
18. The DISCO System 
Peter Revesz 

18.1 Introduction 

DISCO, short for DATALOG with Integer Set COnstraints, is a constraint 
database system that implements DATALOG with Boolean constraints (see 
Chapter 7) on set variables that range over finite and infinite sets of integers. 
In this chapter we provide a short introduction to the DISCO system. 

18.2 DISCO Queries 

The syntax of DISCO is basically that of DATALOG, with a restricted form of 
recursion that guarantees termination. The domain of each DISCO variable 
is an element of the Boolean algebra in which 0 is the empty set, 1 is the set 
of integers, 1\ is set intersection, V is set union, and ' is set complement. The 
precedence operator ::; is defined as the subset relation between sets. 

Example 18.2.1. Consider the packet switching network in Figure 18.2.1. In 
this hierarchical network there are four layers each with four nodes. Each 
node represents a router and the directed edges represent connections across 
which packets can be sent. A set of packets arrive at the top layer and need 
to be dynamically routed to given nodes of the bottom layer, with some 
restrictions on the routing in the middle layers. 

The connections of the network imply restrictions which can be repre-
sented by the relation CONNECT. One example of a rule in CONNECT, encoding 
the connections between the first and second layers (the { 1} refers to the 
outgoing layer) in the figure, is: 

CONNECT({1},A,B,C,D,E,F,G, H) :- E::; A ,F::; A VB, 

G::; Bv D,H::; CV D , 
p::; L. 

Suppose that some packets are to be sent from nodes in the top layer to 
the bottom layer. For example: 

FROM(A, B , C,D) :-A= {1,2,3} , B = {4, 5},C = {6, 7} , D = {8,9}. 

TO(M,N,O,P) :- M = {1},N = {2,6,8},0 = {3 ,4},P = {5 , 7,9} . 

To find out where each packet may be sent, using a DISCO query, we can 
then write: 

G. Kuper et al. (eds.), Constraint Databases
© Springer-Verlag Berlin Heidelberg 2000



384 Revesz 

Fig. 18.2.1. A packet switching network 

PATH( {1 }, A, B, C, D) :-FROM( A, B, C, D). 
PATH(Z, V, W,X, Y) :-PATH(Z1,Q,R,S,T), 

CONNECT(Z1, Q, R, S, T, V, W, X, Y), 
NEXT(Z1, Z). 

where NEXT is the successor function, defined explicitly using rules such as 

NEXT( {1 }, {2}) . 

Example 18.2.2. For another example, suppose that instead ofrequiring each 
packet to be sent to only one successor, we want each packet to be broadcast, 
that is, sent to all successors. Then the connections can be represented as 
follows: 

CONNECT({1},A,B,C,D,E,F,G,H) :-A::; E,A::; F,B::; F, 
B::; G,C::; H,D::; G, 
D::; H. 

with similar rules for the other two layers. The PATH query is the same as 
before. 

18.3 Implementation 

18.3.1 Converting to Relational Algebra 

DATALOG rules are converted to relational algebra expressions in two different 
ways: 

1. EV AL function. The translation of to relational algebra is standard 
except for a slightly different syntax for the selection operations. 



18. The DISCO System 385 

2. EVAL_INCR function. This is similar to the EVAL, except that before 
conversion each rule is copied as many times as the number of defined 
relation symbols in its body. In the ith copy a Ll symbol is put before 
the ith defined relation. 

Example 18.3.1. Consider Example 18.2.1. EVALINCR converts this query 
into: 

PATH( {1 }, A, B, C, D) :-FROM( A, B, C, D). 
PATH(Z, V, W, X, Y) :- LlPATH(Z1, Q, R, S, T) , 

CONNECT(Z1, Q, R, S, T, V, W, X, Y), 
NEXT(Z1, Z). 

This is translated into a relational expression as follows. The first rule is 
translated to: 

n:z,A,B,C,D (az={l} FROM(A, B , C, D) Z(Z)) . 

where Z(Z) is the relation that has a single variable Z and no constraints. 
The second rule is translated to: 

n:z,v,w,x,Y LlPATH(Z1, Q, R , S, T) NEXT(Z1, Z) 

CONNECT(Z1, Q, R, S, T, V, W, X, Y). 

The union of these expressions is a relational algebra expression for PATH. 

DISCO queries are evaluated using the standard Naive and Semi-Naive 
methods for evaluating queries. This is illustrated by the following example. 

Example 18.3.2. Example 18.3.1 is evaluated by DISCO as follows. The first 
iteration yields. 

PATH({1} ,A,B,C, D) :-A= {1,2,3},B = {4,5},C = {6, 7}, 
D = {8,9}. 

After the second iteration, we get (after renamings some variables for read-
ability): 

PATH({2} , E,F,G,H) :-E {1, 2,3},F {1 ,2, 3,4,5}, 
G {4,5,8,9},H {6, 7,8,9}. 

We call a Boolean function g monotone if Xi Yi, i = 1, . .. , n implies 
that g(x1 , •.. ,xn) g(y1 , . .. ,yn)· A monotone inequality constraint is a 
constraint of the form g(x1 , ... , Xn ) -=/:- 0 where g is monotone. 

We now discuss the implementation of the DISCO algebra, for constraint 
databases and queries that contain only set-order and monotone inequality 
constraints. The key point is the following technique for eliminating existen-
tial quantifiers over such constraints. 



386 Revesz 

Lemma 18.3.1. Let gi, ... , gl be monotone Boolean functions, and let Yi, 
Zi, Vi, wi, ui (for appropriate values of i) be constants or variables distinct 
from x {but not necessarily from each other). Then 

3 x(zi :::; X 1\ · · · 1\ Zm :::; X 1\ X :::; YI 1\ · · · 1\ X :::; Yk 

1\ WI :::; UI 1\ · · · 1\ Ws :::; Us 

1\ gi(x,vi, ... ,vn)-:/:- 01\ · · · 1\ gl(x,vi, ... ,vn)-:/:- 0) 

is equivalent to 

ZI :::; Yl (\ .. . (\ Zj :::; Yi (\ .. . (\ Zm :::; Yk (\ W I :::; UI (\ . . . (\ Ws :::; Us 

1\ gl((YI 1\ · · · 1\ Yk), VI,.·. ,vn)-:/:- 01\ · · · 

1\ gl ( (YI 1\ · · · 1\ Y k), VI , ... , Vn) -:/:- 0 . 

0 

Example 18.3.3. Example 18.2.2 contains only set-order and monotone in-
equality constraints. The query is evaluated as follows 

PATH({l} ,A,B,C,D) :-BI\C-:f-0. 
PATH( {2}, E, F, G, H) :- F 1\ G-:/:- 0, F 1\ H-:/:- 0, G 1\ H-:/:- 0. 
PATH( {3},1, J, K, L) :- J 1\ K-:/:- 0, J 1\ L-:/:- 0, K 1\ L-:/:- 0. 
PATH( { 4 }, M, N, 0, P) :- N 1\ 0 -:/:- 0, N 1\ P -:/:- 0, 0 1\ P-:/:- 0. 

The DISCO system also supports an interactive Semi-Naive evaluation 
method, where the user can decide whether to add new tuples at each step. 

18.3.2 Optimization of Relational Algebra 

DISCO uses the standard relational rewrite rules. The system pushes selec-
tions as far down the parse tree as possible, and then does the same with 
projection, performing selections before projections. Sequences of selections 
on the same relation are merged into one selection operation. 

Example 18.3.4. We illustrate the operation of the DISCO optimizer on the 
following example. 

1f x,y (a xny#0 (a yn{ 4}=0 (a xn{6,8}= 0 ( 

axn{2,4} = 0(A(x,z) B(v,y) C(x) D(v,y))))) 

A parse tree is shown in Figure 18.3.1. 
The first step is to perform selections as early as possible. To apply this 

step, DISCO finds which relations and selections have common variables. 
Suppose that in a (sub)formula a set of selections (S1 , 82 , . . . , Sk) comes 
after the join of a set of relations ( R I , R2, ... , R1). Let Vi be the set of 
relations which have common variables with Si, that is: 

Vi = { Rn I (variables in Rn ) n (variables in si ) ¥- 0} . 



18. The DISCO System 387 

O";rl\y =0 

"•/\{4}=0 

I 

cr,/\{2,4}=0 

I 

.-------· // ------
A(x,z) B (v, y) C(x) D(v ,y) 

Fig. 18.3.1. The formula before optimization 

1r:r,y 

I 

O";r,l\y = 0 

I 

l><l 

--------------------------------------- -------
cr,/\{2,4} = 0 

I 
"y/\{4} = 0 

I 
cr,/\{6,8} = 0 

I 
l><l B(v,y) D(v,y) 

C(x) A(x,z) 

Fig. 18.3.2. The formula after the first opt imization step 

A selection (Si) can be applied provided that the join of all the relations 
mentioned in Vi has already been computed. This gives an obvious limit for 
how far the selection si can be pushed down. 

Whenever there are several selections to choose to move down, DISCO 
checks whether there is any i such that Vi is a subset of all the other Vjs. In 
this case si will be pushed down ahead of all the other selections. If there is 
no such i, DISCO chooses some index i such that Vi has minimum cardinality. 
After a selection is pushed down, the Vis are updated and the process above 
is repeated. The result is shown in Figure 18.3.2. After this, projections are 
pushed down as far as possible, but not ahead of selections. The result is 
shown in Figure 18.3.3. Finally, cascades of selections are merged. 



388 Revesz 

"zA{2,4}=0 

I 
"zA{6,8}=0 

I 
"yA{4}=0 

I 
l><l 

B(v ,y) D(v ,y) 
C(x) 7rz 

A(x ,z) 

Fig. 18.3.3. The formula after the second optimization step 

18.4 Extensibility of DISCO 

Although DISCO implements a specific Boolean algebra, namely, the Boolean 
algebra of sets of integers, DISCO can be extended to Boolean algebras. This 
requires replacing a few of the basic DISCO routines: redefining the operators 
A, V, and', changing some of the data storage structures and modifying the 
Naive and the Semi-Naive evaluation methods with a new subsumption test. 

Example 18.4.1. Consider the Boolean algebra in IR2 , where the operator 1\ 

means intersection, V means union, and ' means complement with respect to 
JR2 • A possible representation would be by sets of linear constraints. 

Consider the relation RANGE( X, A) that says that animal X occurs in the 
region A within a national park. Animals can be identified by single points 
in IR2 , along with some thematic data. 

Suppose that animal (12, 1997) is infected with a virus which spreads by 
contact with other animals. The following DATALOG program defines the set 
of animals which are in danger of being infected. 

INFECTION...AREA(A) :- RANGE((12, 1997), A). 
INFECTION ..AREA( A) :- INFECTION...AREA(A1), RANGE( X, A2), 

A1 1\ A2 = 0, A1 v A2 = A. 
IN ..DANGER( X) :- INFECTION...AREA(A1), 

RANGE( X, A2), A1 1\ Az =j:. 0. 

18.5 Bibliographic Notes 

The DISCO system was developed at the University of Nebraska. The 
first version of the system implemented set-order and positive gap-order 
constraints (see Chapter 7) [BR95). The quantifier elimination technique 



18. The DISCO System 389 

used in this system was described in [SRR94) and the Naive evaluation of 
DATALOG queries was considered in [Rev95a, Rev98d). More details are given 
in [Rev97a]. The first version was also used to solve some genome assembly 
problems [Rev97b). 

The second version of DISCO, described here, adds monotone Boolean 
inequality constraints and Boolean equality constraints over sets of inte-
gers [Sal98), but general Boolean equality and inequality constraints cannot 
be used together. 

The quantifier elimination method for Boolean equality constraints is by 
Boole, while the one for set-order and monotone Boolean inequality con-
straints is described in [Rev98b]. More details on methods for quantifier 
elimination in the case of Boolean equality and inequality constraints can 
be found in [HM095, M096). 



References 
 
 
[BR95] J.-H. Byon and P. Revesz. DISCO: A constraint database system with sets. In 

Proceedings of the 1st Workshop on Constraint Databases and Applications (CDB’95), 
volume 1034 of Lecture Notes in Computer Science, pages 68–83. Springer-Verlag, 
1995. 

 
[SRR94] D. Srivastava, R. Ramakrishnan, and P. Z. Revesz. Constraint objects. In Proceedings of 

the 2nd International Workshop on Principles and Practice of Constraint Programming 
(PPCP’94), volume 874 of Lecture Notes in Computer Science, pages 218–228. 
Springer-Verlag, 1994. 

 
[Rev95a] P. Z. Revesz. Datalog queries of set constraint databases. In 5th International 

Conference on Database Theory (ICDT’95), volume 893 of Lecture Notes in Computer 
Science, pages 425–438. Springer-Verlag, 1995. 

 
[Rev98d] P. Z. Revesz. Safe query languages for constraint databases. ACM Transactions on 

Databases Systems (TODS), 23 (1): 58–99, 1998. 
 
[Rev97a] P. Z. Revesz. Problem solving in the DISCO constraint database system. In 

Proceedings of the 2nd Workshop on Constraint Databases and Applications (CDB’97), 
volume 1191 of Lecture Notes in Computer Science, pages 302–315. Springer-Verlag, 
1997. 

 
[Rev97b] P. Z. Revesz. Refining restriction enzyme genome maps. Constraints, 2 (3/4): 361–375, 

1997.   
 
[Rev98b] P. Z. Revesz. The evaluation and the computational complexity of Datalog queries of 

Boolean constraint databases. International Journal of Algebra and Computation, 8 (5): 
472–498, 1998. 

 
[KKR95] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal 

of Computer and System Sciences, 51 (1): 26–52, 1995. 
 
[HMO95] R. Helm, K. Marriott, and M. Odersky. Spatial query optimization: From Boolean 

constraints to range queries. Journal of Computer and System Sciences (JCSS), 51 (2): 
197–210, 1995.   

 
[MO96] K. Marriott and M. Odersky. Negative Boolean constraints. Theoretical Computer 

Science (TCS), 160 (1/2): 365–380, 1996. 
 


