Parametric Rectangles: A Model for Querying
and Animation of Spatiotemporal Databases*

Mengchu Cai, Dinesh Keshwani, Peter Z. Revesz

University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract. We propose parametric rectangles — cross products of inter-
vals whose end points are functions of time — as a new data model for
representing, querying, and animating spatiotemporal objects with con-
tinuous and periodic change. We prove that the model is closed under
relational algebra and new spatiotemporal operators and that relational
algebra queries can be evaluated in PTIME in the size of any input
quadratic non-periodic parametric rectangle database. Finally, we also
describe the implementation in our PReSTO database system.

1 Introduction

Many spatiotemporal objects such as clouds, cars, deserts, lakes, planets, ships
and tornados change position or shape continuously and also sometimes periodi-
cally. Although in the last decade substantial research was done independently in
spatial [16,22] and temporal [18] data modeling, continuously changing objects
require new data models that can capture the interdependency of the spatial
and temporal extents of these objects.

We introduce a new approach to modeling spatiotemporal objects based on
the use of n-dimensional parametric rectangles (or boxes), which are moving
objects specified as the cross product of intervals that are parallel to the axes and
whose endpoints are functions of time. In our model, each spatiotemporal object
is represented by a finite set of parametric rectangles. We provide a PTIME
evaluable query language by generalizing the relational algebra to our model.
We also add to the query language some spatiotemporal operators like block,
collide, deflect, granulate, scale and shift that facilitate novel applications.

An advantage of our model is the combination of efficient querying with
efficient animation of objects. Most other spatiotemporal data models have diffi-
culty combining effectively these two functions (see Section 7). We implemented
a system —PReSTO (short for Parametric Rectangle Spatio-Temporal Objects)—
that proves that the combination is effective in practice as well as theory.

The paper is structured as follows. Section 2 describes the parametric rect-
angle data model and illustrates how to represent spatiotemporal objects in this
model. Section 3 defines the query language by generalizing relational algebra
and proves that the evaluation of queries is in PTIME in the size of the database.

* The third author was supported by NSF grant IRI-9625055 and a Gallup Research
Professorship. Contacts: revesz@cse.unl.edu and http://cse.unl.edu/"revesz

Section 3 also introduces some new operators for spatiotemporal queries. Section
4 describes the animation approach. Section 5 presents implementation results.
Section 6 discusses the mapping from raster-based spatiotemporal objects to 2D
parametric rectangles. Finally, Section 7 covers related work.

2 Parametric Rectangle Data Model

2.1 Parametric Rectangles

A n-dimensional rectangle is the cross product of n intervals, each in a different
dimension. If the lower and upper bounds of the intervals are functions of time,
then the rectangle is called a parametric rectangle. Formally, let R denote the
set of real numbers, and R* the set of non-negative real numbers.

Definition 1. A n-dimensional parametric rectangle r is a tuple:

(:c[l, a:]l,.. zl, @l from, to)

"r¥n

where for each ¢ = 1,...,n, the lower and the upper bounds of an interval in the
ith dimension, denoted xE and x]i, are functions (R — R) of time ¢ applicable
when t € [from, to], and from and to are constants in R*.

The semantics of r, denoted by sem(r), is a polyhedron in n + 1 dimensional

space defined as follows:
sem(r) = { (z1,...,Zn,t) | Vicicn @i € [gh(t), 2L(8)], t € [from, to]}

We call m-degree those parametric rectangles in which the bounds are at most
m-degree polynomial functions of time. We also call m = 1 and m = 2 degree
parametric rectangles linear and quadratic, respectively.

Ezample 1. The semantics of the parametric rectangle r = (5—¢,10+¢,4—¢,6+
t,0,3), is the polyhedron in z, y and ¢ dimensions as shown in Figure 1.

Fig. 1. Semantics of the Parametric Rectangle

Ezxample 2. Suppose that a sail boat which at time ¢ = 0 occupies the space
9<2z<19, 10 <y < 20 first moves east with a speed of 5 ft/sec until ¢ = 10.
Then it goes northeast until ¢ = 20, with a speed of 10 ft/sec in both the z
and y axes. Finally, it goes north with a speed of 8 ft/sec until ¢ = 25. We can
represent the sail boat by 3 parametric rectangles, as shown in Table 1.

zl] y! yl from|to

9+ 5t 19 + 5t 10 20 0(10

59 + 10(t — 10)|69 + 10(¢ — 10)|10 + 10(¢ — 10)|20 + 10(¢ — 10) 10|20
159 169 110 + 8(¢t —20)|120 + 8(t — 20)| 20|25

Table 1. Parametric rectangles for the sail boat

Ezample 3. Suppose that a plane drops a bomb at ¢ = 0 to hit a target as shown
in Figure 2. The bomb can be represented by a quadratic parametric rectangle
as shown in Table 2.

Fig. 2. The trajectory of the bomb

2l ! y[y] 2l P from| to
tt+1]t|t+1]100 — 9.8¢%[102 — 9.8¢> 0/3.19

Table 2. Parametric rectangles for the bomb

2.2 Periodic Parametric Rectangle

Some spatiotemporal objects can also move periodically, for example, shuttle
buses and planets in the solar system. It is not possible to finitely represent

these periodic objects by the parametric rectangles that we have discussed so
far. Hence we extend the parametric rectangle concept to periodic parametric
rectangle by adding a parameter as follows:

Definition 2. A periodic parametric rectangle r is a tuple of the form
(:1:{1, :c]l,...,:cL, x]n,from,to,period)

where period is a non-negative integer constant such that period = 0 or period >
(to — from), and all the other parameters are as in Definition 1.

The semantics of r is the semantics of a set of parametric rectangles rq, 71, - ..
such that rq = (x[l, xll, ... ,xﬁl, x]n, from,to) and ry exists between from +
k = period and to + k * period. Further, v at time ¢ is identical to 79 at time
t — k x period. More precisely:

sem(r) = sem(Uy>o{(:v[l(t — k = period), :1:]1 (t — k * period), . .. ,x[n(t — k x period),
zh (t — k = period), from + k * period, to+ k * period)})

In particular, when period = 0, then sem(r) = sem({rg}).
We call non-periodic parametric rectangles those in which period = 0.

Example 4. Suppose there is a shuttle bus running every 30 minutes around
a route as shown in Figure 3. We can represent it by 6 periodic parametric

Fig. 3. Route of shuttle bus

rectangles, in a relation shuttle, as shown in Table 3.

2.3 Parametric Rectangle Database

Definition 3. Let P denote the set of all parametric rectangles, and U a finite
set of attributes. Let Aj,..., A be elements of Y. For each A; there is an
attribute domain Dom(A;) associated with it. Let O be a special attribute such
that Dom(0) = P and O.z; the interval for the ith dimension. A parametric
rectangle tuple r on O, Ay,..., A is a tuple in Dom(0O) x Dom(A1) X ... X
Dom(Ak).

z! ! ol mn from| to|period
0 1 6t 6t+1 0] b5 30
5(t— 5) 1+5(t—5) 30 31 5 9] 30
20 21 30 —4(t—9) |31 —4(t—9) 9[115] 30
20 + 6(t — 11.5)|21 + 6(t — 11.5) 20 21 115 19] 30
65— b(t —19) | 66 — 5(t — 19) |20 — 4(¢ — 21)|21 — 4(¢ — 21)| 19| 24| 30
40 — 8(t —24) | 41— 8(t — 24) 0 1 24 29| 30
Table 3. Periodic parametric rectangles for the shuttle relation
The semantics of a parametric rectangle tuple r = (ry,a1,...,ax) is the

cross product of the semantics of the parametric rectangle r; with the values
aly...,0k.

A parametric rectangle relation is a finite set R of parametric rectangle tu-
ples. The semantics of R is the union of the semantics of each tuple in R. An
instantiation of R at time t;, denoted by R(¢1) is the union of instantiations
of all tuples in R at time t;. A parametric rectangle database is a finite set of
parametric rectangle relations. In the following, by relations we mean parametric
rectangle relations.

3 Querying Parametric Rectangle Databases

3.1 Relational Algebra for the Parametric Rectangle Model

In this section we extend relational algebra to the parametric rectangle database
model.

Definition 4. Let R; and R> be two relations over the same set of attributes
O,Aq,..., A

— projection (7y) Let Y C {0O,0.2y,...,0.2y, Ay, ..., A }. The projection of
R; on Y, denoted by 7y (Ry), is a relation R over the attributes Y such that

R={r: 3ry € Ry, YA €Y, the values of A in r and r; are equal}

— selection () Let E be the conjunction of a set of comparison predicates
in the form Afc or A8 B, where ¢ is a constant, A,B € {4i,...,4},
0 € {=,<,<=,>,>=} and A B are distinct. The selection 6g(R;) is a
relation R containing the parametric rectangle tuples in R; whose attribute
values satisfy E.

— intersection (M) The intersection of Ry, Ry, denoted by R;NRy, is a relation
R over attributes Aq,..., A such that

sem(R) = sem(R;) N sem(Rx)

— undon (U) The union of Ry, Ry, denoted by R;UR,, is a relation R over
attributes A;,..., A that contains all tuples in R; and R;.

sem(R) = sem(Ry) U sem(R2)

— difference (=) The difference of Ry, Ry, denoted by R; =Ry, is a relation R
over attributes Ay, ..., A such that

sem(R) = sem(Ry) \ sem(Rz)

— complement (=) Let R be a relation with only the O attribute. The comple-
ment of R, denoted by =R is also a parametric rectangle relation R’ with
the O attribute, such that

sem(R') = {(z,y,t) : (z,y,t) & sem(R)}

The unary operators have higher precedence than the binary operators. In-
tersection (M) has higher precedence than union (U) and difference (=). A rela-
tional algebra expression over parametric rectangle databases is built up in the
standard way, using the operators in Definition 4.

Theorem 1. For any fized n, any relational algebra expression can be evaluated
in PTIME in the size of the input quadratic non-periodic parametric rectangle
database, where each parametric rectangle is within the same n dimensions. 0O

Theorem 2. Linear periodic parametric rectangle databases are closed under
the relational algebra operators. O

Example 5. Suppose there is a ship represented by the relation ship, and a tor-
pedo has just been fired towards the ship. The torpedo is represented by the
relation torpedo. The relations are shown in Table 4.

shi ! 2 [yly! | from|to|period
P 0+ ¢[30+¢20[25] 025 0
[T,] [1 i
izl y y!' | from|to|period
torpedo GEa8l45 —1(51 — 7| 0[25 0
hit 2z oyt [y from|tolperiod
45(48|45 — t|25 20(25 0

Table 4. Parametric rectangles for the ship , torpedo and hit relations

Query: “Will the torpedo hit the ship?”

ship N torpedo

We can evaluate the intersection and represent it by a parametric rectangle
relation hit as shown in Table 4.

Ezxample 6. Suppose that the relation clouds has an attribute humidity which
indicates the humidity of the cloud, and the clouds with humidity greater than
60 percent are called rain clouds.

Query: “Which of the clouds are rain clouds?”

G humidity > 60 (clouds)

Let region be a relation with an additional attribute temperature. Suppose that
it rains when a rain cloud moves into a region where the temperature is between
0 and 20 degrees.

Query : “Which region is most likely to get rain?”

o (&humidity > GO(CZOUdS)) A it (&(temperature >0 Atemperature < 20) (region))

Example 7. Consider the shuttle relation in Example 4. Let the relation bus_stop
represent a bus-stop along the route of the shuttle bus. Suppose the relation
passenger represents a man walking toward the bus-stop during some part of
the day.

Query: “Will the passenger be able to catch the bus?”

(shuttle N bus_stop) N passenger

Example 8. The nine planets of the solar system revolve around the sun in peri-
odic orbits. They are represented by 3D periodic parametric rectangle relations
Mercury, Venus, ..., Pluto. The motion of a comet is represented by the pe-
riodic relation comet.

Query: “Will the comet ever collide with any of the planets?”

(Mercury U Venus U ... U Pluto) N comet)

3.2 Block Operator

Some spatiotemporal applications need operators that are not provided in rela-
tional algebra. Let us consider the following example.

Example 9. There is a growing forest fire whose shape is approximated by the
parametric rectangle tuple (4,4,20 + ¢,20 + 0.5¢,0,20,0). A plane drops foam
to extinguish the fire. Let us assume that the foam is represented by the tuple
(20, 25,20 —t,25,0,20,0). Let fire and foam be relations, containing the above
tuples. Suppose that parts of the fire are extinguished when they meet the foam.
Other parts continue to grow as before.

Query: “At time ¢ = 15, what part of the forest is still on fire?”

Figure 4 (left) shows the instantiation of fire — foam at time ¢ = 15. The
result does not correctly answer the query, because it fails to consider that some
parts of the fire stop growing when they are extinguished.

To allow us to answer queries like the one above, we introduce a new operator
called block that applies only to non-periodic 2D parametric rectangle relations.
Note that the semantics of such relations allows us to view each non-periodic 2D
parametric rectangle as a set of moving points (z,y) where z and y are linear
functions of ¢.

40

Fig. 4. The forest fire example with difference (left) and block (right)

Definition 5. Let R; and Ry be two relations. R; block Ry till some time ¢,
denoted by block(Ry, Ra,t), is the instantiation at ¢ of the set of moving points
in Ry that did not intersect with R; any time before or at t;. Formally,

blOCk(RlaRZth) = { ((m(tk)7 y(tk)) | 3 <$[7$]7y[7y]7f7‘0m7t0) € R27
0<a<1,0<p8<1,
z=azl+(1—-a)d, y=pyl+(1- By,
Bt from <t <ty < to, (w(t'),y(t)) € Ru(t')}

Here is an efficient algorithm to approximate the result of block operation
by recursion. In the algorithm we use a threshold maz_depth to guarantee the
termination of the recursion. Let R; and R» be the two input relations.

Procedure block(R;, R, ti)
for each tuple r» € Ry do
R' = R' Ublockrect(Ry,r2,tg,0)
return R’

Procedure blockrect (Ry, 72, tg, d)
if {r2}N\R; = then return {r,} at t;
else if at t;, {r2} C R; then return {.
else if d < max_depth then partition rs into quadrants r91, 722, 723, 724
return blockrect(Ry, 721, tk,d + 1) U ... Ublockrect(Ry,ro4,t5,d + 1)

Now the forest fire query in Example 9 (see also Figure 4) can be written as:
block(foam, fire,15)

Ezxample 10. Suppose that tornado is a relation that represents the movement
of a tornado in an area represented by the relation region.

Query: “What is the trajectory of the tornado at time t = 207”
block(tornado, region, 20)

The result of the query, evaluated in the PReSTO system, is shown in Figure 5.

Fig. 5. Result of block(tornado, region, 20) in the PReSTO system

3.3 Collide Operator

Another possible interaction between spatiotemporal objects is collision. Here
we only consider the elastic collision between spatiotemporal objects which do
not change their extent, that is, in them zl and z! and also yl and ¢! have the
same coefficients of ¢. (An elastic collision is one in which both momentum and
energy are conserved.) Suppose two objects are represented by the parametric
rectangles 1 and r2 with an attribute mass. We define the collision of 1 and
r9, denoted by collide(r1,r2), as follows:

. ri, T2 ileﬂ'I‘zzw

collide(r,2) = {}r’l, r’l'? rh, ry} otherwise

where 7] and r) represent r1 and rs before collision and r{ and r} represent
them after the collision. It is easy to see that all parameters of r] and r4, except
to, are the same as those of r; and ro respectively. r{' and r} are computed by
the following algorithm. 1 and 72 can be viewed as spherical masses, with the
z and y components of each one’s velocity equal to its coefficients of ¢ in z! and
yl respectively.

1. Compute the time of the collision ¢, = min,.c,. ~,, (7. from), then r{. from =
ry. from = t..

2. Let LC be the line joining the centers of the two objects at t = t.. Decom-
posite the velocity of r; and ry along LC and the direction orthogonal to LC
as shown in Figure 6.

3. Consider the collision as a “head-on” collision [5] between the objects along
the LC. Compute the velocities of r; and ry along the LC after the collision
by momentum and energy conservation equations. The velocities of r; and
ro along the direction orthogonal to the LC do not change.

4. Let v, and vy denote the components of the velocity of r; after collision on
the x and y axes, respectively.

rilal = v (t —to) +r2l(te) vl = v, (t —t.) +ri.2l(te)
rilyl = vyt —t.) +riyl(te) iyl = vyt —t) + 719 (L)
The bound functions of 7} are computed similarly.

Fig. 6. (1) Line joining centers (LC) at t. (dotted) (2) Collision along LC

3.4 Deflect Operator

Given a linear 2D parametric rectangle r, the deflect operator, deflect(r, 0),
changes the direction of r (that is, the direction of its center point) counter-
clockwise by the angle 6. The resulting parametric rectangle 7’ is on the same
interval [from,to] as r and can be computed as follows. At ¢t = from, r and
r' are the same, and at ¢ > from they have the same width and height but
different locations. Then find (v, vy), the speed of the center of r along the
z and y axes, and ¢, the angle between the direction of r and the z-axis. The

speed of the center of ' is v, = 4 /v2 + v} cos(p +0), v, = /v3 + v} sin(p +6).
From this we can specify the bounds of r’.

For example, if r = (4t —10, 6t+10,—t —5, t+5, 0, 10), then the operation
deflect(r,tan="(2)) gives r' = (3t — 10, 5t + 10,2t — 5, 4t + 5, 0, 10).

3.5 Scale Operator

For an n-dimensional parametric rectangle r, the scale operator, denoted by

L into xE — $(Az;) and a:]z into :t:]z + 5 (Az;) where

scale(r,i,a), will change z;

Ax; = x]z - :v£

3.6 Temporal Operators

Given a parametric rectangle tuple r = (x[l, xll,...,a:[n, x]n, from, to), the

operator shift(r, 3) sets the time back 8 units. The result of this operator is the

tuple: (x[l (t+0), mll(H—ﬂ), e ,x[n(H—ﬂ), a:]n(t+ﬂ), from—p3, to—). We also
define the operator granulate(r,a) to change the time units to be alpha times

the current one. The result is: (a:[l(ﬁ), 2 (1),...,2h(L), a:]n(ﬁ), afrom, ato).

[e% o

4 Animation of Parametric Rectangle Databases

By animation, we mean a display of the instantiation of the relations in the
database at successive time instants. Parametric rectangle databases can be eas-
ily animated. In order to display a relation at a time instant ¢;, we need to first
perform a check on each of its parametric rectangle tuples as follows:

If the tuple has period =0, t; =1;

Otherwise, since the tuple is periodic, we need to compute ¢; such that

t; — from
th=ti — | Z————| - period
¢ s period Ip
Now we can check if from <t} < to. If so, we instantiate the variable ¢ by
t! and obtain a rectangle defined by (z[(#}), 2!(t}),y[(t}), y! ().
Proceeding in this manner, we obtain a set of rectangles corresponding to
the relation at time ¢;. These can be displayed using standard graphics routines.

5 Implementation Results

We implemented the query language and animation algorithm in PReSTO (short
for Parametric Rectangle Spatio- Temporal Objects) using Microsoft Visual C++-.

Table 5 shows the execution times for the evaluation of three examples from
Section 3. The torpedo-ship example was extended and the solar system example
was projected into 2D. The results are shown in . The PReSTO system ran in
Windows NT, on a 266 MHz Pentium II PC with 64 MB RAM.

Example Number of Tuples|Running Time (milliseconds)
torpedo-ship (Ex. 5 extended) 12 60
shuttle bus (Ex. 7) 35 200
solar system (Ex. 8 in 2D) 513 7500

Table 5. Query Evaluation Times

We provided a graphical user interface through which the user can specify
the following parameters: the name of the parametric rectangle relation, the
initial time, the time period, the number of time-steps and the minimum delay
time, which controls the speed of the animation. Each snapshot of the relation
is displayed as soon as the animation algorithm returns the corner vertices of
the rectangles to be displayed. The animation is extremely fast. Hence we did
not include animation time as a part of the running time.

To demonstrate the animation capability of PReSTO, we have included two
snapshots of a cloud moving over the United States, as shown in Figure 7.

Fig. 7. Cloud at t = 25 (left) and ¢t = 182 (right) in the PReSTO system

6 Mapping of Spatiotemporal Objects to Parametric
Rectangles

Given the initial and final raster snapshots of a spatiotemporal object, we present
an algorithm which runs in time linear in the size of the raster images, to ap-
proximate its motion by parametric rectangles.

For simplicity, let us assume that the given raster images are square, say
Init_Picli,], Final_Pic[f, f] where i, f are powers of 2. Also, we know the co-
ordinates of the left lower corners of both images.

Without loss of generality, suppose i > f.

Procedure mapping
Input: Init_Pic[i,i], Final_Pic[f,], tinit, tfinal
Output: Parametric Rectangle Relation

1. We rectangulate the raster images as follows (See Figure 8):

(a) Take the bigger image (here Init_Pic[i,i]) and divide it into squares of

size r X r , where r equals % The number of such parametric rectangles
2

(b) For eachrof the squares, if the majority of the raster points of the square
are within the object, mark the square as 'On’.

(¢) For each row of squares, combine adjacent squares that are marked 'On’,
to get one or more rectangles in each row.

(d) Repeat Steps (a), (b) and (c) for the smaller image (here Fiinal_Pic[f, f]),
using r = 2.

will be (£)2. The number of rows of squares will be £.

Note: Step 1 will ensure that both Init_Pic and Final_Pic have the same
number of rows of rectangles.

2. Next, we pair rectangles of the initial image with those of the final image.
Assume that Step 1 results in the structures I'nit[] and Final[], where Init[k]
and Final[k] refer to the k*" row of rectangles in the initial and final images
respectively. Repeat the following for each k:

Let m and n be the number of rectangles in Init[k] and Final[k] respec-
tively. Let us assume Init[k] has m horizontal rectangles, and Final[k] has
n horizontal rectangles
if m = n then we simply pair the j** rectangle of Init[k], with the j** rect-
angle of Final[k] for 1 < j < m.
else if m < n then, let d = [T |. We pair the first rectangle of Init[k] with
the first d rectangles of Final[k], the second rectangle with the second d
rectangles and so on until we come to the m‘" rectangle of Init[k], which we
pair with all the remaining unpaired rectangles of Final[k].
else if m > n, we can do the pairing similarly to the above.

3. Finally we compute the output relation, which consists of parametric rect-
angles corresponding to each pair of rectangles.
(a) Suppose the rectangles in a pair are [z1, 2] X [y1,y2] and [z}, 25] X [y1, ¥5],

where the first one is from Init[] and the second from Finall].

(b) Let the parametric rectangle corresponding to this pair be

<':L.[’ 'Z.]7 y[7 y]7 f/rom7 to)

Clearly, from = tin; and to = tfina. We know that zl is a linear
function of ¢, say at + b. This implies that

w[(tim’t) = atinie + b and m[(tfz'nal) =a tfinal +b

We also know that zl(tini) = 21 and fi(tsina) = 7. Since we know
21,21, tingt and tfine, we can determine L. Similarly, we can determine

2!yl and ¢!
T R
! [
Tidl
i
1 |
¥y W)
][] S——
o "

" .-"'# I I . ;I
Step 1(a) Step 1(b) Step 1(c)

Fig. 8. Rectangulation of the image

Note: In the above algorithm, if the raster images dimensions are not powers
of two, then we can use standard algorithms [10] to stretch or shrink a given
image to a square image with dimension as the nearest power of 2. Qur mapping
provides a highly accurate approximation for a reasonable time interval. If the
approximation is needed over larger intervals, it would be necessary to provide
more snapshots during the interval, and call the algorithm for each sub-interval.

7 Related work

Constraint databases with rational linear or real polynomial constraints can be
used to represent spatiotemporal objects with continuous change [13,17]. They
can be queried by relational algebra, which is quite powerful, although it cannot
express some queries like parity and transitive closure [1].

The parametric 2-spaghetti data model [7] generalizes the 2-spaghetti data
model [16] by allowing the corner vertices to be represented as linear functions
of time. The parametric 2-spaghetti data model cannot represent polynomial
(Example 3) and periodic (Example 4) parametric rectangles and cannot be
queried by relational algebra, because it is not closed under intersection [7].
However, this model can represent linear constraint databases over two spatial
and one temporal dimension [7] and can be used to animate such databases [6].

[8] represents spatiotemporal objects by a composition of a reference spatial
extent at some reference time and various types of transformation functions. In
this model, it is easy to obtain any snapshot of a spatiotemporal object, making
animation straightforward. However, in some cases this model also may not be
closed under intersection [8], and the query complexity may be high.

[9] defines continuously moving points and regions and an extended SQL
query language on these objects. However, changing of object shape (shrinking
and growing) and animation are not considered in this model.

[21] can only represent spatiotemporal objects with discrete change. This
model can be queried by an extended relational algebra. [11] proposes another
spatiotemporal data model based on constraints in which, like in [21], only
discrete change can be modeled. An SQL-based query language is also presented.

There are many data models to represent and query only temporal or only
spatial data. For example, [2,12,19] can represent temporal objects with dis-
crete change and periods. These models can be queried by either relational al-
gebra or Datalog. Some other purely temporal or purely spatial data models
are reviewed in [16,18,22]. We also did not deal with issues like visual query
languages [3], indefinite information [15], query processing [4], nearest neighbor
[14] and approximate queries [20]. We are currently investigating extensions in
these directions.

References

1. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational Expressive Power
of Constraint Query Languages. Journal of the ACM, 45:1, pp. 1-34, 1998.

2. E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An Access Control
Model Supporting Periodicity Constraints and Temporal Reasoning. ACM
Transactions on Database Systems, 23:3, pp. 231-285, 1998.

3. C. Bonhomme, C. Trépied, M-A. Aufaure, R. Laurini. A Visual Language
for Querying Spatio-Temporal Databases. Proc. 7th ACM Symposium on
Geographic Information Systems, 34-39, Kansas City, MO, November 1999.

4. A. Brodsky, J. Jaffar, M. Maher. Towards Practical Query Evaluation for
Constraint Databases. Constraints, 2:3-4, pp. 279-304, 1997.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. M. Casco Associates. Linear Momentum and Collisions: A Mechanics

Course, available at http://www.mcasco.com/pllmc.html.

J. Chomicki, Y. Liu, and P.Z. Revesz. Animating Spatiotemporal Constraint
Databases. In: Proc. Workshop on Spatio-Temporal Database Management,
Springer-Verlag LNCS 1678, pp. 224-241, Edinburgh, Scotland, Sept. 1999.
J. Chomicki and P.Z. Revesz. Constraint-based Interoperability of Spa-
tiotemporal Databases, Geoinformatica, 3:3, 1999. (Preliminary version In:
Proc. International Symposium on Large Spatial Databases, Springer-Verlag
LNCS 1262, pp. 142-161, Berlin, Germany, July 1997.)

J. Chomicki and P.Z. Revesz. A Geometric Framework for Specifying Spa-
tiotemporal Objects. In: Proc. International Workshop on Time Represen-
tation and Reasoning, pp. 41-46, Orlando, Florida, May 1999.

M. Erwig, R.H. Giiting, M.M. Schneider and M. Vazirgiannis. Spatio-
Temporal Data Types: An Approach to Modeling and Querying Moving
Objects in Databases. In: Proc. ACM Symposium on Geographic Informa-
tion Systems, November 1998.

R. Gonzalez, R. Woods. Digital Image Processing, Addison-Wesley, 1998.
S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling
with Constraints. In: Proc. 6th ACM Symposium on Geographic Information
Systems, November 1998.

F. Kabanza, J-M. Stevenne, and P. Wolper. Handling Infinite Temporal
Data. Journal of Computer and System Sciences, 51:1, pp. 1-25, 1995.

P. C. Kanellakis, G. M. Kuper, and P.Z. Revesz. Constraint Query Lan-
guages. Journal of Computer and System Sciences, 51:1, pp. 26-52, 1995.
G. Kollios, D. Gunopulos, and V.J. Tsotras. Nearest Neighbor Queries in
a Mobile Environment. In: Proc. Workshop on Spatio-Temporal Database
Management, Springer-Verlag LNCS 1678, pp. 119-134, Edinburgh, Scot-
land, September 1999.

M. Koubarakis and S. Skiadopoulos. Tractable Query Answering in In-
definite Constraint Databases: Basic Results and Applications to Query-
ing Spatio-Temporal Information. In: Proc. Workshop on Spatio-Temporal
Database Management, Springer-Verlag LNCS 1678, pp. 204-223, Edin-
burgh, Scotland, September 1999.

R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems.
Academic Press, 1992.

P.Z. Revesz. Introduction to Constraint Databases. Springer-Verlag, 1999.
A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R.T. Snod-
grass. Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings Inc., Redwood City, California, 1993.

D. Toman, J. Chomicki, and D.S. Rogers. Datalog with Integer Periodic-
ity Constraints. Proc. International Sympostum on Logic Programming, pp.
189-203, Ithaca, New York, 1994.

D. Vasilis, M. Christos, and S. Spiros. A Provably Efficient Computational
Model For Approximate Spatiotemporal Retrieval. In: Proc. 7th ACM Sym-
posium on Geographic Information Systems, pp. 40-46, Kansas City, Mis-
souri, November 1999.

M. F. Worboys. A Unified Model for Spatial and Temporal Information.
Computer Journal, 37:1, pp. 25-34, 1994.

M. F. Worboys. GIS: A Computing Perspective, Taylor & Francis, 1995.

