
7. DATALOG and Constraints

Peter Z. Revesz

7.1 Introduction

Recursion is an important feature to express many natural queries. The most
studied recursive query language for databases is called DATALOG, an ab-
breviation for "Database logic programs." In Section 2.8 we gave the basic
definitions for DATALOG, and we also saw that the language is not closed
for important constraint classes such as linear equalities. We have also seen
some results on restricting the language, and the resulting expressive power,
in Section 4.4.1.

In this chapter, we study the evaluation of DATALOG with constraints
in more detail , focusing on classes of constraints for which the language is
closed. In Section 7.2, we present a general evaluation method for DATALOG
with constraints. In Section 7.3, we consider termination of query evaluation
and define safety and data complexity. In the subsequent sections, we discuss
the evaluation of DATALOG queries with particular types of constraints, and
their applications.

7.2 Evaluation of DATALOG with Constraints

The original definitions of recursion in Section 2.8 discussed unrestricted
relations. We now consider constraint relations, and first show how DATALOG
queries with constraints can be evaluated. Assume that we have a rule of the
form

Ro(xl, · · · , Xk) :- R1 (xl,l, · · ·, Xl ,k1), • • ·, Rn(Xn,l, .. ·, Xn ,kn), '¢ ,

as well as, for i = 1, ... , n , facts (in the database, or derived) of the form

where 'if;; is a conjunction of constraints. A constraint rule application of the
above rule with these facts as input produces the following derived fact:

Ro(x1 , ... ,xk) :- cp(x1, ... ,xk) ,

where cp is a quantifier-free formula equivalent to

3 * ('lfJI(Xl, l , · · · ,Xl,k1) 1\ · · ·I\ 'l/Jn (Xn ,l , · · · ,Xn,kn) 1\ '¢)

where "*" is the list of the variables in the body of the rule which do not
occur in the head of the rule.

G. Kuper et al. (eds.), Constraint Databases
© Springer-Verlag Berlin Heidelberg 2000

156 Revesz

The bottom-up constraint fixpoint evaluation of DATALOG queries starts
from the input facts and rules, and repeatedly applies constraint rule evalua-
tion until no new facts can be derived and added to the database. Note that
this means that any new fact that can be derived is implied by, not necessar-
ily equal to any of the facts that we have already derived. We call the set of
input and derived facts the bottom-up constraint least fixpoint of the query.

Proposition 7.2.1. For each DATALOG query with constraints, the bottom-
up constraint least fixpoint is equivalent to the least fixpoint. 0

Remember that a constraint tuple represents a possibly infinite unre-
stricted relation. Hence, a finite number of given or derived constraint tuples
in the result of a bottom-up constraint evaluation least fixpoint may represent
an infinite least fixpoint.

7.3 Termination, Safety, and Data Complexity

Proposition 7.2.1 implies that we can always evaluate the least fixpoint of a
DATALOG program and a constraint database if the following two conditions
are satisfied:

1. Variable (in particular, existential quantifier) elimination from a con-
junction of atomic constraints is possible, so that each application of the
immediate consequence operator can effectively be evaluated.

2. There must exist an integer n such that T0+1 (I) = T!J (I), so that the
immediate consequence operator needs to be applied only a finite number
of times.

As we have seen (Example 2.8.1), this is not the case for DATALOG with linear
equalities. For another example, consider the successor constraint on integers,
that is, x + 1 = y, where x andy are variables. Let DATALOG+l denote the
set of DATALOG queries with the successor constraint. It is well-known that
DATALOG+l has the same expressive power as Turing machines. Therefore,

Theorem 7.3.1. It is undecidable for DATALOG+l queries in general whether
the constraint evaluation terminates. 0

Some results on restricting DATALOG to guarantee termination were pre-
sented in Section 4.4.1.

7.4 DATALOG with Dense Order Constraints

Among the simplest types of constraints are the equality and order constraints
=, <, >, ::;, and between constants and variables. In this section, we
consider the case where the domain of the variables is the set of rational

7. DATALOG and Constraints 157

numbers Q. In this case, we show that any conjunction of order constraints
can be written as a set of r-configurations.

The definition of r-configuration assumes a fixed set of rational numbers
A, which is the set of constants that occur in either the input database or
the DATALOG program.

Definition 7 .4.1 (R-configuration). An r-configuration = (!, CU) of
size n consists of a sequence f =(/I, ... , fn), where {!I, ... , fn} = {1, ... ,j},
for some j ::; n, and two sequences f = (h, .. . ln) and iJ = (u1 , ... , un), where,
for i = 1, ... , n, li E A U {-oo} and Ui E A U { + oo}, such that:

1. fori= 1, ... , n, li :=;ui;
2. there is no constant c in A with li < c < ui;
3. whenever fi < fi, then li < Uj; and
4. whenever fi = fi, then li = lj and Ui = Uj·

The idea behind r-configurations is as follows. Consider two points x =
(x1 , ... , Xn) and y = (y1 , ... , Yn) in We want to know whether they can
be distinguished using the order constraints and the available constants. We
say that these points can be distinguished if either the relative order of the
XI, ... , Xn is different from the relative order of YI, ... , Yn, or, for some i,
1 ::; i ::; n, Xi is in a different relation to some constant in A than to Yi·
Each r-configuration characterizes a set of nondistinguishable points. On the
one hand, the sequence f describes the relative order of XI, ... , Xn, in other
words, for 1 ::; i, j ::; n, Xi < Xj if and only if fi < fi. On the other hand,
fori= 1, ... , n, li and Ui bound Xi from below and above by constants from
AU { -oo, +oo} in the tightest fashion possible.

Example 7.4.1. Assume that A = {0, 1, 2, 3}. The sequence of numbers
(0.5, 3.5, 1.5, 1.5, 2) can then be represented by the r-configuration consist-
ing of

1. f = (1,4,2,2,3),
2. f = (0, 3, 1, 1, 2), and
3. iJ = (1, +oo, 2, 2, 2)

Definition 7.4.2. The formula free variables xi, ... , Xn, correspond-
ing to an r-configuration = iJ), of size n, is the conjunction of:

1. Xi< Xj, whenever fi < fi,
2. Xi= Xj, whenever fi = fi,
3. li < Xi < ui whenever li < ui, and
4. Xi = li whenever li = ui.

The key feature of r-configurations is:

158 Revesz

Lemma 7.4.3. Let 'ljJ be a first-order formula , with at most k free variables,
in the language of< and constants in A. Let be an r-configuration of size

k and f= . . . , ak) and f= . . . , then f= 'ljJ(a1, ... , ak) {:}F
... D

This means that we can represent the set of points that satisfied 'ljJ as a
set of r-configurations , the number of which is at most polynomial in in IAI.
Since under inflationary semantics we can only add r-configurations at each
iteration, we obtain a polynomial-time algorithm for inflationary
(The same techniques can be used to show that first-order queries have data
complexity LOGSPACE.)

Theorem 7.4.4. The least fixpoint of DATALOG = ' ::0' 2:' < ,> programs over

the rational numbers can be evaluated in PTIME. D

By applying the same technique to each stratum in turn , we obtain:

Theorem 7.4.5. The perfect fixpoint of stratified DATALOG=,::0 ,2: ,<,> pro-

grams over the rational numbers can be evaluated in PTIME data complexity.
D

7.5 DATALOG with Gap-Order Constraints

7.5.1 General Theory

Order constraints with integers as the domain are more difficult to handle.
The first problem is that they are not closed under variable elimination.
For example, ::lz (x < z 1\ z < y) is not expressible as a formula in which
only variables x and y occur using the equality and order constraints in the
previous section; however, we can express ::lz (x < z 1\ z < y) as a formula in
which only variables x and y occur using other types of order constraints, in
this case, for example, x + 1 < y or x + 2 y, with the obvious meanings.
We abbreviate the two constraints above as x <1 y and x y, respectively,
and call them gap-order constraints. We call the subscript the gap-value. The
gap-value is usually restricted to be a nonnegative integer, a restriction that
we continue to assume except in Section 7.5.3. It can be shown that gap-order
constraint formulae are closed under variable elimination.

A conjunction of gap-order constraints can be represented by a gap-graph.
The vertices of a gap-graph are always variables and the two special constants
l and u, where l is the smallest and u is the largest constant in the program or
in the input database, not including gap-values. Figure 7.5.1 gives an example
gap-graph with l = 2 and u = 18. The gap-graph represents the conjunction
of the constraints x 1 <6 x2, x1 <o X3, 2 <g x 2 , 2 <3 X3 , X2 <2 18, and
X3 <7 18.

We say that a gap-graph dominates another gap-graph if they have the
same set of directed edges and, for each edge, the label in the first graph is

7. DATALOG and Constraints 159

Fig. 7.5.1. Example of a gap-graph

always greater than, or equal to, the label in the second graph. It can be
shown that during the constraint evaluation, it is enough to add only gap-
graphs that do not dominate any gap-graphs already present. From this, we
derive:

Theorem 7.5.1. The least fixpoint of DATALOGgap programs over the inte-
gers can be evaluated in finite time. D

7.5.2 Stratified DATALOG with Gap-Order Constraints

Stratified negation is more complicated for gap-order constraints than for or-
der ; indeed, successor constraints can be expressed using stratified negation
and gap-order constraints. Therefore, by Theorem 7.3.1, general stratified
DATALOGgap cannot be evaluated; however, it is possible to identify syntac-
tically a safe subclass of stratified DATALOGgap programs. This we do as
follows.

Let II be a DATALOGgap program. We assign to each input constraint
relation of arity k a type that is called an arguments connection graph or
congraph. Intuitively, each congraph shows the possible connections via <9 -

constraints between the arguments of a relation. Each congraph of arity k
is a directed graph C(V, E, :::::, where V is the set of argument variables ,
E V x V is the set of edges, = V x V is the set of equalities between
the argument variables, and V x V is the set of inequalities between the
argument variables.

We shall say that a constraint relation p(x1, ... , xk) has congraph type
C(V, E, is valid with respect to C(V, E, for every constraint
Xi <9 Xj in p, the edge (xi, Xj) E E, and, for every constraint Xi = x1 (or
Xi=/: Xj) in p, (xi,Xj) E =(or (xi,xj) E sometimes abbreviate the
latter condition as xi= x1 (or x1).

160 Revesz

Note that, in the above, we assume that each relation p is rectified, that
is, if p is an EDB (extensional database) relation, then it always appears
in the input database, and, if it is an IDB (intentional database, in other
words, a derived) relation, it always appears in the head of rules with the
same list of argument variables. (In the body of the rules the relat ion symbol
p may appear with a different list of variables than in its rectified form.) This
restriction is not very significant, since it is easy to put a DATALOG program
into an equivalent rectified form.

Let C = (V, E, =:, t) be a congraph of a relation. The transitive closure
of C is C* = (V, E*, =:*, t), where =:* is the congruence closure of the =:
relation, and (Xi, xi) E E* if and only if it is in E or if there are pairs
(xi, zi), (z2, z3), ... , (zt, Xj) in E U =with at least one pair in E.

Let r be any rule with variables x1 , ... , Xn of the form

Ao :- A1, A2, ... , At .

Then, the congraph of r, Cr = (Vr, Er, =r, tr), is the transitive closure of the
union of the congraphs of A1 , ... , At after the necessary renamings. If two
argument variables Xi and Xj in the rectified form(s) of some relation(s) are
renamed within the rule body by the same variable, then (Xi, xi) is added to
=r· We define the congraph of IDBs of any semipositive DATALOG program
as the output of algorithm FIND-IDB-CONGRAPHS in Figure 7.5.2.

Note that the congraph of a relation R depends on the program II . We
make this explicit by using notations such as ERI1" Let II1 and II2 be two
semipositive DATALOGgap programs. We say that II1 is congraph compatible
with II2 if and only if for each relation R that is common to both II1 and
II2, ER,II1 <::;; ER,II2 , =R,II,<;;;=R,II2 , and tR,II,<;;;tR,II2 •

We can now define the notion of a safe DATALOGgap program. The defini-
tion is by induction on the number of strata. For the base case, a semi positive
DATALOGgap program is safe if and only if the congraph of any negated EDB
in the program has an empty set of edges.

A stratified DATALOGgap program is called safe if and only if it consists of
II1 U · · · UIIn, where each IIi is a safe semi positive DATALOGgap program, and
each IIi is congraph compatible with IIi+l, ... , IIn . Note that by repeatedly
calling algorithm FIND-IDB-CONGRAPHS (Figure 7.5.2) on each stratum of
a stratified DATALOG program, we can test whether it is safe or not.

The following property can be shown for safe stratified DATALOGgap pro-
grams: if R is a relation that occurs negated at least once in the program,
then R is representable by a set of gap-graphs that do not contain any di-
rected edge between pairs of vertices labeled with variables. Because of this
property, safe stratified DATALOGgap programs can be evaluated stratum by
stratum like DATALOGgap programs, with negated relations replaced by their
complement relations before the evaluation of each stratum; however, as we
move from stratum to stratum, t he values of l and u may increase by an
exponential. Therefore,

7. DATALOG and Constraints 161

ALGORITHM FIND-lDB-CONGRAPHS
INPUT. A semipositive DATALOGgap program II and a congraph for each EDB.
OUTPUT . A congraph of each IDB of II.
METHOD.
FoR each IDB relation Pm(Xl , ... , Xk) DO

assign to Pm a congraph Cm = (Vm , Em, =m, :;Em)= ({x1, .. . , xk}, 0, 0, 0);
OD;
WHILE any changes in IDB congraphs DO

OD.

FOR each ruler with head Pm(Xl, ... , Xk) DO

OD

Find Cr = (Vr , Er, =:r , :;Er), the congraph of rule r;
Let Em:= EmU {(xi,Xj) I (xi,Xj) E Er)} ;
Let =:m := =m U =:r;
Let :;Em := :;Em U :;Er ;

Fig. 7.5.2. Algorithm FIND-IDB-CONGRAPHS

Theorem 7.5.2. The result of a safe stratified DATALOGgap program over
the integers can be evaluated in finite time. The data complexity of the tuple
recognition problem for safe stratified DATALOGgap is nonelementary. 0

Let us call semantically safe those programs that on each valid input
database have a result that is representable by gap-order constraints. Obvi-
ously, syntactic safety implies semantical safety. It is interesting to consider
whether the syntactically defined subclass of queries can be extended further
and further until it includes all semantically safe queries. Unfortunately,

Theorem 7.5.3. The set of all semantically safe stratified DATALOGgap pro-
grams over the integers cannot be described syntactically. 0

We conclude this section with an example of a safe stratified DATALOG
program.

Example 7.5.1. The following stratified DATALOGgap program is safe, and
computes the shortest path between pairs of cities. We assume that the input
relation is Distance(x, y, s 1 , s2), whose tuples are of the form x = c1 1\ y =
c2 1\ s 1 <m 82, meaning that from a city named c1 , the city named c2 can
be reached by a direct path of length at most m + 1. The program is now as
follows:

Shortest(x, y , 8)

NoLShortest(x , y, 8 2)

Path(x,y,81 , 82)
Path(x, y , 81 , 82)

Path(x, y, 0, 8), -,NoLShortest(x, y, 8).

Path(x, y , 0, 81), Path(x, y, 0, 8 2),

81 < 82.

Path(x, z, 81, 83), Distance(z, y, 8 3 , 82).
Distance(x , y, 8 1 , 8 2).

162 Revesz

7.5.3 DATALOG with Unrestricted Gap-Order Constraints

If we allow the gap-values to be any integer, either nonnegative or negative,
then we can express the difference between two variables. This is because
the difference constraint x - y = c, where x and y are variables and c is an
integer, can be expressed by the conjunction of the unrestricted gap-order
constraints x :Sc y and y :S-c x. Difference constraints have applications in
temporal reasoning, as they allow us to talk about the past.

We define DATALOGdiff to be the class of DATALOG queries with unre-
stricted gap-order constraints. Theorem 7.3.1 implies that DATALOGdiff is not
evaluable in finite time in general, because x + 1 = y is also a difference con-
straint. The evaluation of DATALOG with unrestricted gap-order constraints
may not terminate, because the constraint tuples created can have smaller
and smaller gap-values. For example, when we eliminate the variable y from
the expression x :S-s y 1\ y :S-s z, we create a new constraint of the form
x :S- 13 z. Interestingly, there is an asymmetry between creating larger and
larger gap-values and creating smaller and smaller gap-values. This asym-
metry is due to the fact that the conjunction of two gap-order constraints
between a pair of variables is equivalent to the gap-order constraint with
the smaller gap-value. Hence, the creation of tuples with larger gap-values
becomes superfluous after a while, while the creation of tuples with smaller
gap-values may still add more information during the fixpoint evaluation.
This leads to the idea of placing a limit l on the smallest bound allowed. To
avoid smaller bounds than l, we may make two different modifications to the
evaluation method:

Modification 1 Add a new constraint tuple to an output database relation
only after changing the value of any bound b to max(b, l).

Modification 2 Add a new constraint tuple to an output database relation
only after deleting from it any difference constraint that has a bound less
than l.

For a DATALOGdiff query with input database D and program II, we
denote by LFP(II(D), l t) and LFP(II(D), l -!-)the output of the first, respec-
tively the second, modified evaluation algorithms. We can show the following.

Theorem 7.5.4. For any DATALOGdiff program II , input database D , and
constant l, the following is true:

LFP(II(D),l t) LFP(II(D)) LFP(II(D),l-1.).

Furthermore, LFP(II(D), l t) and LFP(II(D), l -!-) can be evaluated in finite
time. D

We can use the above to get better and better approximations using
smaller and smaller values as bounds. In particular,

7. DATALOG and Constraints 163

Theorem 7.5.5. For any DATALOGdiff program II, input database D, and
constants h and h such that h :=:; h :=:; 0, the following is true:

LFP(ll(D), l2 t) LFP(ll(D), h t) ; and

LFP(ll(D),h -1.) LFP(ll(D),h -1.) .

0

7.6 DATALOG with Linear Constraints

Linear constraints are of the form c1x1 + · · · + CkXk 2: b, where, for i = 1,
... , k, Ci is a constant and xi is a variable, and b is constant.

We distinguish between two types of linear constraints depending on the
domain of the variables and constants: the domain of rational linear con-
straints is the set of rationals Q and the domain of integer linear constraints
is the set of integers Z.

We also consider two particular subtypes of (both rational or integer)
linear constraints depending on the constant coefficients. A positive linear
constraint is a linear constraint in which each coefficient is positive. A negative
linear constraint is a linear constraint in which each coefficient is negative.
We define DATALOGpos to be the DATALOG queries with only positive linear,
equality, and (gap)-order constraints and DATALOGneg to be the DATALOG

queries with only negative linear, equality, and (gap)-order constraints.

Theorem 7.6.1. The least fixpoint of any DATALOGpos or DATALOGneg

query is evaluable in closed form when the domain of the variables and con-
stants is either Q or Z. 0

7. 7 DATALOG with Polynomial Constraints

In this section, we consider DATALOG programs with polynomial constraints
over the real numbers. We illustrate the expressive power of this query lan-
guage by showing how to test if a two-dimensional figure is topologically
connected. More precisely, we turn DATALOG into a spatial query language,
in the following referred to as spatial DATALOG, as follows:

- The underlying domain of the variables is the set of real numbers.
- The only EDB predicate is a binary predicateS, which is interpreted as the

set of points in the spatial database, or equivalently, as a binary relation
over JR.

- Database relations are required to be semi-algebraic.
- Polynomial inequalities are allowed in rule bodies.

Under the bottom-up semantics, the following fundamental closure property
is satisfied by a spatial DATALOG program P:

164 Revesz

If the input relation S is a spatial database, then every derived rela-
tion R obtained by a finite number of iterations of P is also a spatial
database; moreover, a finite representation of R can be computed ef-
fectively.

Of course, in general the recursion may not terminate after a finite number
of iterations. It is not clear if there are restrictions on the databases under
consideration, or on the syntax of allowed spatial DATALOG programs, such
as those for linear constraints in Section 4.4.1, that guarantee termination.
Hence, termination of particular recursive spatial queries must be established
by ad hoc arguments, if at all possible.

In this section, we study the topological connectivity test as an example
query. It is known that topological connectivity of two-dimensional spatial
figures is not expressible inFO+ PoLY (see Chapter 4). Topological connec-
tivity is, however, a decidable property of spatial databases and is of great
importance in many spatial database applications. In analogy with the clas-
sical graph connectivity query, which cannot be expressed in the standard
relational calculus, but which can be expressed in languages that typically
contain a recursion mechanism (such as DATALOG), we can consider spatial
DATALOG as a suitable candidate language to express the topological con-
nectivity query.

Obstructed(x, y, x', y')

Path(x, y, x', y')
Path(x, y, x', y')

Disconnected
Connected

·S(x, jj), x = a1t + b1, iJ = a2t + b2,
0 ::; t, t ::; 1, b! = x, b2 = y,
a1 + b1 = x ' , az + bz = y'.
-,Qbstructed(x, y, x' , y').
Path(x, y, x", y"), Path(x", y", x', y').
S(x, y), S(x', y'), •Path(x, y, x', y').
·Disconnected .

Fig. 7. 7 .1. A spatial DATALOG program for piecewise linear connectivity

Figure 7.7.1 gives a program which first computes a relation Path, con-
taining all pairs of points of the spatial database which can be connected by a
straight line segment that is completely contained in the database. Next, this
program computes the transitive closure of this relation. If the computation
of the transitive closure ends and consists of all possible pairs of points of
the database, the program returns true. In fact, this program tests for what
is usually referred to as piecewise linear connectivity, which in general is a
stronger condition than connectivity. However:

Theorem 7. 7 .1. The program of Figure 7. 7.1 correctly tests topological con-
nectivity of linear spatial databases. D

To establish this theorem, two things must be proved:

7. DATALOG and Constraints 165

Correctness: Two points in S are in the same connected component of S
if and only if they can be connected by a piecewise linear curve lying
entirely in S.

Termination: The number of line segments needed to connect any such pair
is bounded.

The second fact guarantees that the transitive closure will terminate. The first
fact then establishes the correctness of the test for connectivity performed by
the program after the transitive closure is completed.

The program of Figure 7.7.1, however, cannot be guaranteed to terminate
on all spatial database inputs, not even on bounded ones. One reason why this
program does not work correctly on all spatial databases is that one cannot,
in general, connect two points on a curved line in the database by straight line
segments. Another reason is the possible presence of "cusp-like" points on the
borders of databases. This is illustrated by the following example. Consider
the region described by (x2 + y2 2: 1 1\ x > -1 1\ y < 1) V (x = -11\ y = 0).
Then the point (-1, 0) cannot be connected by a finite number of straight
line segments with any interior point of the region.

Zero(a, b, c)

Obstructed (x, y, x', y', a1, b1,
C!,a2,b2,c2,a,b,c)

Path(x, y, x', y')

Path(x, y, x', y')

Disconnected

Connected

0 :'S t, t :'S 1, at2 + bt + c = 0

·S(x, y),
(at2 + bt + c)x = a1e + b1t + C1,

(at 2 + bt + c)y = a2t2 + b2t + c2,
0 :'S t,t :'S 1,cx = C!,CY = C2,

(a+ b + c)x' = a1 + b1 + c1,
(a+ b + c)y' = a2 + b2 + c2.

...,zero(a, b, c),

..., Obstructed(x, y, x', y',
al,b!,C!,a2,b2,c2,a,b,c).
Path(x, y, x", y"), Path(x", y", x', y').

S(x,y), S(x',y'), •Path(x,y,x',y').

·Disconnected.

Fig. 7. 7.2. A spatial DATALOG program for piecewise quadratic connectivity

The program of Figure 7.7.1 can be generalized to the one depicted in
Figure 7.7.2. This program computes a relation Path in which all pairs of
points of the database are contained that either be connected by a straight
line segment that is completely contained in the database, or can be connected
by arbitrary segments of conic sections. The transitive closure of this relation
is computed and the program returns true if all pairs of points of the database
are in the computed relation. In fact, this second program tests for what we
could call piecewise quadratic connectivity, which is in general a stronger

166 Revesz

condition than connectivity, but is weaker than piecewise linear connectivity.
We have the following result.

Theorem 7.7.2. The program of Figure 7. 7.2 correctly tests topological con-
nectivity of spatial databases that can be defined in terms of at most quadratic
polynomials. 0

The program indeed works correctly on the before mentioned database
described by (x2 + y2 1/\ x > -1/\ y < 1) V (x = -1/\ y = 0) . The point
(-1, 0) can be connected to an interior point of the database by a single
segment of a conic section.

The program for piecewise quadratic connectivity of Figure 7. 7.2 does not
correctly test connectivity on arbitrary inputs. Consider the spatial database
S = {(x,y) I x 3 +y3 = 1}. This database is actually an algebraic curve. Fur-
thermore, it is an elliptic curve and has genus 1; it is known that such curves
cannot be parameterized by rational functions. Although S is connected, the
program for piecewise quadratic connectivity will return false. The program
will first insert all tuples (x, y, x, y) with (x, y) E S into the Path relation,
and will then terminate after one iteration, concluding that not all pairs of
points of S have been found.

The fact that not all algebraic curves of degree three or higher (like
x 3 + y3 = 1) can be parameterized makes it impossible to further generalize
the approach of the piecewise linear and quadratic connectivity programs to
higher degrees. The use of other algebraic representations of curves such as
implicit definitions are unreliable to test connectivity. First of all, not all im-
plicitly defined curves are connected. For instance, the hyperbola xy = 1 is
not connected. Secondly, the presence of a parameter in parameterized curve
segments makes it possible to speak of "a point p being between points q and
r on a curve." With implicit definitions , this notion of betweenness is not
obvious.

On the other hand, it can be shown that topological connectivity of com-
pact (topologically closed and bounded) planar databases can be expressed
in spatial DATALOG. This uses the fact that, locally around each of its points
p, a spatial database is "conical" (homeomorphic to a cone with top p and
as base the intersection of a small circle around p with the database; see
Chapter 10). The connectivity test for compact planar spatial databases first
determines (inFO+ POLY) for each point a radius within which the database
is conical. Then, all pairs of points within that radius are added to the rela-
tion Path and, finally, the recursion of spatial DATALOG is used to compute
the transitive closure of Path.

Theorem 7. 7.3. There exists a spatial DATALOG program that correctly
tests topological connectivity of compact spatial databases in the plane. 0

It is open whether topological connectivity of arbitrary (not necessarily
compact) spatial databases can be implemented in spatial DATALOG.

7. DATALOG and Constraints 167

7.8 DATALOG with Boolean Equality Constraints

7.8.1 General Theory

Boolean algebras are common in many applications in computer science.
First, we give an overview of Boolean algebras, and then present some re-
sults about query evaluation.

A Boolean algebra is a structure B = (D, 1\, V,1 , 0, 1) such that (D, 1\, V)
is a distributive lattice, 1 is a unary operation, and 0 and 1 are two constants
such that

01 = 1 11 0
xVx1 1 x 1\ x1 = 0
xV1 1 x/\0 = 0
xvo X x/\1 = X

Stone's theorem for Boolean algebras states that every Boolean algebra is
isomorphic to a field of sets, and every finite Boolean algebra is isomorphic to
the power set of a finite set; thus, there is - up to isomorphism - a unique finite
Boolean algebra for every cardinality which is a power of two For m 0, the
Boolean algebra of cardinality 22m is the Boolean algebra freely generated by m
generators and is denoted by Bm. Form= 0, we have Bo=({O, 1}, /\, V,1 , 0, 1) .

Given a set of variables V and a set of constants C (other than 0 and 1),
we can build Boolean terms from the function and constant symbols/\, V, 1 , 0,
and 1, and the elements of V and C in the usual way. A (B, a-)-interpretation
consists of a Boolean algebra B and a mapping u of the constant symbols
C to the elements of B . Given a (B, u)-interpretation, and an element of B
for each variable in V, we can evaluate Boolean terms in the usual way to
an element of B . We shall use the letter t to denote Boolean terms, or, more
fully, t(xl, ... ,xn , cl, . .. ,cm), when tis a Boolean term with variables x1,
.. . , Xn and constants c1 , ... , Cm. A Boolean equation is an expression of the
form t1 = t2, with t1 and t2 Boolean terms. Boolean equations are evaluated
in the usual way.

In order to evaluate DATALOG queries, we need a quantifier elimination
method for Boolean constraints. This can be derived from Boole's Lemma,
which says the following.

Lemma 7.8.1 (Boote's Lemma). Let t(x1, ... ,xn,c1 , .. . ,em) be a Bool-
ean term over some set of variables V and some set of constants C, and
consider a (B, u)-interpretation. The set of solutions of

3xl (t(x1 , X2, ... , Xn, c1, ... , em) = 0)

is the same as the set of solutions of

0

168 Revesz

Because of the quantifier elimination provided by Boole's Lemma and the
fact that the number of elements of a Boolean algebra is at most 22 m when
generated (freely or nonfreely) by m constants, it is possible to show the
following result.

Theorem 7.8.2. Let Q be any DATALOG query with Boolean equality con-
straints. Given a (B , a)-interpretation, Q can be evaluated bottom-up in
closed form. 0

7.8.2 Application: Adder Circuit

We illustrate the use of Boolean constraints by an example of a simple binary
adder circuit. In this case, there are no special constants (C = 0, m = 0), and
the freely generated Boolean algebra B0 will consist of only two elements, that
is, 0 meaning false and 1 meaning true. In the remainder of this section "EB"
denotes the "exclusive or", which can be defined as x EB y = (x 1\ y') V (x' 1\ y).

An adder circuit can be built from two half-adder circuits. We first define
a half-adder by a single database fact.

Halfadder(x, y, z, w) :- x EB y = z, x 1\ y = w.

where x and y are the input variables, z is the sum, and w is the carry. The
adder circuit can then be described by the use of two half-adder circuits and
an extra constraint, as follows:

Adder(x,y , c,s,d) :- Halfadder(x , y , s1 ,cr), Halfadder(s 1 ,c,s,c2),

d = c1 V Cz .

where x and y are the input variables, c is the carry-in, s is the sum, and d
is the carry-out.

Let us now consider the bottom-up evaluation of the above program. Turn-
ing the two constraints in the body of the first rule into a single equivalent
constraint, the evaluation algorithm yields

Halfadder(x, y, z, w) :- (x EB y EB z) V ((x 1\ y) EB w) = 0.

The substitution into the body of the second rule yields

Adder(x, y , c, s, d) :- (c1 V cz) EB d = 0,

(x EB y EB si) V ((x 1\ y) EB c1) = 0,

(s1 EB c EB s) V ((s1 1\ c) EB cz) = 0.

By transforming the three constraints in the body into one and using Boole's
Lemma to eliminate s1 , c1 , and Cz, the evaluation finally yields

Adder(x, y, c, s, d) :- (x EB y EB c EB s)
V ((x 1\ y) EB (x 1\ c) EB (y 1\ c) EB d) = 0.

The above is a correct description of a binary adder circuit in terms of the
primitive inputs x, y, c, s, and d.

7. DATALOG and Constraints 169

7.9 Bibliographic Notes

Proposition 7.2.1 was first proved by Jaffar and Lassez in [JL87] in the context
of constraint logic programs. The basic definitions of the syntax and semantics
of DATALOG queries of constraint databases. were introduced in [KKR90].
Theorem 7.3.1 is common knowledge and has been observed by many people.

Rational-order constraints were studied first in [KKR90, KKR95]. The
technique of r-configurations (Definition 7.4.1) was introduced there, along
with Example 7.4.1 and Theorem 7.4.4. Theorems 7.4.5 and 7.5.2 are from
the same paper, although they considered inflationary instead of stratified
negation. Rational-order constraints and sets were combined in [GS95a].

Gap-order constraints on integers were introduced in [Rev93] . The tech-
nique of gap-graphs, as well as Theorem 7.5.1 are from this same paper. The
problem whether a given relation is empty in the least fixpoint of a DATALOG

with gap-order query was studied in [CM93]. Safe stratified DATALOG queries
with gap-order constraints are described in [Rev95b, Rev98d]. Stolbushkin
and Taitslin [ST95] raised the question whether syntactic safety can be
extended to include semantical safety. Theorem 7.5.3 is from [ST98]. The
application to shortest distance is also from [Rev95b, Rev98d] . Classes of
safe DATALOG queries with unrestricted gap-order constraints are studied
in [Rev99].

Classes of safe DATALOG queries with positive or negative linear con-
straints, or restricted linear constraints that express vector addition or ma-
trix multiplication, were studied in [Rev98c]. Kuijpers, Paredaens, Smits, and
Van den Bussche have studied termination properties of DATALOG programs
with polynomial constraints over the real numbers [KPSV96]. They have also
studied the topological connectivity test and given an implementation of a
query in spatial DATALOG that correctly tests topological connectivity of lin-
ear spatial databases. In particular, they have proved Theorem 7.7.1. The
generalization to databases that can be defined by at most quadratic poly-
nomials, in particular Theorem 7.7.2, is due to Kuijpers and Smits [KS97b].
Geerts and Kuijpers have given a spatial DATALOG implementation that cor-
rectly tests connectivity of compact spatial databases in the plane [GK99a].

Chomicki and Imielinski [CI93] consider the language DATALOG1s which
is like DATALOG extended with an increment operator which may occur only
in the first argument of relations. In DATALOG1s, one cannot express the
integer order relation which can be expressed in DATALOGgap. Chomicki and
Imielinski [CI93] show that the least fixpoint is evaluable for DATALOG1s
queries. DATALOG with modulus constraints were considered by Toman eta!.
in [TCR94]. DATALOG with a restricted case of vector additions is considered
in [F097] .

DATALOG queries with Boolean equality constrains were studied in [BS87]
and in [KKR95]. Theorem 7.8.2 was proved in [KKR95]. Lemma 7.8.1 is
known as Boole's Lemma and originates from George Boole himself. The
adder circuit example is from [KKR95].

170 Revesz

The interested reader can find more references on constraint logic pro-
gramming in the survey [JM94] and on DATALOG and constraint databases
in the survey [Rev98a].

References

[JL87] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the 14th Annual ACM

Symposium on Principles of Programming Languages (POPL’87), pages 111–119. ACM Press,
1987.

[KKR90] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. In Proceedings of

the 9th ACM SIGACT-SIGMODSIGART Symposium on Principles of Database Systems
(PODS’90), pages 299–313. ACM Press, 1990.

[KKR95] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of

Computer and System Sciences, 51 (1): 26–52, 1995.

[GS95a] S. Grumbach and J. Su. Dense-order constraint databases. In Proceedings of the 14th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’95), pages
66–77. ACM Press, 1995.

[Rev93] P. Z. Revesz. A closed-form evaluation for Datalog queries with integer (gap)-order constraints.

Theoretical Computer Science (TCS), 116 (1/2): 117–149, 1993.

[CM93] J. Cox and K. McAloon. Decision procedures for constraint based extensions of Datalog. In

Constraint Logic Programming. MIT Press, 1993.

[Rev95b] P. Z. Revesz. Safe stratified Datalog with integer order programs. In Proceedings of the 1st

International Conference on Principles and Practice of Constraint Programming (CP’95),
volume 976 of Lecture Notes in Computer Science, pages 154–169. Springer-Verlag, 1995.

[Rev98d] P. Z. Revesz. Safe query languages for constraint databases. ACM Transactions on Databases

Systems (TODS), 23 (1): 58–99, 1998.

[ST95] A. P. Stolboushkin and M. A. Taitslin. Finite queries do not have effective syntax. In Proceedings

of the 14th ACM SIGACT-SIGMODSIGART Symposium on Principles of Database Systems
(PODS’95), pages 277–285. ACM Press, 1995.

[ST98] A. P. Stolboushkin and M. A. Taitslin. Safe stratified Datalog with integer order does not have

syntax. ACM Transactions on Databases Systems (TODS), 23 (1): 100–109, 1998.

[Rev95b] P. Z. Revesz. Safe stratified Datalog with integer order programs. In Proceedings of the 1st

International Conference on Principles and Practice of Constraint Programming (CP’95),
volume 976 of Lecture Notes in Computer Science, pages 154–169. Springer-Verlag, 1995.

[Rev98d] P. Z. Revesz. Safe query languages for constraint databases. ACM Transactions on Databases

Systems (TODS), 23 (1): 58–99, 1998.

[Rev99] P. Z. Revesz. Datalog programs with difference constraints. In Proceedings of the Twelfth

International Conference on Applications of Prolog, pages 69–76, 1999.

[Rev98c] P. Z. Revesz. Safe Datalog queries with linear constraints. In Proceedings of the 4th

International Conference on Principles and Practice of Constraint Programming (CP’98),
volume 1520 of Lecture Notes in Computer Science, pages 355–369. Springer-Verlag, 1998.

[KPSV96] B. Kuijpers, J. Paredaens, M. Smits, and J. Van den Bussche. Termination properties of spatial

Datalog programs. In International Workshop on Logic in Databases (LID’96), volume 1154 of
Lecture Notes in Computer Science, pages 101–116. Springer-Verlag, 1996.

[KS97b] B. Kuijpers and M. Smits. On expressing topological connectivity in spatial Datalog. In

Proceedings of the 2nd Workshop on Constraint Databases and Applications (CDB’97), volume
1191 of Lecture Notes in Computer Science, pages 116–133. Springer-Verlag, 1997.

[GK99a] F. Geerts and B. Kuijpers. Expressing topological connectivity of spatial databases. In

Proceedings of the 7th International Workshop on Database Programming Languages
(DBPL’99), Lecture Notes in Computer Science. Springer-Verlag, 1999.

[CI93] J. Chomicki and T. Imielinski. Finite representation of infinite query answers. ACM Transactions

on Databases Systems (TODS), 18 (2): 181–223, 1993.

[TCR94] D. Toman, J. Chomicki, and D. S. Rogers. Datalog with integer periodicity constraints. In

Proceedings of the 11th International Symposium on Logic Programming (ILPS’g4), pages 189–
203. MIT Press, 1994.

[FO97] L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-points of

Datalog programs with Z-counters. Constraints, 2 (3/4): 305–335, 1997.

[BS87] W. Bittner and H. Simonis. Embedding Boolean expressions into logic programming Journal of

Symbolic Computation (JSC), 4 (2): 191–205, 1987.

[KKR95] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of

Computer and System Sciences, 51 (1): 26–52, 1995.

[JM94] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic

Programming, 19 /20: 503–581, 1994.

[Rev98a] P. Z. Revesz. Constraint databases: A survey. In L. Libkin and B. Thalheim, editors, Semantics

in Databases, volume 1358 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

