatica 13(4):355–396

Hang Yue obtained his M.S. degree in Transportation Engineering and Minors in Statistics and Geography from
University of Nebraska—Lincoln in 2012 and M.S. degree in Computer Software Engineering from Zhejiang
University in 2005. He served as a Data Analyst at Airsage Inc. in 2013, and a Data Scientist at Charter Global
Inc. in 2014. He is currently a Data Analyst at Johns Hopkins HealthCare LLC. His research interests are
machine learning, big data business intelligence, data warehouse, data visualization, geographic information
systems (GIS), and spatio-temporal databases.

Geoinformatica (2016) 20:59–94 93



Laurence Rilett received his B.A.Sc. degree and his M.A.Sc. degree from the University of Waterloo and his
Ph.D. degree from Queen’s University. He is a Distinguished Professor of Civil Engineering at the University of
Nebraska-Lincoln (UNL), the inaugural holder of the Keith W. Klaasmeyer Chair in Engineering and Technol-
ogy, and serves as Director of the Nebraska Transportation Center.

Peter Revesz holds a Ph.D. degree in Computer Science from Brown University. He was a postdoctoral fellow at
the University of Toronto before joining the University of Nebraska-Lincoln, where he is a professor in the
Department of Computer Science and Engineering. Dr. Revesz is an expert in databases, data mining, big data
analytics and bioinformatics. He is the author of Introduction to Databases: From Biological to Spatio-Temporal
(Springer, 2010) and Introduction to Constraint Databases (Springer, 2002). Currently a Visiting Program
Manager at the Air Force Office of Scientific Research, Revesz held previous visiting appointments at the
IBM T. J. Watson Research Center, INRIA, the University of Hasselt, the Max Planck Institute for Computer
Science, the University of Athens, and the U.S. Department of State, where he served as a Scientific Advisor in
the Bureau of International Security and Nonproliferation. He is a recipient of an AAAS Science & Technology
Policy Fellowship, a J. William Fulbright Scholarship, an Alexander von Humboldt Research Fellowship, a
Jefferson Science Fellowship, a National Science Foundation CAREER award, and a BFaculty International
Scholar of the Year^ award by Phi Beta Delta, the Honor Society for International Scholars.

94 Geoinformatica (2016) 20:59–94


	Spatio-temporal traffic video data archiving �and retrieval system
	Abstract
	Introduction
	Motivation and purpose
	Overview of the spatio-temporal traffic video data archiving and retrieval system
	Step 1 – Vehicle trajectory data extraction
	Basic steps
	Quality control approach

	Step 2 – Individual vehicle speed interpolation
	Proposed methodology
	Previous research on vehicle trajectory data
	U.S. 101 example
	Experimental analysis
	Sensitivity test

	Step 3 – Time-mean speed estimation
	Introduction
	Model choice analysis
	Definition
	Bandwidth selection
	Order choice
	U.S. 101 example
	Piecewise-linear approximation
	Experimental analysis

	Step 4 – Data transformation and integration
	Speed linear approximation
	Vehicular motion direction

	Step 5 – Traffic information retrieval
	Constraint relation
	Query case

	Summary of advantages
	Data completeness
	Data redundancy
	Database comparison
	Data operation

	Concluding remarks
	References


