
Efficient Traffic Crash and Snow Complaint GIS System
Anthony Ngo

Lincoln Public Works Department

901 W Bond Street, Suite 100

Lincoln, NE 68521, USA

ango@lincoln.ne.gov

Peter Revesz

Computer Science and Engineering

University of Nebraska-Lincoln

Lincoln, NE 68588, USA

revesz@cse.unl.edu

ABSTRACT

We describe the design and implementation of a traffic crash and

snow complaint GIS system developed for the Lincoln Public

Works department. We also describe a novel geocoding algorithm

that was used to move data from the older Criminal Justice

Information System, which is a relational database, to the new

GIS system. In addition, we describe the implementation of

several indexing algorithms that enable the system to efficiently

answer rectangular range queries and queries about the relative

locations of moving objects.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS

 I.3.5 [Computational Geometry and Object Modeling]:

Geometric algorithms, languages, and systems

General Terms
Design, Performance, Experimentation

Keywords

Dominance, Geocoding, Indexing, Traffic Crash, Snow Removal

1. INTRODUCTION
An increasing number of city governments provide GIS-based

public services. These systems give city officials and the public

access to real and accurate data and planning tools which were not

previously available [7]. In this paper, we describe our design and

development of the Lincoln Public Works (LPW) department’s

traffic crash data and snow complaint GIS system.

Motivation for traffic crash database: The Lincoln Public

Works and the Lincoln Police Department generated and

maintained for many years the traffic crash reports and associated

statistics using the Criminal Justice Information System (CJIS),

which is a relational database system. In 2008, the CJIS system

recorded 7,890 crashes with a total monetary loss estimated at

nearly 200 million dollars including wage loss, medical expenses,

property damage, and insurance administrative costs [6].

On October 2009, LPW decided to convert the CJIS data to a new

GIS-based system for mapping and analyzing traffic crashes in

order to conduct a detailed crash study throughout the city of

Lincoln. The primary goal of this project, called CJIS to GIS, was

to provide a high performance GIS-based tool for identifying

frequent traffic crash locations and provide realistic solutions

which aid in reducing the total number of traffic crashes and their

monetary impact [6]. Identifying frequent or otherwise

problematic traffic crash locations will lead to a better

prioritization and planning of transportation improvements and to

developing more effective countermeasures that address the

identified crash patterns at all locations having frequent traffic

crashes.

Motivation for snow complaint database: According to a New

York Times article [14] about New York City government and a

large snow storm:

“The blizzard prompted a political crisis that became

legendary in the annals of municipal politics, nearly

brought down the administration of Mayor John V.

Lindsay and offered an instructive lesson to elected

officials in the politics of snow removal.”

To avoid such a political crisis and other damages, cities need to

be prepared for winter snow storms and have a plan to keep the

streets cleared and safe. To manage snow removal efforts, cities

need GIS-based systems that enable real-time visualization of

snow-related complaints, such as “street is icy”, “parking ban

info”, “snow push into street”, “property damage”, “plowing

wrong side street,” etc.

We combine crash reports data and snow complaints data in the

same database because they are closely related. According to city

statistics, January is a high-fatality month with many traffic

crashes due to snow-related issues. A common GIS-based system

for managing traffic crash and snow removal data can help

visualize and analyze this relationship more deeply. That would

help improve street improvement operations, which turn out

which would reduce the number of snow-related traffic crashes.

Outline: This paper is organized as follows. Section 2 describes

related work. Section 3 presents a novel and efficient geocoding

algorithm that converts CJIS traffic crash data into GIS data.

Section 4 describes an implementation of rectangular range

queries. Section 5 gives an overview of the snow complaints

database. Section 6 describes the implementation of an efficient

moving points estimation algorithm. Finally, Section 7 suggests

some future work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Dg.o’11, June 12–15, 2011, College Park, MD, USA.

Copyright 2011 ACM 978-1-4503-0762-8/11/06…$10.00.

2. RELATED WORK
Some recent research considered mapping only intersection

crashes using GIS technology. [9] describes the application of

GIS to map intersection crashes at only 20 intersections for 24

months of study. [10] discusses an efficient tool for transportation

safety engineers and policymakers to analyze the traffic crash data

typically obtained from police reports without using GIS

technology. [2] reports their development of a GIS-based traffic

network analysis system, which provides a graphical analysis

platform to transportation planners and researchers for

transportation network analysis. However, almost all of these

known public researches discussed to date fall into one of three

categories. Either they are just a non-GIS crash data analysis tool,

or they are a GIS crash data analysis tool, or they are so simple

that they are not useful in solving many traffic crash problems that

involve geographic visualization and querying.

Other existing traffic crash databases such as [4], [15], and [13]

use traditional geocoding, which requires postal addresses.

However, we cannot apply for our application because LPD never

has recorded any postal address. On the other hand, [19]

introduces a new type of geocoding task as segment-type

geocoding in contrast with classic geocoding that takes a street

address or intersection. This approach is so specific that it is

useful in solving only one or two problems. Moreover, this

approach is dependent on different types of street intersections

(one node or multiple nodes). In this paper we describe a not-too-

general or not-too-specific paradigm that can be precisely

specified and can be used to solve many traffic crash related

problems.

Our traffic crash and snow removal system has unique indexing

features. As a result, our system is able to answer efficiently many

queries of the type “find the number of (traffic crash or snow

complaint) events on the map on a particular street segment.”

Efficient answering of these types of queries is based on the

implementation of the main indexing algorithm in [11], which in

turn is a based on Bentley’s ECDF-trees [3].

ESRI’s ArcGIS system provides some visualization tools for

spatial analysis. However, those tools are limited to small amount

of data because of inefficient processing methods implemented

within ArcGIS. For example, the ArcGIS query task default

parameter maxresultsize is normally set to 500 (version 9.x) and

1000 (version 10.x). Our system avoids this limitation and could

handle much larger data sets by using the indexing algorithm in

[10, 11].

3. THE GEOCODING PROBLEM
Geocoding is the problem of converting non-geographical

information, such as street address, into valid geographical

information that GIS systems or constraint database systems [8]

can use, typically (x, y) coordinates.

For example, the CJIS relational database records traffic crash

report data in a form which needs to be converted to a GIS form.

Since CJIS is a very large database, manual conversion of the data

is prohibitively expensive. It may take between 15 and 30 minutes

for a GIS specialist to manually add one traffic crash report into

an ESRI ArcMap/ArcInfo shapefile. Since CJIS has over 100

thousand traffic crash report data, it may take between 25 and 50

thousand hours to manually convert each traffic crash report data

to a GIS data. Hence we developed an efficient conversion

algorithm that automatically converts the old data into the GIS

representation.

Now let us analyze the problem of locating a traffic crash on a

GIS map. There are two cases, either the crash happens at an

intersection or at a non-intersection location, which is at the

middle of a segment of a street. The first case is easy and can be

converted by an ESRI ArcGIS geocoding tool. The second case is

not solved by the ArcGIS tool. Hence we focus on the latter case.

In contrast to the segment-type geocoding method in [19], our

geocoding method is independent of the different types of street

intersections because we use the street center line GIS map

shown in Figure 1, which yields only a single intersection node

for streets that cross each other.

Figure 1: Street center line and one-node intersection.

Each CJIS traffic crash report is purely relational and does not

include any information about location coordinates (latitude and

longitude) or street address used in traditional geocoding [16].

Instead, as shown in Table 1, the CJIS database gives the names

of OnStreet, AtStreet, and BtStreet.

The particular geocoding problem that we considered is to find

the GIS street segment, called midBlockStreet, on OnStreet, where

the traffic crash happened. Before presenting a solution, let us

first recall the following important definitions regarding point

dominance [12]:

Definition 1. Point Q(xQ,yQ) dominates point C(xC,yC), written as

Q > C, if and only if xQ > xC and yQ > yC

Definition 2. A block street dominates point C(xC,yC) , written as

blockStreet > C, if and only if for every point Q(xQ,yQ) on

blockStreet xQ > xC and yQ > yC

Table 1. Example CJIS traffic crash street information

ONST ATST BTST

P ST N 11TH ST N 12TH ST

N 27TH ST Vine ST T ST

Figure 2: Searching street segment on ONST between ATST

and BTST.

Now we can give the following solution:

Let I1 be the intersection point at ONST and ATST.

Let I2 be the intersection point at ONST and BTST.

Find midBlockStreet on ONST between ATST and BTST.

Without loss of generality, we assume that I1 < I2. Then the

following must hold:

 I1 < midBlockStreet < I2 (1)

Below are two steps to find midBlockStreet.

Step 1. Find onStreetSegmentsSet, which is the set of all

street segments of ONST.

Step 2. Find midBlockStreet, which is the street

segment in onStreetSegmentsSet that is dominated by I2,

and dominates I1, by condition (1).

In the GIS database the middle point of midBlockStreet can

represent the approximate traffic crash location.

4. RECTANGULAR RANGE QUERIES
For developing a practical crash analysis tool, we need to provide

a function that finds all crashes that happened in a rectangular

area. Such a function could be used to identify problematic

rectangular areas with a high frequency of traffic crashes.

Consider the red rectangular area shown in Figure 3. The location

of a traffic crash C(x,y) lies within the rectangle if C(x,y) is

dominated by the upper right point Q(x,y) and C(x,y) dominates

the bottom left corner point P(x,y). Hence we have:

 XC < XQ and YC < YQ and XP < XC and YP < YC

To implement dominance queries efficiently, we store all traffic

crash records in an ECDF-tree, which runs in O(log N) time for

each dominance query and requires only O(N logN) space where

N is the number of traffic crash records. We investigated the

computational complexity of finding traffic crashes dominated by

a point Q. We experimentally compared the runtime performance

of two algorithms for finding traffic crashes dominated by a point

Q; the first algorithm used ECDF-trees [3] and the second is

algorithm did not use any indexing.

Figure 3: Traffic crashes in the red rectangular area are

dominated by point Q(x,y) and dominate point P(x,y).

The results were visualized by the system. For example, Figure 4

shows traffic crashes dominated by point Q for January 2010.

Figure 4: Traffic crashes dominated by point Q for January

2010.

Figure 5 and Table 2 show that as the total number of traffic

crashes increase, the implementation with indexing is running

faster than the one without indexing.

Run Time (msecs)

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

170000 190000 210000 230000 250000 270000 290000 310000 330000 350000

Number of Crashes

R
u

n
 T

im
e

(m
se

cs
)

Indexing No Indexing

Figure 5: Run time using indexing versus no indexing.

Table 2: Run times using indexing versus no indexing.

Number of

Crashes

Dominated

Points

Indexing

Run Time

(msecs)

No Indexing

Run Time

(msecs)

7358 2029 46.8 46.8

14899 4134 73.0 78.0

173200 48028 1887.6 1971.0

234580 65448 2888.0 3213.6

267496 74856 3244.8 3760.0

327092 91404 4321.2 4945.2

5. THE SNOW COMPLAINT DATABASE
The city of Lincoln is prepared in case of any snowstorm to

implement its snow removal plan. There are currently three snow

removal districts, namely, the North Eastern, the South Eastern,

and the Western districts.

In the past, street maintenance operations were maintained using

Microsoft Access and Microsoft Excel applications for recording

labor, snow removal equipments, material, and snow operations.

The Access and Excel methods are inefficient for managing snow

removal operations as the city grows.

In addition, in order to create a GIS map showing the current

snow complaints, only a professional GIS specialist knows how to

manually geocode a snow complaint. That poses a significant

challenge to less-skilled end users who may need to use GIS

technology. Hence there was a need to have a better tool for data

management, especially applying GIS technology by less-skilled

end users to handle day-to-day street operations. That was a

major motivation for developing the Street Maintenance Manager

application shown in Figure 7. The Street Maintenance Manager

provides a Lincoln snow complaint map (Figure 9) that has been

designed and developed using the current cutting-edge ESRI

ArcGIS technology and state of the art non-traditional geocoding

for non-GIS end-users.

The snow complaint application also has the same two main

problems as the traffic crash application, that is, geocoding and

rectangular range querying, which have already been addressed

above. Therefore, we will not repeat them in this section. Instead

we would like to present in Figure 6 an overview of the Street

Operation Manager system.

Public Works User

StreetManagerDb

SnowComplaints

GIS Web Map APP

ArcGIS Servers

StreetMaintenance

Manager

Figure 6: Street Maintenance Manager software architecture.

We developed the Street Maintenance Manager using the

following steps. First, we developed a day-to-day input form

including some street location fields for geocoding (such as On

Street, At Street, and Between Street) for recording a snow

complaint (see Figure 7). The input form also has a built-in street

dictionary to quickly correct a street name, making sure that the

complaint location does exist. This feature ensures that snow

crews are sent to the correct locations.

Second, by geocoding the street location information, we can find

the location of a snow complaint and display it in real-time on a

map as soon as a public works user adds such a complaint to the

StreetManagerDb database (see Figures 8 and 9). That is a useful

new feature because in the past public works database users used

a Microsoft Access program to record snow complaints and some

days later a GIS specialist may have used street location

information to manually geocode the Microsoft Access data using

an ESRI ArcGIS geocoding tool. Therefore, the map could not be

generated in real-time.

Figure 7: Snow complaint data entry form.

Figure 8: Search snow complaints from 12/01/2010 to 03/29/2011.

Figure 9: Range queries.

 Figure 10: The moving point P starting at bP and moving with speed aP.

6. EFFICIENT MOVING POINTS

ESTIMATION

As shown in Figure 10, the position of any point P moving

linearly along the x-axis can be represented by a function ap.t + bp

where ap is the speed and bp is the starting position of point P.

Several GIS applications need to efficiently solve the following:

Count Problem for Moving Points: Given n moving points P0,

P1… Pn-1 in one dimensional space with parametric functions Pi =

aP.t + bP for i = 0,…, n-1 and a query point Q with Q = aQ.t + bQ,

find the number of Pi to the left of Q at given time t.

For example, we may want to know how many cars are to the left

of a slow moving vehicle, which may be a snow removal truck.

[11] presents an indexing algorithm that finds an approximate

count for this problem in only O(m log N) time, where m is a

constant parameter that controls accuracy of the result and N is

the number of moving vehicles. A key element of the algorithm is

representing each moving point P = ap.t + bp by a static point

 P’ = (ap, bp) in a dual plane as shown below in Figure 11.

Figure 11: The dual representation of point P(aP,bP).

 Figure 12: Approximating points below query line L.

bp

ap x

y

P’

ap

bp
x

0

Δa

bmax

bmin

amin amax

A0

A1

A2

A3

A4

B0

C0
B1

B2
C1

C2 B3

C3

Query line

L

Figure 13: 10,000 moving points and query lines in dual plane.

This dual representation is attractive because of the following

well-known lemma:

Lemma 1 Let P = ap.t + bp and Q = aQ.t + bQ be two moving

points in one-dimensional space, and let P’= (ap, bp) and

Q’ = (aQ, bQ) be their corresponding static points in the dual

plane. If P overtakes Q or vice versa at time instance t, then the

following must hold:

 QP

QP

aa

bb
t






That is, -t is the slope of the line P’Q’. Hence, the Count

Problem for Moving Points reduces to the problem of finding

how many points are below a query line L, where L is a line

crossing Q’ with slope –t in the dual plane.

Further, [11] reduces the problem of finding the number of points

below a line to an O(m) number of ECDF-tree queries as shown

in Figure 12, which leads to the following algorithm.

MovingPoints Algorithm

Inputs -- n points P0(aP0, bP0),…, Pn-1(aPn-1, bPn-1)

– query point Q (aQ, bQ)

– m: the number of line divisions

– t: the query time in seconds

Output: the number of points Pi dominated by Q at time t.

1. Find amax = max(ap0,…,apn-1), amin = min(ap0,…,apn-1),

and bmax = max(bp0,…,bpn-1), bmin = min(bp0,…,bpn-1).

2. Compute a = (amax – amin)/m and b = (bmax – bmin)/m.

3. Compute arrays A[m], B[m-1], and C[m-1].

4. Compute and return the following approximate count of the

number of points below line L through Q with slope –t

2

),(#),(#),(#),(#

0

11 ICIBIAIA

belowApprox
i

m

i

im 







where, I is the ECDF-tree that stores the dual representations of

the moving points and #(Ai, I) is the number of points dominated

by point Ai, #(Bi, I) is the number of points dominated by point Bi,

and #(Ci, I) is the number of points dominated by point Ci.

10,000 Moving Points

y = -x + 50

y = -x + 100

y = -x + 150

y = -x + 200

y = -x + 250

y = -x + 300

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

a

b

We implemented the indexing method of [11] on a data set

that contained 10,000 random moving points that were created by

allowing both aP and bP to vary uniformly between 0 and 33.

Figure 13 shows a graph of 10,000 moving points and seven

query lines in the dual plane.

Table 3 records the running time for counting number of

points below each query line L with different m and Q at time t =

1 second. In Table 3 we use the following parameters:

 (1) # of dominated points: the number of points dominated

by Q at time t.

(2) Counting time: The total of counting time for counting

the number points dominated by Q at time t (excluding the time

for setting up and creating the ECDF-tree).

The last column of Table 3 is used to show the accurate

answers. We can see that the answer with m = 10 had a maximum

error of 26, while with m = 100 had a maximum error of only 6.

In both cases the maximum error occurred with the query point

Q(150, 150). For Q(150, 150), the error was 0.6 percent with

m = 10 and only 0.14 percent with m = 100.

Table 3: Running time results for point dominance queries.

Line Estimate with

m = 2

Estimate with

m = 5

Estimate with

m = 10

Estimate with

m = 100

Estimate with

m =10,000

Q(20,30),

 t = 1 sec

of dominated points 356 140 116 103 105

Counting time 1 msec 1 msec 1 msec 9 msecs 764 msecs

Q(50,50),

 t = 1 sec

of dominated points 750 490 445 446 446

Counting time < 1 msec 1 msec 1msec 8 msecs 763 msecs

Q(100,50),

 t = 1 sec

of dominated points 1129 1046 1022 1018 1019

Counting time < 1 msec < 1 msec 2 msec 8 msecs 765 msecs

Q(100,100),

 t = 1 sec

of dominated points 2036 1815 1806 1823 1820

Counting time < 1 msecs < 1 msecs 1 msecs 8 msecs 767 msecs

Q(100,150),

 t = 1 sec

of dominated points 3159 2895 2874 2875 2875

Counting time 1 msec 1 msec 1 msec 8 msecs 770 msecs

Q(150,150),

 t = 1 sec

of dominated points 4324 4174 4176 4144 4150

Counting time < 1 msec < 1msec 1 msec 8 msecs 776 msecs

Q(330,330),

 t = 1 sec

of dominated points 10,000 10,000 10,000 10,000 10,000

Counting time < 1 msec < 1 msec < 1 msec 8 msecs 808 msecs

CountingTime (msecs)

n = 10,000 moving points

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20000 40000 60000 80000 100000

m

C
o

u
n

ti
n

g
 T

im
e

(m
s
e
c
s
)

CountingTime

Figure 14: Time vs. m graph with n = 10,0000 moving points.

Figure 14 shows that the counting time varies linearly with the

value of m, as expected. Therefore, there is a natural trade-off

between the accuracy of the approximation and the counting time.

7. FUTURE WORK
In the future, we would like to extend our system to show all the

moving snow removal trucks. This would be an interesting

synthesis of several different types of indexing algorithms. For

example, the efficient max-count algorithm of [1] could find the

maximum number of snow removal trucks in a rectangular area

between two time instances, and the 1-dimensional moving point

algorithm could find the number of snow removal complaint

locations on a straight road ahead of a particular snow removal

truck.

Instead of the static ECDF trees [3], we also plan to implement

the dynamic ECDF trees [19], which would allow efficient

addition and deletion of moving objects. Finally, we also plan to

consider the problem of estimating aggregate values of the

number of moving vehicles in an area when the movement of the

vehicles is not linear but polynomial, based on the recent model of

[17].

8. ACKNOWLEDGMENTS
We would like to thanks Alicea McCluskey, Shane Dostal, Scott

Opfer, Al McCracken, and Angela Chesnut of Lincoln Public

Works for providing information and suggestion about street

maintenance operations and traffic crash analysis; Mark Wieting

of Lincoln Information System for providing traffic crash data

from CJIS; Frank Larson, Tracy Schuppan, and Tan Pham of

Lincoln CEIS for providing GIS technical advice; James

Anderson of Lincoln IS for supporting the ArcGIS Server;

Virendra Singh of Lincoln Public Works for expert advice

regarding traffic crash analysis; Tim Pratt of Lincoln CEIS for

managing and overseeing software development, and Roger

Figard for allowing and encouraging us to publish these results.

The second author served as a Jefferson Science Fellow at the

U.S. Department of State during part of this research work. The

opinions expressed in this paper are only the authors’ own.

9. REFERENCES
[1] Anderson, S. and Revesz, P. Efficient max-count and

threshold operators of moving objects. Geoinformatica,

13(4): 355-96, 2009.

[2] Bao, J., Ying, J., and Hayamizu, S. Development of traffic

analysis system using GIS. Proceedings of the 2nd

International Conference on Information Science and

Engineering, page 3648, 2010.

[3] Bentley, J.L.. Multidimensional divide-and-conquer.

Communications of the ACM, 23(4), 1980.

[4] Bigham, J.M., Rice, T.M., Pande, S., Lee, J., Park, S.H.,

Gutierrez, N., and Ragland, D.R. Geocoding police collision

report data from California: A comprehensive approach.

International Journal of Health Geographics, 8, 2009.

[5] City of Lincoln, Criminal justice information system (CJIS):

http://cjis.lincoln.ne.gov/~lpd/cfstoday.htm

[6] City of Lincoln, 2008 crash study:

http://lincoln.ne.gov/city/pworks/engine/crash/index.htm

[7] Kamal, M.A. City planning and development using

geographic information systems. Proceedings of the 11th

International Conference on Computer and Information

Technology, page 3, 2008.

[8] Kanellakis, P., Kuper, G., and Revesz, P., Constraint query

languages, Journal of Computer and System Sciences,

51(1):26-52, 1995.

[9] Nwaneri, S.O. Mapping intersection accidents with GIS

technology in Huntsville, Alabama, U.S.A. Proceedings of

the IEEE International Geoscience and Remote Sensing

Symposium, volume 6, page 3727, 2003.

[10] Parrish, L.S., Dixon, B., Cordes, D., Vrbsky, S.,and

Brown,.D. CARE: An automobile crash data analysis tool.

IEEE Computer Society, 36(6):22, June 2003.

[11] Revesz, P. Efficient rectangle indexing algorithms based on

point dominance. Proceedings of the 12th International

Symposium on Temporal Representation and Reasoning,

IEEE Press, pages 210-12, Burlington, VT, June 2005.

[12] Revesz, P. Introduction to Databases: From Biological to

Spatio-Temporal, Springer, 2010.

[13] Steiner, R., Bejleri, I., Yang, X., and Kim, D. Improving

geocoding of traffic crashes using a custom ArcGIS address

matching application. Proceedings of the 22nd Environmental

Systems Research Institute International User Conference,

San Diego, 2003.

[14] Sewell, C. Remembering a snowstorm that paralyzed the city,

New York Times, February 10, 2009.

[15] Steenberghen, T., Dufays, T., Thomas, I., and Flahaut, B.

Intra-urban location and clustering of road accidents using

GIS: A Belgian example. International Journal of

Geographical Information Science, 18(2):169–181, 2004.

[16] Wikipedia article on geocoding

http://en.wikipedia.org/wiki/Geocoding

[17] Yue, H., Jones, E., Revesz, P., Local polynomial regression

models for vehicle speed estimation and forecasting in linear

constraint databases. Proceedings of the 17th International

Symposium on Temporal Representation and Reasoning,

IEEE Press, pages 154-161, Paris, France, September 2010.

[18] Zhang, D., Tsotras, V. J., Gunopulos, D., Efficient

aggregation over objects with extent, Proceedings of the 21st

ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 121-132, 2002.

[19] Zhang, J., Chen, L., You, S., and Chen, C. A hybrid

approach to segment-type geocoding of New York City

traffic data. Proceedings of the 1st International Conference

on Computing for Geospatial Research and Applications,

ACM Digital Library,

http://dx.doi.org/10.1145/1823854.1823871, 2010.

http://cjis.lincoln.ne.gov/~lpd/cfstoday.htm
http://lincoln.ne.gov/city/pworks/engine/crash/index.htm
http://en.wikipedia.org/wiki/Geocoding
http://dx.doi.org/10.1145/1823854.1823871

