
SIMILARITY QUERIES IN LINEAR CONSTRAINT

DATABASES

by

Ying Deng

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Ful�llment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Peter Z. Revesz

Lincoln, Nebraska

December, 1999

Similarity Queries in Linear Constraint Databases

Ying Deng, Ph.D.

University of Nebraska, 1999

Advisor: Peter Z. Revesz

The abstraction ...

ACKNOWLEDGMENTS

I owe a special thanks to my advisor, Dr. Peter Revesz, who introduced me to

this exciting area of research and gave me invaluable advice on the development of

this dissertation, which would not exist without his motivation, guidance, patience.

I would like to thank Dr. Sharad Seth, Dr. Ashok Samal, Dr. Sunil Narumalani,

for having made available their time and commitment to serve on my supervisory

committee.

I would also like to thank my colleagues with whom the great pleasure of teamwork

is discovered.

A big thanks to my friends who helped me and made my living in Lincoln so much

fun.

I dedicate this dissertation to my parents for their endless love, always supporting

and encouraging me.

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Related work : 7

1.3 Contributions : 12

1.4 Organization : 14

2 Constraint Databases 16

2.1 Constraint Databases and Query Languages : : : : : : : : : : : : : : 17

2.2 Datalog with Constraints : 20

2.3 Spatial Databases with Linear Constraints : : : : : : : : : : : : : : : 26

2.4 Indexing for Constraint Databases : 30

3 Similarity Measure of Spatial Databases 34

3.1 Distance Measure : 35

3.1.1 Measure Line Segments : 35

3.1.2 Measure Polygons : 40

4

3.2 Matching Method for Similarity Measure : : : : : : : : : : : : : : : : 45

3.2.1 Weighted Bipartite Matching : : : : : : : : : : : : : : : : : : 46

3.2.2 Similarity Measure : 47

4 Change Operators for Constraint Databases 50

4.1 Introduction : 50

4.2 Preliminaries : 55

4.3 Revision : 60

4.4 Update : 63

4.5 Arbitration : 66

4.6 Conclusion : 70

5 Computational Complexity 72

5.1 Preliminaries : 72

5.1.1 Basic Algorithms : 73

5.1.2 Area Computation : 77

5.1.3 The Assignment Problem : 79

5.2 Computational Complexity of the Similarity Measure : : : : : : : : : 80

5.2.1 Computing Distance between Two Polygons : : : : : : : : : : 80

5.2.2 Computing Similarity of Two Linear Constraint Databases : : 81

5.3 Computational Complexity of the Knowledge-base Change Operators 83

5.4 Conclusion : 84

6 Perceptual Experiments on Similarity Measures 86

6.1 Previous Research : 86

6.2 Investigations on Linear Similarity Measures : : : : : : : : : : : : : : 88

6.2.1 Methods and Procedures : 88

6.2.2 Results : 91

6.3 Discussions : 93

7 Implementations 94

7.1 A Review of MLPQ/GIS System : 94

7.2 Implementation of Similarity Queries : : : : : : : : : : : : : : : : : : 96

8 Conclusions 99

8.1 Future Work : 102

1

Chapter 1

Introduction

1.1 Motivation

In the past decades, spatial database systems have attracted extensive attention be-

cause of the steadily increasing number of applications. The applications are found in

architecture, environmental protection, computer aided design(CAD), very large scale

integration circuit(VLSI) design, medical imaging and geographical information sys-

tems(GIS). Spatial database systems o�er spatial data models and query languages.

A formally de�ned semantics in terms of �nite representation and e�cient techniques

to implement operations are critical for a spatial database system.

In relational databases, data and relationship between data are represented by

tables with well structured data tuples. Program evaluation is bottom-up based on

all the instances explicitly stored in the database. Optimization via algebraic trans-

2

formation, selection propagation, etc. have obtained a great deal of achievements.

The techniques of indexing and hashing make secondary memory access e�cient and

contribute to practical implementations. Some works use the relational data model

for limited spatial database applications.[49].

In previously proposed spatial databases, the data modeling is based on vector

and raster. However, not all problems can be expressed in these two models and

further extensions are requested by many applications. With more and more functions

being added to commercial systems, more attention is paid to the limitations of the

employed models. E�orts to combine these two models do not overcome all the

problems. \They combine only the power of the two models, but do not provide

what is not included in one or the other"[16]. A spatial object typically consists of

two kinds of information: meta-data and spatial features [17]. Meta-data is generally

expressible as a scheme of a relational database. Spatial features or visual features

derived from image processing or computer vision computations are traditionally

based on discrete values of raw data. It has certain drawbacks such as sensitivity

to noise, unsuitabilities for modeling moving objects and ine�ciency for information

retrieval. Extracting higher level information that are more robust and have a more

intuitive meaning is expected.

In constraint databases a ground fact, or tuple, is a conjunction of constraints

over a certain number of variables. Constraints can �nitely represent data even in an

in�nite domain which is necessary for spatial and temporal. With a set of constraints:

3

the constraint data model is the in�nite point set in space which ful�lls all the con-

straints. Spatial data are expressed with simplicity and completeness. Spatial data

manipulation involves accessing large volumes of spatial data and performing complex

geometry computations, and thus requires the investigation on relationships between

constraint programming and database query languages. Researches have shown that

it is possible to combine the bottom-up, e�cient declarative database programming

and e�cient constraint solving [34].

The constraint data model provides a �nite representation of the unrestricted

relational data model. The value of any attribute in the constraint data model is

speci�ed implicitly using variables and constraints [48]. In conjunction with the

uniformed data representation, constraint tuples, constraint databases do not need

to treat spatial objects as special cases and therefore simplify the query optimization

problem, and o�er a dynamic query evaluation based on the optimizers developed for

constraint programming systems.

Constraint databases to model continuous variables and therefore images and

spaces (not only discrete points) is novel. Constraint databases build on the current

research in the database community, where constraint databases are being increasingly

used to solve spatial problems. Constraint databases contribute to the design task

for the layout of highways and provides solutions to many spatial design problems,

such as the design of distribution networks for cable based communications etc[16].

We often hear people say that \daughters look like mothers" or \Nebraska Capital

4

Building is unique among other buildings". At �rst glance, similarity judgments like

the above are deceptively simple because humans seem to be so good at it. Most

three years olds may identify all the pictures of dogs in children's picture books,

and in everyday life, people frequently use similarities to judge and describe things.

However, experts in AI still can not write a program that would accomplish the

picture identi�cations [14].

For spatial databases, the concept of a `reasonable query' depends on the spatial

properties that are used in the application. Similarity query, in its simplest form,

can be stated as, retrieval or select all objects that are similar to the template ob-

ject. There are a large number of applications associated with similarity query. Large

collections of pictures or images, called image databases, already exist or are being

created. With a large number of faces in a database, to �nd a similar face with

good precision is a well-known application. Solutions to other problems, such as

�ngerprint identi�cation used by police department and detectives, house blueprint

selection encountered by real estate agents, are also typical applications. Image re-

trieval methods are divided into text-based and content-based image retrieval, which

have been broadly noticed and studied by experts in �elds of database management,

computer vision, image interpretation, information retrieval, geographic information

modeling and so on.

Conventional text-based image query methods depend on keywords or descriptive

text associated with the images. In text-based image retrieval, the visual properties

5

can not be accessed directly but only restricted by the particular vocabulary used to

describe them. Especially, queries for shape similar to a given shape are not feasible.

Content-based Image Retrieval(CBIR) system helps users retrieval relevant im-

ages based on their contents. Previous database researchers advocate attribute based

representation of image using conventional database systems. Whereas image inter-

pretation researchers prefer to feature extraction and object recognition to overcome

limitations of the former approach, but they su�er expensive computation, di�cult

modeling and tends to be domain speci�c. Current research in the purpose of combin-

ing the two approaches di�er in terms of image features extracted, level of abstraction,

and the degree of domain independence [23].

No matter which approach is used, queries facilitating CBIR involve features like

color, texture, volume, motion, shape and other objective attributes. IBM's QBIC

(Query By Image Content) system [14] uses image and video content as the basis of

retrieval. Query by color, texture and shape are provided to users through a graphical

user interface. Technology from this system has moved to commercial products and

found use in a wide range of applications.

Exploring similarity-based retrieval is one of the main tasks for CBIR systems.

There are diverse applications in which similarity query is an important activity:

weather forecasting, architecture and engineering design, art gallery and museum

management, picture archiving and so on. Data models with express power, query

languages with comprehensive and e�cient query processing, are at the heart of a

6

similarity query technique. Further research and development work are scienti�cally

deep-seated and commercially important.

Database systems allow user update information stored in it. Data insertion,

deletion and other changes should be accomplished without user's knowing exactly

how. The database system determines which tuples to add or eliminate to satisfy

user's requirement and meanwhile keep the all data consistent. In relational database,

query processing and information change are over constants, i.e., tuples contain only

real instances. Integrity constraints can be easily maintained.

With constraint databases, information is represented as constraints. Users are

not expected to know how constraints are changed but what are the change prin-

ciple and results. A logical theory which can be used as the principle of database

consistence is very important to guide the development. Although it is di�cult to

say what are good change operators, the principle of minimal change is agree upon

by most people. From a model-theoretic point of view, Katsuno and Mendelzon [35]

analyze the semantics of revising knowledge base represented by sets of propositional

sentences. in terms of minimal change with respect to an ordering among interpre-

tations, they give a characterization of revision schemes that satisfy Gardenfors's [1]

rationality postulations. Revesz [51] proposes arbitration as the third kind of change

operation beyond update and revision. He shows that arbitration operators can also

be characterized as accomplishing a minimal change. The principle of minimal change

states that the result of adding the new information to a database should be the set

7

of models of the new information that are closest to some possible models in the

current database. Hence the database change problem is largely reduced to �nd good

measure for distance between all possible models. This principle can be applied to

constraint database and some early work refers to [52]. It is interesting to see that

how the change operators can be de�ned in terms of a similarity measure, and what

are the characters the operators perform.

1.2 Related work

Deploying a similarity query technique involves three primary issues:

1. Data Representation. How can an object be represented in terms of its visual

or spatial properties? How can the representation be extracted automatically

or semi-automatically when a similarity query is act on to the database?

2. Similarity Measure. Similarity measure is to assess the deviation from equiva-

lence. Given a representation scheme, how should any two objects or relations

be compared or matched? What measures should be employed to determine

the visual or spatial similarity(or dissimilarity) of them?

3. Query Method. How should the tuples in the database be organized to enable

e�cient search for relations that are similar to a given query template? What

indexing mechanism should be employed?

8

Recent progresses are impressive and existing similarity query techniques resolve

these issues in various ways.

There are two common approaches. In a model-driven system, each picture which

is called as a model, is used as a test target, for which the input model is compared

individually against each shape in the database, or against a number of features chosen

to identify shapes to �nd a match. Model-driven techniques were thought to be not

well-suited for spatial information retrieval because of their linear time complexity

with the number of models.

In recent years, the data-driven approach has emerged. In a data-driven tech-

nique, an index structure organizes the known picture or model collection. Given an

unknown model, the index is searched to �nd matching models.

A few techniques have been proposed for spatial search or similar shape retrieval.

Jagadish's technique [26] uses a rectangular cover for featuring a shape. Each

shape in their database consists of an (ordered) set of rectangles. The ideas of se-

quential description of an object's feature is applied to rectangular covers. The shape

is represented by means of the relative positions and sizes of these rectangles. Their

similarity measurement is based on area di�erence which counts the unoverlapped

area when one shape is placed \on top of" the other. They also proposed a spatial

indexing based on shape similarity rather than spatial location, as other standard

spatial indexing methods do. Partially occluded objects can't be dealt with under

their method. In addition, some shapes may have more than one sequential descrip-

9

tions which leads to ambiguity into the similarity and there are no good solutions for

this potential problem. Either the size of the database has to be multiplied to keep

all the sequences, or special e�orts at query time are required. The �rst option is not

feasible because it requires too much space, while the other is slow.

The visual shape of an object is very di�cult to encode using traditional rela-

tional databases. Information loss is an unavoidable problem. Mehrotra and Gary's

approach [41] computes the boundary segments of a shape. An ordered sequence of

boundary points represents the shape's feature. A pair of points are arbitrarily cho-

sen to form a \basis vector", which is used to normalize the coordinate system and

encode a set of features. Information loss is inevitable here because the normalization

process hides distortions of a picture via regular transformations of scale, rotation and

translation. Both rigid and articulated shapes are within the handling ability of their

technique. An articulated shape is represented by a collection of its rigid components

which is identi�ed with the user's involvement and assistance.

They de�ne the similarity between two shapes as the Euclidean distance between

the normalized feature vectors. The index design and search is based on the ordered

set of points of a boundary. Similar shapes are found along the tree-structured index

search until the leaf which contains a information on location and shape feature is

reached and the shape similarity constraint is satis�ed.

Since the basis vector could be any boundary segment and it plays a critical role

in the retrieval process, users have to be very careful with the selection of query

10

features, which change with the user's point of view. The query is not robust. Such

abstract-level problems as noise sensitivity or distortion e�ects of sharp convex angles

or larger line segments should not be explicit and presented to the user.

Boundaries of spatial objects are usually represented by rectangular bounding

boxes. Jagadish [25] proposes a technique with polyhedra to reduce the redundant

boundary area for an object and therefore to overcome some problems introduced

by the rectangular boundaries. With polyhedra some improvement is obtained on

more precisely representing boundaries, but this method requires more complex com-

putations. The P-tree index structure associated with their technique requires extra

bounds that have to be stored and checked at every access.

Their techniques can not ideally deal with spatial design problems. Let's look at

an example. Consider the query that asks which states Highway I-84 passes through

from Potland to Ogden. With the techniques employing rectangular boundaries,

7 states (Washington, Idaho, Montana, Oregon, California, Nevada and Utah) are

retrieved for this query. Actually the highway goes through only 3 of these states. If

polyhedral boundary is used for the highway, some but not all irrelevant states are

excluded.

Using the constraint data model [34], the highway is represented as a collection

of line segments and the states are represented as sets of polygons. The query for

the intersection of the highway and the states can be easily expressed and e�ciently

evaluated using the MLPQ/GIS system [33]. Precise result is generated without any

11

redundant storage.

Another example is in noise removal for �ngerprints. Observe that there are a

large number of line segments in the �ngerprint and it is extremely hard to avoid

erroneous intersection of rectangular bounding boxes with polyhedra. In constraint

databases, this problem does not occur. The join of two line segments with very close

endpoints is guaranteed not to intersect with any other line segments already present.

Researchers have also made e�orts on data modeling with constraints and system

development. Vandeurzen et. al. [62] proposed a linear spatial database model in

which the representation and manipulation of both non-spatial and spatial data are

based on �rst-order logic over the real numbers with addition. By presenting a general,

variable- dimensional, linear spatial database model as a formal framework, They tried

to bridge the gap and combine the bene�ts of two main approaches : models based

on �xed spatial dimension and models based on variable spatial dimensions. Their

proposed model uses seme-linear sets as spatial data type. They propose a declarative,

calculus-like query language, FO+linear which can express a lot of practical queries.

(However it can not be considered as a fully quanti�ed querying tool for linear spatial

database because certain natural linear queries , such as collinearity or computing

convex hull of a �nite set of points cannot be expressed. This problem is not merely

a de�ciency for some particular model, but a fundamental issue because no safe

extension of FO+linear exists to be complete for linear spatial queries.)

12

The MLPQ/GIS system [33] developed in the computer science department of

UNL is based on linear constraint database. The internal data representation uses

linear constraint data model which is proposed to be a common basis for geo-spatial-

temporal data because of its expressive power, e�cient query evaluation and conve-

nient data integration. MLPQ/GIS will play an important role in next generation

database systems. The MLPQ/GIS system provides two kinds of queries, icon-based

and Datalog- based queries. The basic queries are input through the graphical user

interface, then translated into a procedural algebraic language and optimized using

e�cient algebraic evaluation algorithms, and �nally evaluated. Not only the funda-

mental operators, such as selection, projection, join, union, and so on are implemented

in this system based on linear constraints, but certain aggregation functions like area,

bu�er, etc. facilitating geographic and temporal data manipulation. Animation of

dynamic spatial-temporal information has been deployed and embedded in the sys-

tem [40]. With constraint relations, the spatial data that change with time passing,

are stored non-redundantly and accessed e�ciently. Advantages compared with rep-

resentative commercial GIS products are non-trivial and presented in [33].

1.3 Contributions

The goal of this thesis is to address the problem of similarity-query, where pictures or

images in a database that satisfy the speci�ed similarity constraints with respect to

the query picture or image must be selected from the database. We propose a novel

13

method which is based on constraint data model.

By applying existed edge detection algorithms in Arti�cial Intelligence area, we

transfer photos or pictures to stick �gures, which are represented using constraint

database. The global geometric features of a picture are counted for the similarity

measure. When a new picture is submitted to �nd a similar picture in the database,

it will be compared and similar pictures from the database will be matched. The

following �gure illustrates the procedure.

detection
edge

detection
edge

Figure

Database:

Match
Compare/

New Photo

Stick Figure

User Input:
New Stick

Photo

Figure 1.1: Similar Picture Query

A stick �gure, or sketch is popularly recognized as an epitome which approximates

reality and often is su�cient for conveying meaning and geometries of a picture. An

alternative way allows user to construct shapes by drawing the sketches on screen us-

ing tools. Based on the distance measure, similarity of pictures is no more ambiguous

and similarity query is e�ciently evaluated, involving comparing of individual sketch

or sets of sketches in the constraint database.

Rarely will two sketches be exactly the same, the shape, the direction, the position

14

and the scaling may be vary signi�cantly or slightly di�erent so that not sensitive

to human visual system. To achieve the possibly best measure, this thesis present

experimental investigation which quantitates and computes the di�erences between

human intuition and automatic data extraction and measure. Analysis result from

the experiments well guides the re�nement of the method.

In this thesis, we also study updating of constraint databases. Concrete change

operators are presented based on principles of model-theoretic minimal change. We

show that the revision, update, and arbitration operators proposed in this study can

be characterized by satisfying axioms in this area.

1.4 Organization

The outline of this thesis is as follows.

Chapter 2 gives an in-depth introduction to constraint data models and constraint

query languages. Indexing techniques with constraints are also described. Then the

representation and manipulation principles for spatial information using constraint

databases are illustrated with several examples.

In chapter 3, a novel method of similarity measure is deployed. We give details

in how the distance between two pictures are measured. Some assumptions are made

which we also describe for the sake of simplicity without loss of genericity. The core

technique used in our method is the matching method solving assignment problems.

We show by examples. how this method can be useful in de�nition and evaluation of

15

the measures.

In chapter 4, based on the distance measure proposed in chapter 3, we study the

characteristics of change operations for constraint databases. Revision, update and

arbitration operators are de�ned in terms of model-theoretic minimal change. The

concrete operators presented are proved to satisfy several axioms commonly accepted

by the database community.

In chapter 5, we present the algorithm employed to implement the change opera-

tors based on the distance measure. The computational complexity of the algorithm is

analyzed. We also make several extension to this algorithm and improve its analysis.

In chapter 6, analysis and discussion of the experimental investigation is shown

to study whether our similarity measures agree with human intuition. Using exper-

imental investigation, a large number of pictures are used to compare the di�erence

between our similarity measure and human evaluation of similarity.

In chapter 7, we summerize the current research and point out further directions.

Some open problems are listed as an encouragement for other researchers.

Chapter 2

Constraint Databases

Database systems study how to provide good ways to store, manipulate and view

data. Relational databases are organized as a set of relations which are represented

as tables. Each attribute has an entry in the table. A tuple is an instance of all

attributes contained in the table. The relationship between attributes and relations

are de�ned in schemes. Constraint databases extend relational databases and provide

signi�cant convenience and e�ciency improvement for spatial applications. In this

chapter, we review how constraint databases accomplish such a goal by representing,

querying and indexing data with constraints, while preserving the merits of relational

databases.

16

17

2.1 Constraint Databases and Query Languages

For a system to be usable, it must retrieve data e�ciently. This concern has led to

the design of complex data structure for the representation of data in databases. The

complexity is hidden from users through several levels of abstraction. The top most

level of abstraction, called the view level presents data in particular ways that may

be convenient to a speci�c group of users. The middle level of abstraction, called the

logical level describes what data are stored in the database and what relationships

exist among those data. The lowest level, called the physical level describes how the

data are actually stored in a computer system. Constraint data models are devel-

oped in the logical level. The various levels of data abstraction are linked together

by translation methods. Links between the constraint level and the physical level

involve implementation of basic storage structures, (e.g. R-trees or B-trees), paging

methods, disk location of �les etc. Links between the view level and the constraint

level provide techniques for displaying the data. Combining constraint relations with

data displaying based on constraint queries is very important for the tasks towards

practical constraint databases.

A framework for using constraint databases is presented in [34]. The following

three de�nitions are from [34].

De�nition 2.1.1 A generalized k-tuple is a quanti�er-free conjunction of constraints

on k variables ranging over a domain �. Each generalized k tuple represents in a �nite

way an in�nite set of regular k-tuple.

18

A generalized relation of arity k is a �nite set of generalized k-tuples with each

k-tuple over the same variables.

Suppose relation R contains the set of points on the line with slope four. It is

impossible for a relational database to enumerate all the points on the line, however

the line can be �nitely represented by a generalized 2-tuple R(x; y) : � y = 4x in a

natural sense.

A generalized database is a �nite set of generalized relations.

The semantics of constraint query languages is also discussed in [34]. An alterna-

tive and equivalent semantics presented in [48] is as follows:

Let r

i

be the generalized relation assigned to R

i

. We associate with each r

i

a

formula F

r

i

that is the disjunction of the formulas on the right side of each generalized

k-tuple of r

i

. Let � be any relational calculus formula. Satisfaction with respect to a

domain � and database d, denoted < �; d >j=, is de�ned recursively as follows:

< �; d >j= R

i

(a

1

; : : : ; a

k

) i� F

r

i

(a

1

; : : : ; a

k

) is true (2.1)

< �; d >j= (� ^) i� < �; d >j= � and < �; d >j= (2.2)

< �; d >j= (:�) i� not < �; d >j= � (2.3)

< �; d >j= (9x

i

�) i� < �; d >j= �[x

i

=a

j

] for some a

j

2 � (2.4)

< �; d >j= R

i

(a

1

; : : : ; a

k

) i� (a

1

; : : : ; a

k

) 2 r

i

(2.5)

< �; d >j= (� ^) i� < �; d >j= � and < �; d >j= (2.6)

< �; d >j= (:�) i� not < �; d >j= � (2.7)

19

Constraint Query

Relational
DB OutputDB Input

Constraint DB Output

Query
Relational Relational

Constraint DB Input

Figure 2.1: The Constraint Data Model

< �; d >j= (9x

i

�) i� < �; d >j= �[x

i

=a

j

] for some a

j

2 � (2.8)

where [x

i

=a

j

] means the instantiation of the free variable x

i

by a

j

.

For the relational data model, queries are functions from input relational databases

to output relational databases. In the generalized database model of [34], queries are

functions from generalized databases to generalized databases using the same type of

constraints. This closed-form requirement is the analogue to the termination and the

constructibility requirements in relational databases. Constraint query languages are

generalizations of relational query languages with constraints. Figure 2.1 illustrates

the constraint data model. Constraint query languages are a subset of constraint logic

programming [27]. Each constraint logic program is a mapping from a �nite set of

constraint facts to a least model. There are several criteria for e�ectively evaluating

the least model or whether the least model is �nitely representable and e�ciently

computable. For constraint query languages, these problems are solvable and thus

satisfy the requirements that each query must terminate and the query output is

given as a database.

It is known that for any �rst-order theory with constraint relations, T , if quanti�er

20

elimination is allowed, then the output of each relational calculus query on generalized

relations containing only constraints in T is evaluable in �nite time. Moreover, the

output can be represented as a generalized relation containing only constraints in T .

This is very helpful with the goal of closed-form evaluation for generalized databases.

Computational e�ciency for quanti�er elimination can be improved by algebrizing

the procedure. Algebraic operators provide e�cient set-at-a-time computations with

generalized relations, and they are considered in studies of constraint databases by

many researchers (see some example works in [5, 29, 50]). We discuss the termination

of the closed-form evaluation of Datalog queries with constraints in the next section.

2.2 Datalog with Constraints

Datalog [61], the primary example of a deductive query language, utilizes logic as a

way to represent knowledge and as a language for expressing operations on relations.

Datalog derives new relations from input relations using rules. Each Datalog query

consists of a �nite set of rules of the form

R

0

(x

1

; : : : ; x

k

) : �R

1

(x

1;1

: : : ; x

1;k

1

); : : : ; R

n

(x

n;1

; : : : ; x

n;k

1

)

The x's are either variables or constants in the domain. If the variables on the

right side are substituted by constants, which makes the right side true, then the

left side must also be true. In general, rules in Datalog de�ne the true instances of

certain predicates, with R

0

in the above form, in terms of certain other predicates,

21

50

5

HW-A

HW-D

HW-C

HW-B
20

15

10

25

10 252015

Figure 2.2: The Town Map and Highway Layout

R

1

; : : : ; R

n

, where each R

i

is either an input relation name or a derived relation name.

Example 2.2.1 Suppose we have two relations in a constraint database. One rela-

tion represents a town region and the other contains the highways around the town

as shown by Figure 2.2. The two relations can be de�ned as follows.

Town(x; y) : �x � 3; x � 18; y � 13;

y � 19; 7y � 6x � 49:

22

Town(x; y) : �y � 9; 7y � 6x � 49; x � 18;

y + 2x � 27; 2y � x � 4; x+ y � 33:

Highway(HW A; x; y) : �y = 17; x � 2; x � 20:

Highway(HW B; x; y) : �10x+ y = 234; y � 12; y � 22:

Highway(HW C; x; y) : �y = 7; x � 3; x � 20:

Highway(HW D; x; y) : �x = 12; y � 5; y � 22:

The Town relation has two attributes which are represented as two variables, x

and y corresponding to the value of x and y coordinates in the map. The town region

is the collection of all the point-sets that satisfy the constraints on the right side of

the rules. The relationship between relations with same relation names but di�erent

rule bodies, is the logical OR. All the (x; y) pairs that satisfy either of the two sets of

rules are in relation Town. The Highway relation contains four sets of constraints,

each of which represents the point-set that lies on a highway which is a line segment

in the map. The comma symbols (,)s represent conjunctions between constraints.

`HW A', `HW B', `HW C', and `HW D' are constants as the name of each highway.

Example 2.2.2 The following query �nds all the highways that pass through the

town.

Q

passthrough

(name) : �Town(x; y); Highway(name; x; y):

The query Q

connect

�nds all the highways that are connected to the town directly

or indirectly (if intersecting any passing through highway).

Q

connect

(name1) : �Q

passthrough

(name1); Highway(name1; x; y).

23

Q_connect (HW-C)

Town(12, 15) Highway(HW-D, 12, 15)

Highway(HW-D, 12, 7)Highway(HW-C, 12, 7)Q_passthrough(HW-D)

Figure 2.3: The Proof Tree

Q

connect

(name) : �Q

connect

(name1); Highway(name1; x; y); Highway(name; x; y):

A query is recursive is the body of any of its rules constraints a derived relation.

Otherwise, the relation is called non-recursive. For instance, the query Q

passthrough

is

a non-recursive query and Q

connect

is a recursive query.

Syntactically, Datalog is a fragment of predicate calculus extending relational

calculus with intensionally de�ned relations. In relational calculus each query de�nes

a single output relation which is not named explicitly and all other relations are input

relations. In Datalog, a query may de�ne several output relations which are referred to

by names within the query, that is, built-in relations are allowed in Datalog. There are

expressions in recursive Datalog , such as the Q

connect

query, that can not be expressed

in relational algebra or relational calculus. The relational calculus underlying most

commercial relational query languages is a form a logic that can be obtained from a

non-recursive Datalog program with the substitution of logical OR of the rule bodies.

24

The proof-based semantics of Datalog queries views the input databases as a set

of axioms and the rules of the query as a set of inference rules to prove that speci�c

tuples are in some derived relation. The rules can be used only by substituting

given or proven facts in the right side and thereby proving the resulting fact on the

left. When proof trees are used to show the reasoning of provable tuples, each internal

node usually represents the head of an instantiated rule, and its children are the body

relations. For example, the proof tree displayed in Figure 2.3 proves that `HW C'

indirectly connects to the town. It is a fact that the point (12; 15) is within the

town region and also on the highway `HW D'. So `HW D' is one of the proven facts

in relation Q

passthrough

. Another given fact is that the point (12; 7), the intersecting

point, resides on both highway `HW C' and highway `HW D'. Applying the rules, it

can be derived from the Q

passthrough

relation and the Highway relation that `HW C'

is a tuple in the Q

connect

relation. Similarly, proof trees can be constructed for every

tuple in the output database as long as negation is not involved.

Model-theoretic based semantics of Datalog views rules as de�ning possible worlds

or \models". An interpretation assigns truth or falsehood to every possible instance

of the predicates, whose arguments are chosen from some in�nite domain of constants.

Instead of only given facts used as in the proof-based interpretation, a model is an

interpretation that makes the rules true, no matter what assignment of values from the

domain is made for the variables in each rule. Consider the rules (1) p(x; y) : � q(x; y)

and (2) q(x; y) : � r(x; y; z). Suppose the domain of interest is Reals�Reals and the

25

only given fact is r(1; 2; 3). Then the true tuples that can be derived using proof-tree

are q(1; 2) and p(1; 2). No other tuple is true. However, not only fp(1; 2); q(1; 2)g is a

model, but also fr(1; 2; 3); p(1; 2); q(1; 2); p(3; 4); q(3; 4)g which is consistent with the

database because the semantics \If the right side is true, then the left side is true."

is not violated.

The model-theoretic interpretation of rules can deal with negations in Datalog

programs. To interpret negations, the use of a variable in a subgoal is forbidden if that

variable does not also appear in another subgoal, which is neither negated nor a built-

in predicate. It is possible to rewrite any rule so that this restriction can be satis�ed.

For example, suppose q and r are given relations, the rule p(x) : � q(x);: r(x; y) can

be rewritten as (1) s(x) : � r(x; y) and (2) p(x) : � q(x);: s(x).

It seems that the model-theoretic approach can handle a more powerful class of

rules. Nevertheless, no matter which meaning to choose, it is essential that equivalent

computational meaning can be found, that is, to provide an algorithm for executing

the rules and then tell whether a potential fact is true or false. Fortunately, rules

can be translated into a sequence of operations in relational algebra. Algorithms are

available to compute all and only those tuples such that when variables are substituted

by constants, every rule is made true. Recursive rules can be computed correctly using

naive or semi-naive evaluation algorithms [61]. Negated rules can be strati�ed �rst

and then the ? least model is selected from among all possible models.

Constraint databases are parameterized by the type of constraint domains and

26

constraints used. Real polynomial inequality constraints, dense linear order inequal-

ity constraints, boolean equality constraints, and set constraints are typical types

attracting a great deal of interest in the constraint database community. It is known

that Datalog programs with real polynomial constraints can be evaluated bottom-up

in closed-form and NC data complexity[34]. Since most basic operations of compu-

tational geometry can be described in Datalog with real polynomial constraints, this

implies the potential capability of constraint databases to be used in spatial applica-

tions.

2.3 Spatial Databases with Linear Constraints

A spatial database is a database system that o�ers spatial data types and query

languages and supports such data types in its implementation, providing at least

spatial indexing and e�cient algorithms for spatial join.

As a number of data models have been proposed to handle spatial data, there are

many studies concerning the �nite representation of the in�nite and non-enumerable

set of points of spatial objects that are described by spatial data models. For example,

the raster model describes a spatial object by a �nite number of points which are

equally distributed following an easy geometric pattern, normally a square. The

spaghetti model deduces an spatial object to a set of poly-lines from its contour. Based

on the Peano curve, the Peano model represents non-uniformally distributed object-

points. The topological model handles topological information without dealing with

27

the exact position and form of the spatial objects. The polynomial model describes

spatial properties of an object by semi-algebraic sets [32, 63].

It is generally required that a spatial database should contain an elegant frame-

work to combine geometric and thematic information, be as general as possible and

not be designed for one particular area of application, have a formally de�ned se-

mantics that is closed under set theoretic, geometric and topological operations, i.e.

de�ned in terms of �nite representations and use e�cient implementation techniques,

especially for the operations on n-dimensional objects.

The polynomial data model is well suited to model spatial objects which require

exact geometrical and geographical information. The task of the spatial database is

to store a representation of some geographic area which are typically two-dimensional

maps. Such geographical information can be described precisely. Higher dimensional

spatial objects, unbounded and topologically non-closed geometric �gures which most

other models can not handle, can also be represented and manipulated with polyno-

mial inequality constraints.

The linear data model approximates spatial objects using linear representable

objects, e.g. points, line segment, polygons, i.e. only linear inequality constraints

are allowed. The simplicity of linear data is very attractive to spatial data modeling

and there also exist e�cient algorithms to implement the variety of operations on

spatial data [5, 6, 24, 38]. Spatial database models and prototypes [33] proposed in

the literature often focus on one speci�c type of spatial information such as polygonal

28

line segments for geographic application. This concentration is acceptable because it

is su�cient for many situations and allows extensions. In this thesis linear constraint

models are applied to our studies of similarity measure and database change operators.

We discuss the linear data model more formally as follows. The main idea is equivalent

to [32].

A linear term is of the form

P

k

i=1

a

i

x

i

, where x

1

; : : : ; x

n

are variables over real

numbers called real variables and a

1

; : : : ; a

n

are rational constants. An atomic linear

formula is of the form t� c with t a linear term, c a real constant and � 2 f=; <;>

;�;�; 6=g. A linear formula is recursively de�ned in �rst-order logic with addition,

i.e.,

(1) an atomic linear formula is a linear formula;

(2) if � and are linear formulae, then � _ ; � ^ ;: are linear formulae;

(3) if x is a real variable and a linear formula in which x is free, the (9x) is a

linear formula.

Every linear formula with n free real variables, x

1

; : : : ; x

n

, de�nes a point-set

called a semi-linear set

f(x

1

; : : : ; x

n

) j (x

1

; : : : ; x

n

)g

in n-dimensional Euclidean space R

n

. Every semi-linear set can be represented by

an in�nite number of linear formula, while every linear formula de�nes exactly one

seme-linear set.

29

A linear tuple of type [n;m] is de�ned as a tuple of the form

(c

1

; : : : ; c

n

; (x

1

; : : : ; x

m

))

where c

1

; : : : ; c

n

are non-spatial values of some domain C and (x

1

; : : : ; x

m

) is a

linear formula with m free real variables. Its semantics is the possibly in�nite subset

of f(c

1

; : : : ; c

n

)g � R

m

g, which can be interpreted as a possible in�nite (n +m)-ary

relation. A linear relation is a �nite set of linear tuples of type [n;m]. A linear spatial

database is a �nite set of linear relations.

A linear calculus query language called L-calculus is de�ned based on the linear

formulae as follows.

First, we allow non-spatial variable in a linear formula, disjoint with the set of

real variables. The form v

1

= v

2

with v

1

and v

2

are non-spatial variables, is added

to be an atomic formula. Universal and existential quanti�cations followed by non-

spatial variables are atomic formulae. The form R(v

1

; : : : ; v

n

; t

1

; : : : ; t

m

) is an atomic

formula, where R is a spatial linear relation of type [n;m], v

1

; : : : ; v

n

are non-spatial

variables and t

1

; : : : ; t

m

are linear terms. Then a query expressed in L-calculus has

the form

f(x

1

; : : : ; x

n

) j (x

1

; : : : ; x

n

)g

where (x

1

; : : : ; x

n

is an expression of L-calculus with free variables x

1

; : : : ; x

n

.

Finally, we give a simple example query.

Example 2.3.1 The query \Find all the highways that pass through the town." on

the constraint database in Example 2.2.1 can be expressed by the following L-calculus

30

expression:

f(n)j(9x)(9y)(Town(x; y) ^Highway(n; x; y))g

For more detailed and deeper studies examining the expressiveness and limitations

of calculus, see the references [32, 63].

2.4 Indexing for Constraint Databases

A successful practical database system could never ignore supporting its queries with

e�cient secondary storage manipulation. For the relational data model, there are

many techniques developed, e.g., B-trees, grid �les, Hashing indices, etc. All the

indexing techniques proposed and applied in database systems have shown advantages

as well as limitations, no one technique is best in general since each technique may

be best suited for particular applications. Regardless of which technique to use, there

are some basic factors to be evaluated for each technique [57].

� Access types that are supported e�ciently. These types could be searching

tuples with a speci�ed attribute value, or if a value falls in a speci�ed range.

� Access time it takes to accomplish a searching.

� Insertion time it takes to insert new information. The value included the time

for �nding the correct place to insert it and the time for updating the index

structure.

31

� Deletion time it takes to delete old information. The value includes the time

for �nding the location of the old information and the time for updating index

structure.

� Space overhead due to the additional space occupied by an index structure.

There are always tradeo�s between the improved performance and space over-

head.

B

+

-trees [8, 7] are representive data structures for implementing relational databases.

Let r be a relation with n tuples, each secondary memory access transit B units of

data. Let x be the search key. The space used for a B

+

-tree index is O(N). The

worst case for �nding all tuples such that for the x attribute (a

1

� x � a

2

) is

O(log

B

n + k=B) if the output size is k tuples. To insert or delete a given tuple, the

worst case is O(log

B

N) secondary memory access.

For spatial databases, indexing is also a central problem. There are some solutions

with good performance, e.g., R-trees, quad-trees, K-D-B-trees [47, 59, 60]. It is of

great value to study how current spatial database access methods can be applied

to indexing constraint query languages. Constraint query languages guarrentees low

data complexity and have strong applicability to manipulate spatial data. It is, of

course, important to index constraints and thus to support the new language with

e�cient secondary access as long as the cost of space is moderate.

Analogue to relational databases, there are two operations de�ned as follows

for generalized databases, which is called one-dimensional searching on generalized

32

database attribute x.

(1) Find a generalized relation that contains all the tuples of the input generalized

database such that their x attribute satis�es (a

1

� x � a

2

);

(2) Insert or delete a given generalized tuple.

The problem of k-dimensional searching on generalized database attributes (x

1

; : : : ; x

k

)

extends one-dimensional searching to k attributes with range searching on k-dimensional

intervals.

Under the natural assumption that the projection of any generalized tuple on x is

one interval (a

1

� x � a

2

), [34] gives a solution for one-dimensional searching. The

idea is to index a generalized database using a set of intervals, where each interval

is associated with a generalized tuple. Each interval (a

1

� x � a

2

) in the index is

the projection on x attribute of its associated generalized tuple. The two-endpoint

a

1

, a

2

representation of an interval act as a �xed length generalized key. Finding a

generalized relation that represents all the tuples of the input generalized database

such that their x attribute satis�es (a

1

� x � a

2

), can be performed by adding the

constraint (a

1

� x � a

2

) to only those generalized tuples whose generalized keys have

a non-empty intersection with it. The insertion or deletion of a given generalized tuple

is performed by computing its projection and insert or delete intervals from a set of

intervals. This method transforms the one-dimensional searching into the problem

of on-line intersections in a dynamic set of intervals and thus reduces redundancy of

representation and improves performance.

33

The indexing is much harder for two or higher dimensional searching problems.

Under the standard assumption that each secondary memory access transmits one

page or B units of data and counts it as one I/O, [31] proposes the new data structure

metablock tree to solve diagonal corner query. This data structure has worst-case space

O(n=B) pages, query I/O time O(log

B

n+k=B) and O(log

B

n+(log

B

n)

2

=B) amortized

insert I/O time. [31] points out that the two-dimensional range searching can be

solved using worst-case O((n=B)log

2

n) pages, static query I/O time O(log

2

nlog

B

n+

k=B), and amortized update I/O time O(log

2

nlog

B

n).

There are also signi�cant other progress made in di�erent directions. It is proved in

[22] that two-dimensional queries can be answered in O((n=B+ t=B)(log

M=B

(n=B))+

k=B) I/O's where t is the number of queries being processed and M is the amount

of main memory available. [55] shows that it is possible to answer 2-sided queries in

optimal O(log

B

n + k=n) disk I/O's with storage usage of O((n=B)log

2

log

2

B). The

amortized cost of an update is O(log

B

n). [54, 55] also consider range searching when

several attributes are involved. A more general statement found in [58] shows that any

secondary storage data structure that can answer two-dimensional range searching

queries in O(log

c

B

n + k=B) I/O's in the worst-case (where c is a constant) has to

occupy
((n=Blog(n=B)=(loglog

B

n)) disk blocks. All these techniques aim at e�cient

constraint queries. Many open problems remain to be solved in this area.

Chapter 3

Similarity Measure of Spatial

Databases

There are several similarity notions including changes of scale, position, size, rotation,

shape changes, and so on. These are typical geometric transformations. Similarity

measure is application-dependent. Study on the changes of a single factor such as

area di�erence, or Euclidean distance, is far from adequate to satisfy numerous appli-

cations. It is unlikely possible to �nd a general measure best for all cases. However,

there are still advantages to look at these problems together in an abstract way, as

we do in this chapter. We propose a new method to measure the similarities between

two-dimensional spatial objects, which are used to represent most spatial scenes and

can be easily extended to deal with n-dimensional spatial information.

34

35

3.1 Distance Measure

3.1.1 Measure Line Segments

Assume that we are given a linear constraint database which contains a set of line

segments in the plane. Each line is de�ned by its slope, a lower bound and an upper

bound constraint on x. An example of a general form could be, y = ax+c; lb < x < up

where a, and c are constants, lb and up are the upper and lower bounds respectively.

Given a speci�c line, any other line segment can be transformed into the given

line segment by shifting its mid-point to where the given line segment's mid-point

is located, then rotating the line segment a certain degree, and �nally extending or

shrinking the line segment to the length of the given line segment. Based on this

observation, we measure the distance between two line segments by taking into con-

sideration the changes of length, slope and position together, which can give complete

comparison between two line segments. Each of the three factors may be of di�erent

importance in di�erent applications, so weights are put on each of the three factors

and can be assigned with any values exibly.

First, we de�ne following terms.

MidpnDist is the Euclidean distance of the mid-points of the two line segments.

LengthDi� is the absolute value of the di�erence of the lengths of the two line

segments.

LengthSum is the sum of the lengths of the two line segments.

36

(a)

l’

l’ ll

θ

(b)

− θπ

− θπθ

Figure 3.1: De�nition of AngleDiff

AngleDi� is the rotation degree.

Suppose we have two arbitrary line segments l and l

0

in the plane, as shown

in Figure 3.1(a). The two line segments are either parallel or their extended lines

intersect at some point. There exist two inside angles � and �� � between these two

line segments. The smaller one � is de�ned as the AngleDiff . If two line segments

are parallel, � = 0. Under this de�nition, the AngleDiff ranges from 0 to 90. The

value of sin(AngleDiff) ranges from 0 to 1. Given a line segment l, all line segments

on the line l

0

have the same AngleDiff with respect to line segment l. As illustrated

in Figure 3.1(b), Anglediff = �� �. The degree of AngleDiff in (b) equals that in

(a) because � � � in (b) equals to � in (a).

Now, we propose the following formula to calculate the distance notated ldist(l

1

; l

2

)

between two line segments l

1

and l

2

.

ldist(l

1

; l

2

) = w

p

�MidpnDist + w

s

� LengthDiff+

w

r

� LengthSum� sin(AngleDiff) (3.1)

37

where w

r

, w

p

, w

s

are weights for the transformation of rotation, position and scale,

respectively.

The following example shows how the proposed formula can be used to measure

the distance between two line segments.

Example 3.1.1 Suppose we have two arbitrary line segments l

1

and l

2

in the plane as

shown in Figure 3.2(1). The end points of the two line segments are (17; 23); (6; 12)

and (23; 3); (19; 14), respectively. First, we calculate the coordinates of their mid-

points m

1

and m

2

. For m

1

, it is (11:5; 17:5) and for m

2

, it is (21; 8:5). So MidpnDist

equals to

q

(11:5� 21)

2

+ (17:5� 8:5)

2

which is 13.09.

Second, we calculate the LengthDiff and LengthSum. The length of l

1

is 15.56.

The length of l

2

is 11.70. So LengthDiff = 3:86 and LengthSum = 27:26.

Thirdly, the AngleDiff equals to � and sin(�) = sin(66

�

) = 0:91.

Finally, we assume w

r

= w

s

= w

p

= 1 for simplicity. Pluging in the calculation

results of former three steps, we get the distance of the two line segments ldist(l

1

; l

2

) =

13:09 + 3:86 + 27:26� 0:91 = 41:76.

If we say l

2

is a transformation from l

1

, then Figure 3.2 displays how l

1

can be

restored from l

2

by the following three steps: parallelly move l

2

along the line between

m

1

and m

2

as Figure 3.2(2), then rotate l

2

an angle of 66

�

as Figure 3.2(3) and �nally

extend its length 15:56=11:70 = 1:33 times as Figure 3.2(4). Now we see that the two

line segments are exactly the same.

The proposed distance measure between two line segments is based on geometric

38

5

25

10

15

201510

20

5

l

0

1m

1

θ

252015

25

l

10 15 20 25

(4)(3)

(2)(1)

20

0

1m

1

5

15

10

25

5

l 2

10

1

m1

m10

25

5

2

l

0 5 25201510

l 2

15

2l

2

0 5

5

20

15

10

25

m

1m

1
l

20

Figure 3.2: Distance between two line segments

39

transformations. It has following features.

1. Geometric. Only geometric features are considered. Non-spatial features of

a spatial scene, such as weather information, population information are not

involved. The advantage is that the comparison is quanti�ed easily because

geometric objects are usually represented in mathematical ways.

2. Comprehensive. All of the geometric transformation factors are considered.

Two line segments have minimal distance 0 if and only if they are identical. Any

translation, rotation, extension or shrink is reected by a non-zero distance.

3. Flexible. Each transformation factor can be considered with di�erent weight.

For example, if rotation is considered to be a signi�cant factor, then a much

larger weight can be assigned to w

r

. If some factor is of little interest, then

a very small number or even 0 can be assigned to the corresponding weight

coe�cient.

4. Atomic. Spatial scene are usually represented as collections of points, line seg-

ments and polygons. If we let w

r

and w

s

be zero, then the formula calculates

the geometric distance between two points. If we look a polygon as a set of

line segments then the formula can be conveniently extended to applicable for

polygons. A measure between two polygons is given in next section.

5. Symmetric. The functions applied on every factor are symmetric, so that no

matter which one is the standard, the distance between two line segments is

40

always the same, i.e. ldist(l

1

; l

2

) � ldist(l

2

; l

1

).

6. Non-oriented. The line segments are considered with no direction, which leads

to the simplicity of the measure.

7. N-dimensional. This formula can be used for line segments in n-dimensional

space directly.

8. Independent. No matter what type of data model is used to represent the spatial

objects, spaghetti model, linear constraint model, vector model or many others,

the measure works independently on them.

9. E�cient. The formula can be calculated in constant time. Slope, length, mid-

point distance involve only simple calculations well known by middle school

students.

3.1.2 Measure Polygons

A two-dimensional spatial scene can be looked as a collection of polygons. This is a

reasonable assumption because a line segment is a special polygon with one edge and

zero area and a point is a special line segment with zero edge length. In addition, any

non-linear (curved) objects can be approximated by linear objects. So a measure of

distance between polygons can generally be a measure of any two-dimensional linear

representable objects.

At �rst, we de�ne following terms related to our measure.

41

commonArea is the area of the intersection of the two polygons.

totalArea is the area of the union of the two polygons.

Center point is the geometric center of a polygon.

DistCPnt is the Euclidean distance between the center points of the two poly-

gons. DistCPnt(p

1

; p

2

) =

q

(x

1

� x

2

)

2

+ (y

1

� y

2

)

2

with p

1

of (x

1

; y

1

) and p

2

of

(x

2

; y

2

).

edgeLenSum is the average length sum of the two polygons, i.e. edgeLenSum =

1

2

P

l

e

i

where l

e

i

is the length of edge e

i

which belongs to the two polygons.

scaleChange is calculated by: dtEdgeLenSum=ptEdgeLenSum� 1 or

ptEdgeLenSum=dtEdgeLenSum� 1, depending on which one is positive.

dtEdgeLenSum denotes the length sum of the edges of one polygon which is

called the distorted polygon and ptEdgeLenSum denotes the length sum of the

edges of the other polygon which is called the prototype polygon.

rttAngle is the average rotated angle. Each edge in the prototype polygon is paired

with an edge in the distorted polygon. If the two polygons have di�erent number

of edges, then some edges are repeated used in pairing edges until every edge

has a partner. The minimal average AngleDiff of each pair of edges is de�ned

as the rttAngle, where the AngleDiff is the same as it is de�ned in previous

section.

42

50

5

(20, 17)

(10, 10)

25

10

15

20

25201510

Figure 3.3: Distance between Two Squares

Now, we propose following formula to calculate the distance between two polygons

P

1

and P

2

,, denoted by PGDist(P

1

; P

2

).

PGDist(P

1

; P

2

) = DistCPnt+ � � sin(rttAngle) � edgeLenSum+

� � scaleChange � edgeLenSum+ �

p

totalArea� commonArea (3.2)

where �, �, may be any positive constants as weights for each component.

To show how we can use the proposed formula, we give following examples, from

regular polygons to irregular ones and from simple situations to complicated ones.

We assume � = � = = 1 in all following examples.

Example 3.1.2 As an simple example shown in Figure 3.3, the two squares have

the DistCPnt equals to

q

(20� 10)

2

+ (17� 10)

2

which equals to 12.2. There is no

rotation between these two polygons, but some scale change. The scaleChange equals

43

50

5

(10, 10)

(15, 15)

20

15

10

25

10 252015

Figure 3.4: Distance between a Square and a Diamond

to (40=16� 1) which is 1.5. The average sum of edge lengths, edgeLenSum equals to

(40 + 16)=2 = 28. The totalArea is 100 + 16 = 116, with zero commonArea. So we

have PGDist = 12:2 + 1:5 � 28 +

p

116 = 64:97.

Example 3.1.3 As shown in Figure 3.4, the distance between two center points,

DistCPnt equals to

q

(15� 10)

2

+ (15� 10)

2

which is 7.07. Each edge of the di-

amond can be paired with an edge of the square and the average rotation is

�

4

.

The scaleChange equals to (40=12

p

2 � 1) which is 1.38. The edgeLenSum equals

to (40 + 12

p

2)=2 which is 28.48. These two polygons have the intersection area,

commonArea equal to 4.5 and the totalArea equal to 113.5. So we have PGDist =

7:07 + 1:38 � 28:48 +

p

2

2

� 28:48 +

p

109 = 76:95.

Example 3.1.4 As shown in Figure 3.5, The DistCPnt is 7.07. The scaleChange

44

20 25

(10, 10)

(15, 15)

150 5

5

25

10

20

15

10

Figure 3.5: Distance between a Square and a Hexagon

equals to 40=18 � 1 = 1:22. Each edge of the hexagon is paired to an edge of the

square with rotation of 0,

�

6

,

�

6

, 0,

�

6

and

�

6

, respectively. So the rttAngle equals to

�

9

. The edgeLenSum equals to (40+18)=2 = 29. The commonArea equal to 9.0 and

the totalArea equals to 126.9. So we have PGDist = 7:07+ sin(

�

9

) � 29+ 1:22 � 29+

p

117:9 = 69:24.

Example 3.1.5 As shown in Figure 3.6, the center points of the two polygons are

overlapped, so DistCPnt equals to 0. The scaleChange equals to 42=40� 1 = 0:05.

The rttAngle is

�

4

, the same as that of Example 3.1.4. The edgeLenSum equals to

41. The commonArea is (100�4�

p

3

2

) which equals to 96.5, and the totalArea equals

to 129.5. So we have PGDist = 0:05 � 41 + sin(

�

9

) � 41 +

p

129:5� 96:5 = 28:46.

All the four examples we showed above are between two polygons. It is interesting

45

15 20 25

(10, 10)

100 5

5

20

15

10

25

Figure 3.6: Distance between Two Polygons

to compare this measure and the measure of line segments with human intuitions of

similarity evaluation. We will present this work in Chapter 6.

3.2 Matching Method for Similarity Measure

In this section, we introduce the problem of weighted bipartite matching and refer to

some algorithms which solve this problem in polynomial time. Based on the distance

measure presented in above section, we propose a new similarity measure for spatial

databases by applying the ideas of the bipartite matching.

46

3.2.1 Weighted Bipartite Matching

A matching M in a graph G = (V;E) is a set of edges with no two edges sharing

a vertex. Given a graph G = (V;E), the matching problem is to �nd a matching

M that has as many edges as possible, i.e. the maximum matching of G. When

the cardinality of a matching is bjV j=2c, the largest one possible in a graph with jV j

nodes, the matching is complete.

If we are given, besides the graph G = (V;E), a number w

ij

� 0 for each edge

[v

i

; v

j

] 2 E, called the weight of [v

i

; v

j

], then the matching problem turns to be �nding

a matching of G with the largest possible sum of the weights. Clearly, the unweighted

matching problem is a special case of the weighted matching problem: Just let w

ij

= 1

for all edges in E.

A graph is bipartite if its vertex set V can be partitioned into (at most) two

independent sets V

1

and V

2

, which means that there are no edges formed by two

vertices which are in the same set. A complete bipartite graph is a bipartite graph

in which the edge set consists of all pairs having a vertex from each of the two

independent sets in the vertex partition. It is clear that bipartite graphs is a special

case in the problem class of weighted matching.

We may assume that a bipartite graph G is a complete bipartite graph with two

sets of vertices that are of equal size | otherwise let the weights of those missing edges

in G be equal to zero or add new vertices with edges of weight zero incident upon

them. The optimal solutions at this point will always be complete matchings (since

47

w

ij

� 0. Considering the cost c

ij

= W �w

ij

where W is larger than all the w

ij

's, the

bipartite weighted problem is also known as the assignment problem which is stated

as: For what man-job assignment is the total cost minimized, assuming the cost of

assigning man i to job j is a

ij

. The assignment problem can be described by a concise

linear program, which is a special case of the Hitchcock problem [39], and is solved

by the primal-dual method called the Hungarian Method [30, 39]. The Hungarian

method solves the weighted matching problem for a complete bipartite graph with

2jV j vertices in O(jV j

3

) arithmetic operations. The matching problem has attracted

the interest of researchers during decades of years. Some recent improvements can be

found in [18, 46].

3.2.2 Similarity Measure

The distance measures proposed in Section 3.1 are between two line segments or two

polygons. Now we assume that the two spatial objects are represented by two sets

of polygons. For each polygon in one set, we calculate the distances between this

polygon and every polygon in the other set using the proposed distance measure of

two polygons.

Now, there are two di�erent cases. In the �rst case we have the same number of

polygons in the two pictures. In this case, we pair the polygons in the �rst picture

with the polygons in the second picture such that the sum of the di�erences of the

pairs is minimal. Such a pairing can be found in polynomial time in the number of

48

polygons using weighted bipartite matching algorithms referred above.

If the number of polygons are di�erent (say n and m number of polygons in

the two spatial objects with n < m), then we pair the n elements of the smaller

set of polygons with the closest elements of the other polygon. For each remaining

unmatched polygon in the larger set (m � n polygons) we assume some maximum

constant C distance in the calculations.

Now let us look at an example which calculates the distance between two sets of

polygons.

25

5

50

10 S2

S1

R1

R2

1510

20

15

20 25

Figure 3.7: Distance between Two Sets of Polygons

Example 3.2.1 Suppose we have two databases S and R. Each contains two poly-

49

gons as displayed in Figure 3.7. Using, Formula (3.2), we calculated the PGDist

between each pair of the polygons as below.

PGDist(R1; S1) = 8:0

PGDist(R1; S2) = 19:52

PGDist(R2; S1) = 29:12

PGDist(R2; S2) = 25:10

So the distance between database S and database R is

PGDist(R1; S1)+PGDist(R2; S2) = 8:0+25:10 = 33:10, which is the minimal sum

of the PGDist across all possible polygon pairing.

50

Chapter 4

Change Operators for Constraint

Databases

4.1 Introduction

Database systems must allow changes to the database. In most current database

systems, speci�c commands are provided to insert and delete tuples or to update the

values of the attributes. These low-level operations however often lead to inconsisten-

cies and other errors. For example, if only additional information is to be acquired,

one may simply insert a tuple into the database. If, however, the new tuple conicts

with the current contents of the database, we have to resolve the conicts based on

some rules and principles. This consistency requirement brings out the well-known

problem of database changes: if some data is expected to change, then what other

51

data must change with them and what should remain the same? The goal of high-

level operations is to allow database users to be concerned only with what is the new

information they want to insert into the database and to leave the burdon of resolving

inconsistencies between the new and old data to the system.

There are three types of high-level change operations: revision, update and arbi-

tration. Revision changes the database by saying that something in the database is

incorrect in the sense that it was never true and a new information is to be added to

replace the old one. For example, suppose there is a database containing information

about the class registration of students in the University of Nebraska. A student wants

to add class CSCE913 for the next semester. However, the database records show

that he has registered CSCE861 which is scheduled at the same time as CSCE913.

This is conict to the constraint that students may not take two classes arranged at

the same time. Assume that the latest registration is considered as the correct one

and the former registration due to incorrect operation. The database systems revises

the class registration for this student by triggering a series of low-level operations

(i. e., delete the registration record of CSCE861 and insert the new registration of

CSCE913) which leave the integrity constraint satis�ed.

Update deals with the situation when some facts have changed over time, i.e.,

what was true before, is not true any more. For example, the student registered

CSCE913 in the above example gets an `I' grade by the end of the semester. Later

a grade `A' is to replace the old grade. Not only the low-level update operation is

52

needed to set the value of grade attribute from `I' to `A', but also the change of the

total credit hours earned by the student is required because an `I' grade earns zero

credit, while an `A' grade earns 3 credit hours. Also the grade point average has to

be changed as well. So the relational database is to be updated to keep the grades

information up-to-date by applying a number of lower-level operations that satisfy

the request of the user and leave all the usual database integrity constraints satis�ed.

Arbitration settles arguments between sets of various statements. It is useful when

making judgments in a trial, negotiating an international trade contract etc. For ex-

ample, imagine that there is a database containing testimonies of several witnesses.

The police wants to �nd all the consistent statements from the database. An arbitra-

tion operation over the set of testimonies draws out the results by applying a series

of deletion of inconsistent information and combining the remaining statements into

some consistent assertions. The three types of high-level change operations, revision,

update and arbitration complement with each other. They can be used alternatively

in complex situations as well as independently in speci�c cases.

A declarative language is a language in which one can express what one wants

without explaining how the desired result is to be computed. Knowledge-base systems

are generally systems supporting declarative, logic-based languages. A knowledge-base

management system (KBMS) is a programming system that has the capabilities of

both a database management system (DBMS) and a knowledge system [61]. High-

level change operations over knowledge-bases preserve the property that users are

53

not involved in how to maintain the consistency of the system but only describe the

problem using provided declarative languages. The system automatically check the

inconsistencies and knows how to solve them according to some rules.

Frameworks on generalizing the three types of change operations have attracted a

number of researchers. Fundamental work on knowledge base revision can be found

in [1] which proposes a set of rationality postulates that the revision and update

operator must satisfy and it explores the implications of their postulates. Katsuno

and Mendelzon [35] studies the revision and update operators for on propositional

knowledge-bases. They discuss the di�erences between operators where the result of

a change depends on the particular syntax of the sentences in the knowledge-base,

and operators where it depends on the possible worlds described by sentences.

Katsuno and Mendelzon also give a model-theoretic characterization of all revision

operators that satisfy the postulates in [1]. They also show that such operators

accomplish a minimal change to the sets of models of the knowledge base. A total

pre-order among the interpretations induced by the propositional knowledge-base is

de�ned to give a meaningful sense to the concept of minimality.

Revesz [51] analyzes the model-theoretic properties of arbitration operators. A

set of axioms is de�ned that arbitration operators must satisfy to accomplish a min-

imal change in a di�erent sense. These three classes of axioms and minimal change

principles are commonly accepted by most researchers. They relate the postulates

with their methods of change operators, some of which are declared to satisfy all the

54

axioms, while others satisfy part and fail on the other parts [3, 9, 15, 52, 56, 64, 65].

Each new information described in a logical form allows several models of the

world which are currently thought as being true. Under the principle of minimal

change, the result of changing any information in a knowledge-base should be the

set of models that are closest to some existing models. Therefore, �nding a distance

measure between models is important for the precise de�nition and implementation

of database change operations.

In this chapter, we address the issues of database change operators for linear con-

straint databases. By applying the distance measure proposed in the previous chapter,

we show that, revision, update and arbitration operators for constraint databases can

be de�ned and proved to satisfy the axioms proposed by Katsuno, Mendelzon and

Revesz. All the operators also have a model-theoretic characterization that imply

well-de�ned model-based minimal changes to constraint databases. Some examples

are presented to show how the operators are applicable for spatial data manipulation.

The rest of this chapter is organized as follows. Section 4.2 presents the basic

de�nitions and notations in constraint databases and model-�tting change operators.

The fundamental axioms proposed in [35] and [51] are described. Next three sections

present de�nitions of the three types of change operators. They are shown to satisfy

all the recognized axioms. We also analyze their model-theoretic characteristics and

give examples for various applications. Section 4.6 summarizes our contributions and

mentions open problems.

55

4.2 Preliminaries

Alchourron and his colleagues [1] propose a set of postulates that any reasonable

revision functions must satisfy. The postulates do not assume any speci�c languages

to model the knowledge-bases but a deductively closed set of formulas. Katsuno and

Mendelzon [35] consider knowledge-bases represented by a �nite set of propositional

sentences and proposes a set of postulates that a revision operator on knowledge-bases

must satisfy. A direct correspondence between the two sets of postulates is also given

and proved in [35].

Given a knowledge-base and a sentence �. Let � � denotes the revision of

by �. The postulates of [35] are as following.

(KM1) � � implies �.

(KM2) If ^ � is satis�able, then � � � ^ �.

(KM3) If � is satis�able, then � � is also satis�able.

(KM4) If

1

�

2

and �

1

� �

2

, then

1

� �

1

�

2

� �

2

.

(KM5) (� �) ^ � implies � (� ^ �).

(KM6) If (� �) ^ � is satis�able, then � (� ^ �) implies (� �) ^ �.

The main meaning of the six postulates is that the new knowledge � should

be retained in the updated knowledge-base (KM1), when there is no conict, it is

guaranteed to take the obvious path(KM2), the revision introduces no unwarranted

inconsistency (KM3), the principle of irrelevance of syntax [9] is satis�ed (KM4),

and (KM5) together with (KM6) represent the condition that revision should be

56

accomplished with minimal change.

[35] gives a model-theoretic characterization of revision which satis�es the postu-

lates. A function that assigns to each propositional formula a total pre-order �

is a faithfulassignment if the following conditions hold:

(1) If I; I

0

2Mod(), then I <

J does not hold.

(2) If I 2Mod() and I

0

62Mod() then I <

I

0

.

(3) If � � then �

��

�

.

That is, a model of can not be strictly less than any other model of and must

be strictly less than any non-model of .

It is proved in [35] that a revision operator � satis�es (KM1) - (KM6) if and only

if there exists a faithful assignment that maps each knowledge-base to a total pre-

order �

such that Mod(� �) =Min(Mod(�);�

). (see [35] for precise de�nitions

of the notations appear above.)

[51] gives a formal de�nition of the set of model-�tting operations and also a

model-theoretic characterization of the operations. [51] generalizes revision to model-

�tting by allowing the knowledge-base to be inconsistent. Corresponding to that, the

loyal assignment in [51] is a generalization of faithful assignment in [35].

Arbitration is originally proposed by [51] to be used as a change operator for

knowledge-bases. Analogous to revision and update, [51] gives a set of axioms that

an arbitration operator must satisfy and characterizes arbitration using generalized

loyal assignment. The main idea behind the model-theoretic characterizations of a

57

change operator is that the models closest to the whole set of formulas of a knowledge-

base are selected based on some total pre-order over all the models of the possible

world.

The studies on change operators in [35] and [51] are applicable to constraint

databases. The operators satisfying relevant axioms also have a model-theoretic char-

acterization. Before we show these, we give following basic de�nitions and notations

used in following sections.

We adopt the de�nitions of constraint databases from [34].

Recall that a generalizedk � tuple over variables x

1

; : : : ; x

k

is of the form:

r(x

1

; : : : ; x

k

) : � �

1

^ : : : ^ �

n

where r is a relation symbol, �

i

(for all 1 � i � n) is an atomic constraints of some

constraint theory and x

1

; : : : ; x

k

are the only variables.

A generalizedrelationrwitharityk is a set of generalized k-tuples with symbol r

on left side.

A generalizeddatabase is a �nite set of generalized relations.

In [35], a knowledge-base is a set of propositional formulas and the models of

the formulas are interpretations that make the formulas true. Contrast to that, we

de�ne that a generalizedknowledge � base is a �nite set of generalized databases.

In stead of de�ning and comparing distance between interpretations, our task is to

de�ne distance between pairs of generalized databases. We restrict our generalized

database to be a linear constraint database which contains a set of �nite number of

58

polygons in the plane. Each polygon is represented by a generalized relation, i.e., we

assume that all spatial objects are represented by sets of polygons. This a reasonable

assumption because a line segment is a special polygon with only one edge and zero

area, and a point is a special line segment with zero edge length. Also, spatial objects

with non-linear (curved) edges can be approximated by high-degree polygons.

We denote the models of A by Mod(A) where A is a generalized relation, a gen-

eralized database or a generalized knowledge-base. The formal de�nitions are as

following.

Let D be the domain over which variables in the database are interpreted.

Then the model of a generalized k-tuple with variables x

1

; : : : ; x

k

is the k-ary

relation

f(a

1

; : : : ; a

k

) : (a

1

; : : : ; a

k

) 2 D

k

and the substitution of a

i

for x

i

satisfies the right side:g

The model of a generalized relation is the union of the models of its generalized

tuples.

The model of a generalized database is the set of the models of its generalized

relations.

Themodel of a generalized knowledge-base is the set of the models of its generalized

databases.

Let K

1

and K

2

be two knowledge-bases.

If � is a generalized database, we take � 2 K

1

to be true if and only if Mod(�) 2

Mod(K

1

) in the regular sense.

59

Mod(K

1

) = ffMod(�)g : � 2 K

1

g.

K

1

� K

2

is true if and only if Mod(K

1

) �Mod(K

2

) in the regular sense.

K

1

\ K

2

= f�

1

2 K

1

: 9�

2

2 K

2

such that Mod(�

1

) = Mod(�

2

)g. Note that

Mod(K

1

\K

2

) =Mod(K

1

) \Mod(K

2

).

A pre-order relation � over M is a reexive and transitive relation.

A pre-order is total if for all pairs I; J 2M , either I � J , or J � I holds.

I < J holds if and only if I; J 2M , and I 6� J .

The set of minimal elements, S of M with respect to the pre-order �

is de�ned

as:

Min(S;�

) = fI 2 S :6 9I

0

2 S where I

0

<

Ig

The distance between two generalized relation is calculated using the proposed

formula in Section 3.1.2 since each relation represents a polygon. We pair each polygon

of one database with a polygon of the other database such that the sum of PGDist of

all the polygon pairs is minimal. This minimal sum is de�ned as the distance of the

two generalized databases, denoted by DBdist(DB

1

; DB

2

). We de�ne the distance

between a knowledge-base K and a generalized database I as following:

Dist(K; I) = min

J2K

DBdist(I; J)

We de�ne the overall distance between a knowledge-base K and a generalized

database I as following:

Odist(K; I) = max

J2K

DBdist(I; J)

60

4.3 Revision

[52] proposes a set of axioms out of the postulates in [1] that a revision operator on

generalized knowledge-bases must satisfy, which says that for generalized knowledge-

bases , � and �, the following holds:

(R1) Mod(� �) �Mod(�).

(R2) If \ � is non-empty, then Mod(� �) =Mod(\ �).

(R3) If � is non-empty, then � � is non-empty.

(R4) If Mod(

1

) = Mod(

2

) and Mod(�

1

) = Mod(�

2

), then Mod(

1

� �

1

) =

Mod(

2

� �

2

).

(R5) Mod((� �) \ �) �Mod(� (� \ �)).

(R6) If Mod((��)\�) is non-empty, then Mod(� (�\�)) � Mod((��)\�).

For generalized knowledge-bases, a faithful assignment is de�ned as a function

that assigns for each knowledge-base a total pre-order �

such that the following

conditions hold:

(1) If Mod(I);Mod(J) 2Mod() then I <

J does not hold.

(2) If Mod(I) 2Mod() and Mod(J) 62Mod() then I <

J .

(3) If Mod(

1

) =Mod(

2

) then �

1

=�

2

.

There exists a direct relationship between the axioms and a faithful assignment

which gives the model-theoretic characterization for revising generalized databases.

Theorem 4.3.1 A revision operator satis�es axioms (R1) - (R6) if and only if there

exists a faithful assignment that maps each generalized knowledge-base to a total

61

pre-order �

such that for every other generalized knowledge-base �, Mod(� �) =

Mod(Min(�;�

)).

Now we de�ne a concrete revision operator as follows.

For each pair of generalized databases I and J , we de�ne I �

K

J holds if and

only if Dist(K; I) � Dist(K; J) where K is a generalized knowledge-base. Then the

revision operator � on knowledge-bases K and is de�ned as:

K � =Min(;�

K

)

Lemma 4.3.2 The revision operator � satis�es (R1)� (R6).

Proof Prove by showing that the three faithful assignment conditions are satis�ed

by the revision operator �.

For condition (1), ifMod(I);Mod(J) 2Mod(), thenDist(; I) = 0 andDist(; J) =

0, i.e., Dist(; I) = Dist(; J). So I <

J does not hold.

IfMod(I) 2Mod() andMod(J) 62 Mod(), thenDist(; I) = 0 andDist(; J) >

0. So we have I <

J . Condition (2) is satis�ed.

It is obvious that condition (3) is also satis�ed.

Hence, we have de�ned a faithful assignment that maps each knowledge-base K

to a total pre-order �

K

such that for every other knowledge-base , Mod(K �) =

Mod(Min(;�

K

)).

The theorem and proof can be explained in a regular sense as follows. Suppose

we have a set of pictures containing spatial objects. Each picture is represented by

62

a generalized database. Relations in a generalized database represent the polygons

which consist the picture. Given a new picture, the revision operation selects those

pictures that have minimal distance with respect to the given picture, i.e., the pictures

that are most similar to the given picture are the result of the revision operation. If

any picture is the same as the given one, then this picture has the minimal distance

zero, while other pictures have a positive distance.This property guarrentees a faithful

assignment.

Example 4.3.1 Suppose there are a set of pictures each of which represents the

shape of a house owned by a real estate agent, as shown in Figure 4.1(1)-(3). A

customer who is interested in buying a house from the agent provides a picture which

shows the kind of shape that he is favorite, as shown in Figure 4.1(4). Then which

house is better for the agent to exhibit to the customer?

We represent the agent's pictures by generalized knowledge-base and the cus-

tomer's picture by knowledge-base K. Now applying K � , it is easy to calculate

and �nd out that picture (2) is closest to picture (4). So the agent will choose the one

that most possibly satis�able to his customer's interest. It is not hard to expect the

success of the agent who uses the databases that provide such kind of similar queries

and revision operations.

63

(3) (4)

(2)(1)

Figure 4.1: Revision Operation

4.4 Update

When information previously believed true becomes obsolete and has to be given

up, new information is to be added. The operation makes this change is called an

update. The following axioms must be satis�ed for an update operation on generalized

knowledge-bases , � and generalized database I [52].

(U1) Mod(� �) �Mod(�).

(U2) If Mod() �Mod(�), then Mod(� �) =Mod().

(U3) If and � are non-empty, then � � is non-empty.

(U4) If Mod(

1

) = Mod(

2

) and Mod(�

1

) = Mod(�

2

), then Mod(

1

� �

1

) =

64

Mod(

2

� �

2

).

(U5) Mod((� �) \ I) �Mod(� (� \ I)).

(U6) If Mod(��

1

) � mod(�

2

) andMod(��

2

) � mod(�

1

), then Mod(��

1

) =

Mod(� �

2

).

(U7) (Mod((I � �

1

) \ (I � �

2

))) �Mod(I � (�

1

[�

2

)).

(U8) Mod((

1

[

2

) � �) =Mod((

1

� �) [(

2

� �)).

A faithful assignment for update satis�es the following condition: For any gener-

alized database I, if I 6= J then I <

I

J .

The direct relationship between the axioms and a faithful assignment which gives

the model-theoretic characterization for updating generalized databases is described

as Theorem 4.4.1.

Theorem 4.4.1 A update operator satis�es axioms (U1) - (U8) if and only if there

exists a faithful assignment that maps each generalized database I to a total pre-

order �

I

such that for every other generalized knowledge-base , �, Mod(� �) =

S

I2Mod()

Mod(Min(�;�

I

)).

Now we can de�ne a concrete update operator as follows.

With respect to any generalized database I, a total pre-order �

I

is de�ned as: For

each pair of generalized databases J

1

and J

2

, let J

1

�

I

J

2

if and only ifDBdist(I; J

1

) �

DBdist(I; J

2

). Then an update operator � on knowledge-bases K and can be de-

�ned as:

65

K � =

[

I2K

Min(;�

I

)

Lemma 4.4.2 The update operator � satis�es (U1)� (U8).

Proof Prove by showing that the update operator de�ned above satis�es the faith-

ful assignment condition. For any generalized databases I and J , if I 6= J , then

DBdist(I; J) > 0, but DBdist(I; I) = 0. So we have DBdist(I; J) > DBdist(I; I).

By de�nition, I <

I

J holds. Hence, we have de�ned a faithful assignment that maps

each linear constraint database I to a pre-order �

I

such that for every knowledge-

bases , K, Mod(K �) =

S

I2Mod(K)

Mod(Min(;�

I

)).

Suppose we have a set of pictures represented by a generalized knowledge-base.

Given a new set of pictures, also represented by a knowledge-base, the update oper-

ation results in those pictures that have minimal distance with respect to one of the

pictures in the second set, i.e., as long as it is most similar to a certain picture, not

necessarily to closest to all the pictures. The faithful assignment condition is shown

to be satis�ed because, if any picture in the second set appears also in the original

set, then this picture has the minimal distance zero to the same picture in the original

set, while other pictures do not appear in the original set have a positive distance,

which is greater than zero.

Example 4.4.1 Suppose we have a knowledge-base � contains summer weather in-

formation, average high temperature and average low temperature of three cities, Lin-

66

coln, Boston, and Miami. Another knowledge-base contains the summer weather

information of Beijing. The pictures are shown in Figure 4.2. We want to �nd which

city has the most similar summer weather to Beijing.

The query can be solved using the update operator �. Applying � �, the result

is that the average high temperature of Lincoln is most similar to that of Beijing and

the average low temperature of Boston is most similar to that of Beijing. So picture

(1) and (4) are returned as the updated knowledge-base.

4.5 Arbitration

Arbitration is another kind of change operation related to revision and update. [51]

proposes a set of axioms that an arbitration operator over knowledge-bases must

satisfy. Considering the generalized knowledge-bases, we adopt the tuned axioms

from [52] as following.

(A1) Mod(. �) �Mod(�).

(A2) If is empty, then . � is empty.

(A3) If � is non-empty, then . � is non-empty.

(A4) If Mod(

1

) = Mod(

2

) and Mod(�

1

) = Mod(�

2

), then Mod(

1

. �

1

) =

Mod(

2

. �

2

).

(A5) Mod((. �) \ �) � Mod(. (� \ �)).

(A6) IfMod((.�)\�) is non-empty, then Mod(. (�\�)) �Mod((.�)\�).

(A7) Mod((

1

. �) \ (

1

. �)) �Mod((

1

[

2

) . �).

67

(C)

(C)

AugestJuly

40

30

20

June

July

40

30

20

10

(4) Boston Average Low

10

(1) Lincoln Average High

June AugestJuly

40

30

10

June AugestJuly

40

30

20

Augest

20

10

June AugestJuly

40

30

(8) Beijing Average Low(7) Beijing Average High

June AugestJuly

40

30

July

40

30

20

10

June

Augest

20

10

(6) Miami Average Low(5) Miami Average High

(3) Boston Average High

June

20

(C)

10

(C)

(2) Lincoln Average Low

June Augest

(C)

July

40

30

20

10

(C)

(C)

(C)

Figure 4.2: Update Operation

68

The two conditions that a faithful assignment should satisfy are as following:

(1) If Mod(

1

) =Mod(

2

) then �

1

=�

2

.

(2) If I �

1

J and I �

2

J then I �

1

[

2

J .

The second condition asserts that any generalized database that is closer to an-

other generalized database in both

1

and

2

must also be closer in

1

[

2

.

In [51], arbitration operators are also characterized as accomplishing a minimal

change in terms of model-theoretic methods.

Theorem 4.5.1 The knowledge base operator . satis�es axioms (A1) - (A7) if and

only if there exists a faithful assignment that maps each knowledge base K to a total

pre-order �

K

such that Mod(K .) =Mod(Min(; �

K

)).

To de�ne a concrete arbitration operator, we �rst de�ne with respect to any

knowledge-base K a total pre-order �

K

as follows. For each pair of generalized

databases I and J , let I �

K

J if and only if Odist(K; I) � Odist(K; J). Then the

arbitration operator . can be de�ned as:

K . =Min(;�

K

)

Lemma 4.5.2 The arbitration operator . satis�es (A1)� (A7).

Proof It is obvious that condition (1) is satis�ed.

For condition (2), we prove by contradiction.

Assume I �

1

J and I �

2

J but I 6�

1

[

2

J . By the de�nitions of Odist and

�, it holds that Odist(

1

[

2

; I) 6� Odist(

1

[

2

; J), which means that there exists

69

some I

0

, I

0

2

1

or I 2

2

, such that DBdist(I; I

0

) = max

I

00

2

1

[

2

DBdist(I; I

00

) and

DBdist(I; I

0

) 6� max

J

00

2

1

[

2

DBdist(J; J

00

). So either I 6�

1

J or I 6�

2

J holds.

This is a contradiction. Hence we proved that condition (2) is also satis�ed.

Suppose we have a set of pictures represented by a generalized knowledge-base.

Given a new set of pictures represented by another knowledge-base, the arbitration

operation gives out those pictures whose maximum distance with respect to the second

set of pictures is minimal, i.e., pictures that are less di�erent from every pictures in

the original set. If there are two sets of identical pictures, then any other picture

has same overall distance with respect to the two sets. The pictures which are result

of arbitration operations on both picture sets, are also contained in the result of

arbitration operation on the union of the two picture sets.

Example 4.5.1 Suppose several neighborhood families plan to construct a swim-

ming pool in their resident area. There are several pieces of idle land around their

houses. The shapes of the lands are shown as Figure 4.3(a1)-(a3). Each family pro-

vides a blueprint of the pool which they are favorite, as shown in Figure 4.3(b1)-(b3).

They have to negotiate to decide which land is good for all.

Now we can use the arbitration operation on this problem. First we calculate the

similarity between each pair of pictures of set (a) and set (b). Since Picture (a1) is

close to any of the three pictures in set (b), the result of arbitration is (a1), which

means if the land look like picture (a1) is chosen, all the families will not be too much

unsatis�ed.

70

(a1) (a2)

(b3)

(a3)

(b1) (b2)

Figure 4.3: Arbitration Operation

4.6 Conclusion

The aim of this chapter is to address the issues of model-based change operators for

linear constraint databases. The problems have been studied in the framework of lin-

ear constraint databases which is used to represent two-dimensional spatial objects.

The models of a knowledge-base obtaining satisfaction of the principles are also those

accomplishing a minimal change underlying model-theoretic characrizations. We have

de�ned the revision, update and arbitration operators for linear constraint databases.

The key idea is to �nd a good measure of the distance between possible models. We

have applied our similarity measure methods as the basis of our change operators

which are proved to carry the minimal change characteristics. It is possible to design

algorithms based on this approach to make the operators amenable to computer so-

lutions. We would like to point out the importance of our study because in addition

71

to the promising of constraint databases and the wide application areas of similarity

queries, our change operators provides the characterizations that general database

change operators must satisfy. This is an indispensable step towards practical con-

straint databases.

This research can be extended in various direction. First, the comparison of the

distance measure and operators with other proposals. Second, the e�cient implemen-

tation of the algorithms aimed at the distance measures and operator evaluations.

Finally, the extension of the approach to a general framework of constraint database

changes.

72

Chapter 5

Computational Complexity

5.1 Preliminaries

The similarity measure and change operators are de�ned based on the distance com-

putation of two polygons. Recall that the distance between two polygons is de�ned

as follows:

PGDist(P

1

; P

2

) = DistCPnt+ � � sin(rttAngle) � edgeLenSum+

� � scaleChange � edgeLenSum+ �

p

totalArea� commonArea

where �, �, may be any positive constants as weights for each component.

To consider the computational complexity of the similarity measure and change

operations, we �rst give the computational complexity of computing the distance

between two polygons. To calculate the PGDist, we give a method for calculating

rttAngle, edgeLenSum, scaleChange, DistCPnt, area of a polygon and the intersec-

73

tion area or union area of two polygons. In this section, we introduce some existing

algorithms which solve the above problems e�ciently. The computational complexity

of these algorithms are presented.

A polygon is simple if there is no pair of nonconsecutive edges sharing a point. We

consider only simple polygons, so we use polygon and simple polygon interchangeably

in the rest of the chapter. A polygon is convex if, for any two points p and q in the

polygon, the segment pq is entirely contained in the polygon. Each polygon (not

necessarily convex) can be represented as a set of convex polygons. So we take into

consideration convex polygons in this section as a basis for further analysis on general

polygons in the next sections.

5.1.1 Basic Algorithms

In linear constraint databases, a two-dimensional N -vertex polygon is represented by

a set of N linear inequalities (constraints) of the form

a

i

x + b

i

y + c

i

� 0

where x, y are variables, a

i

, b

i

, c

i

are rational constants for i = 1; 2; : : : ; N . Note

that here we assume there are no redundant inequalities in the constraint databases.

Otherwise each inequality represents a half-plane, then we �rst need to �nd the in-

tersection of the N half-planes which consists a convex polygonal region. It has been

proved in [47] that the intersection of N half-planes can be found in O(NlogN) time,

and this is optimal.

74

To compute the geometric properties of a polygon, we usually need to know the

vertex set or the edge set which de�nes the polygon hull. We need to represent a

polygon by a sequence of vertex pairs (v

i

; v

j

), with v

i

, v

j

consecutive vertices and

1 � i; j;� N . The edge v

i

v

j

is implied by the pairing relationship between v

i

and v

j

.

The order of the vertex pairs is �xed to be either in clockwise or in counterclockwise

direction. For instance, a polygon with vertices v

1

; v

2

; : : : ; v

N

in the order of clockwise

is represented by the sequence (v

1

; v

2

); (v

2

; v

3

); : : : ; (v

N�1

; v

N

); (v

N

; v

1

).

To transform a set of N linear inequalities into a sequence of N vertex pairs, we

may use the following algorithm.

Algorithm 5.1.1

Let C be the set of N linear inequalities.

Procedure TRANSLATION(C)

Begin

1. For each inequality

2. calculate the intersect point with all the other inequalities;

3. For each intersection point

4. If it is external to the polygon

5. discard it;

6. Else

7. keep it as a vertex of the polygon;

8. Let b be a vertex of the polygon;

9. While not all the vertices found their neighbors

Begin while

10. Find a neighbor of b;

11. Keep the pair, b and b's neighbor as a vertex pair of the polygon;

12. Let b's neighbor be b;

End while

End.

Example 5.1.1 Suppose we are given the following set of linear inequalities:

x� 3y + 48 � 0

75

15 20 25

b

10

25

10

15

20

v5(5.5,12.5)

(8,18)

(b)(a)

(14,20)

v4

v3

v2

(17,8)

(19,15)

5
(10,6)

0 5

5

25

25

v1

0 520

10

15

20

10 15

Figure 5.1: Translation and Triangulation

�x� y + 34 � 0

�7x + 2y + 103 � 0

�2x + 7y � 22 � 0

13x+ 9y � 182 � 0

11x� 5y + 2 � 0

The polygon and the intersection points of all these inequalities which are internal

to the polygon are shown in Figure 5.1(a). Let's begin with point b and go along the

clockwise direction to do the while loop. Finally, the vertex pairs ((10; 6); (5:5; 12:5)),

((5:5; 12:5); (8; 18)), ((8; 18); (14; 20)), ((14; 20); (19; 15)), ((19; 15); (17; 8)), ((17; 8); (10; 6))

are found. We can then use them to calculate the related geometric properties of the

polygon instead of the set of inequalities.

The performance analysis of above algorithm is straightforward. The �rst two

76

steps access each of the N inequalities N � 1 times, so steps 1-2 cost N(N � 1)

time. For N lines, there exist at most N

2

intersection points. Step 4 costs O(N)

time. So steps 3-7 use O(N

3

) time. Step 9 repeats N times because it is an N -vertex

polygon. Step 10 costs at most O(N) time. So it is clear that steps 9-13 use O(N

2

)

time. In summary, a set of N linear constraints can be translated into its vertex pair

representation in at most O(N

3

) time.

We believe that Algorithm 5.1.1 is not optimal, but it is a simple and easy to

implement algorithm. In the rest of this chapter, our analysis of the computational

complexity is based on the vertex-pair sequence representation of polygons.

The center point (Centroid) of a �nite set of points p

1

; p

2

; : : : ; p

N

is their arithmetic

mean (p

1

+ p

2

+ : : : + p

N

)=N . The centroid of a set of N points in k dimensions an

be computed trivially in O(kN) arithmetic operations. In our case, k = 2.

Each vertex pair (v

i

; v

j

) represents an edge of the polygon. The length of this edge

can be computed using the formula

q

(x

v

i

� x

v

j

)

2

+ (y

v

i

� y

v

j

)

2

. This computation

takes constant time. For a polygon with N edges, the sum of the length of its edges

can be computed in O(N) time. If another polygon has M edges, without losing

generality, assume N > M , then the edgeLenSum can be computed in at most O(N)

time.

The scaleChange calculates the di�erence between the sum of the length of two

polygons. For two polygons with at most N edges each, it is obvious that the

scaleChange can be computed in O(N) time.

77

For two lines i and j, their slopes are �

a

i

b

i

and �

a

j

b

j

, respectively. So the inside

angle can be calculated using the formula jarctan(�

a

i

b

i

) � arctan(�

a

j

b

j

)j mod

2

�

. For

two polygons with at most N edges for each of them, the average inside angle can

be computed in O(N) time. Finally, to �nd the minimal average value, rttAngle ,

O(N

2

) time is needed.

5.1.2 Area Computation

By E

d

we denote the d-dimensional Euclidean space. The convex hull of a set of

points S in E

d

is the boundary of the smallest convex domain in E

d

containing S.

The triangulation problem is stated as follows: Given N points in the plane, join

them by nonintersecting straight line segments so that every region internal to the

convex hull is a triangle [47].

Now we have a sequence of N vertex pairs representing a convex polygon. The

triangulation of the polygon can be done in O(N) time by following simple algorithm.

Algorithm 5.1.2

Let S be the vertex pair sequence (v

1

; v

2

); (v

2

; v

3

); : : : ; (v

N

; v

1

).

The function next(b) returns the m if (b;m) is an element of S.

Procedure TRIANGULATION(S)

Begin

1. Let b = v

2

, e = v

N

;

2. While b 6= e

Begin while

3. Let m = next(b);

4. The triple (v

1

; b;m) is a triangle internal to the polygon;

5. Let b = m;

End while

End.

78

Example 5.1.2 Consider the set of vertices in Figure 5.1. The convex hull S in this

case is (b; v

5

); (v

5

; v4); (v

4

; v

3

); (v

3

; v

2

); (v

2

; v

1

) and (v

1

; b). After calling the triangulation(S)

algorithm, we get a triangulation f(b; v

5

; v

4

); (b; v

4

; v

3

); (b; v

3

; v

2

); (b; v

2

; v

1

)g as shown

in Figure 5.1(b).

The area of a triangle can be calculated using the formula

q

s(s� a)(s� b)(s� c)

where a, b and c are the length of each edge of the triangle and s is half of the length

sum of the three edges. The calculation of the length of an edge costs constant time.

The triangulation of an N -vertex polygon produces N � 2 triangles. So the area of

an N -vertex polygon can be computed in O(N) time using the above algorithm.

Given two convex polygons P with N vertices and Q withM vertices, it is proved

in [47] that the intersection of P and Q is a convex polygon having at most (N +M)

vertices. [47] also illustrates a method that provides the proof that the intersection of a

N -vertex convex polygon and aM -vertex convex polygon can be found in O(N +M)

time. Additional O(N + M) time is su�cient to decide, if necessary, among the

alternatives P � Q, Q � P , or P \Q = ;. Thus the intersection area of two polygons

with N and M vertices, respectively, can be computed in O(N +M) time.

The union area of two polygons equals to the area sum of the two polygons minus

their intersection area, which can be calculated in a constant time once we calculated

the union and the intersection areas of the two polygons.

79

5.1.3 The Assignment Problem

The Assignment Problem is generally stated as: For what man-job assignment is

the total cost minimized, assuming the cost of assigning man i to job j is a

ij

[39]. A

complete bipartite graph, B = (V; U; E), with jV j = n, jU j = m, m � n, jEj = n�m,

is used to formalize the man-job assignment problem. Here the vertices in V represent

men and vertices in U represent jobs. The cost a

ij

is the weight of the edge ij. then

the assignment problem is to �nd a maximum match that minimizes the sum of the

weights.

In the last decade, there are a large number of studies aiming at e�cient im-

plementations of the assignment problem. Currently the best known strongly poly-

nomial time bound of O(n

3

) is achieved using the classical Hungarian method [36,

39, 46]. [30] gives a primal method which is practical for implementation and also

achieves O(n

3

) complexity. Under the assumption that the cost are integers ranging

[�C; : : : ; C], an O(l

p

nlog(nC)) time algorithm where l denotes the number of edges

is obtained using cost scaling and blocking ow techniques by [19, 20]. [18] studies

the implementation of the scaling push-relabel method for the assignment problem

aimed at improving practical performance. Based on di�erent heuristics, they develop

several codes and improve the code performance on many problem classes.

80

5.2 Computational Complexity of the Similarity

Measure

5.2.1 Computing Distance between Two Polygons

Based on the analysis presented in the previous section, we know that the distance

between two polygons PGDist can be computed in time O(N) for DistCPnt, plus

O(N) for rttAngle, plus O(N) for edgeLenSum, plus O(N) for scalechange, plus

O(N) for the commonArea and totalArea. The sum equals to O(N). This is a linear

complexity in terms of the number of edges of the convex polygon.

However, polygons are not always convex. Fortunately, the proposed distance

measure can also handle polygons that are concave. In linear constraint databases,

concave polygons are represented as the union of a set of convex polygons in the

same relation name, which is normally used to denote the polygon. The method of

dividing a concave polygon into a set of convex polygons is not unique. Nevertheless,

the maximum number of convex sub-polygons is not greater than N � 2 with N the

number of edges (or vertices) of the concave polygon. The maximum is achieved if the

polygon is triangulated because a triangle is a minimal polygon. The way of breaking

up a polygon does not change the value of the factors involved in the distance measure

formula. Now there are two extreme cases to consider.

Given a N -vertex polygon and a M -vertex polygon, M � N . First we translate

each polygon into a set of convex polygons by triangulation. We get a set of N � 2

81

triangles and a set of M � 2 triangles, respectively. For an edge which is not a

component of the polygon's hull, always appears twice in the set of inequalities.

Since a triangle consists of a constant number, three, of edge the factors for distance

computation can be obtained in O(N) time. So the distance can be computed in

O(N) time.

Instead of triangulation, we may represent the two polygons by a set of minimal

number convex polygons. Now each polygon is translated into a set of no more than

k convex polygons with k some constant, and each convex sub-polygon may contain

at most N � 2 edges. It is clear that, in this case, the distance between the two

polygons can also be computed in O(N) time.

In conclusion, the computational complexity of the distance between two polygons

with at most N edges each, is linear in the number of edges of the two polygons, i.e.,

the computation has complexity O(N).

5.2.2 Computing Similarity of Two Linear Constraint Databases

Suppose we have two linear constraint databases, D

1

and D

2

, each of which contains

B polygons and each polygon has at most N vertices. At �rst, we translate each set

of constraints in the same relation name that represents a polygon into the represen-

tation of a sequence of vertex pairs. The translation can be done in O(B)� O(N

3

)

time.

Now we construct a weighted complete bipartite graph G = (V

1

; V

2

; E) as follows.

82

Each polygon in D

1

is a vertex in V

1

. Each polygon in D

2

is a vertex in V

2

. jV

1

j =

jV

2

j = B. E is the set of all the edges with one end point in V

1

and the other in V

2

.

jEj = B �B. The distance between two polygons PGDist is assigned as the weight

of the corresponding edges. The construction of the bipartite graph can be done in

O(B

2

)�O(N) time.

To �nd the match with minimal sum of weights, we adopt the algorithms described

in [18] which presents an algorithmwith complexity ofO(B

2

p

Blog(BC)) with C some

constant integer no less than any weight of the edges.

In our case, it is hard to look ahead and �nd a C which bounds the maximum

distance between any two polygons. Suppose there does exist some C, if it has to be

a very huge number compared to the B, then the performance improvement by using

the scaling push-relabel method is overshadowed. However, when we are dealing with

spatial scenes, it is reasonable to assume that the scenes are displayed in a piece of

plane such as a map, or a picture. Then we can say that the size of the piece of

plane is never larger than a certain size, otherwise we can change the scale of the

map, for instance, and adjust the spatial scenes to �t the plane. In this sense, with k

denoting the length of the boundary of the plane, the distance of any two polygons is

within O(k

2

), because the distance measure formula is a quadratic function in terms

of the length of polygon's edge. Thus the algorithm proposed in [18] is pro�table and

feasible to our measure.

[47] proves the following:

83

Proposition 5.2.1 If problem can be solved in T (n) time and problem � is �(n)-

transformable to (� /

�(n)

), then � can be solved in at most T (n) + O(�(n))

time.

According to the proposition, the distance between two linear constraint databases

can be computed in at most O(BN

3

+B

2

N +B

2

p

Blog(BC)) time.

5.3 Computational Complexity of the Knowledge-

base Change Operators

The de�nitions of the change operators are based on the distance between a knowledge-

base K and a generalized database I denoted as Dist(K; I) which equals to

min

J2K

DBdist(I; J) and the overall distance denoted as Odist(K; I) equals to

max

J2K

DBdist(I; J). We denote the computational complexity of the distance

measure DBdist between two linear constraint databases as O(L CDB).

Given knowledge-base K and knowledge-base , each of which is a set of at most

P generalized databases. For each I 2 , we �rst calculate the Dist(K; I), which

costs at most O(P)� O(L CDB) time. To accomplish a revision operation K � ,

we need to calculate all the Dist(K; I) with I 2 and �nd the minimal value. So

the revision operation costs O(P

2

)�O(L CDB) time.

For the update operation K � , each generalized database in is used to cal-

culate DBdist corresponding to every generalized database in K. There are totally

84

P

2

calculations of DBdist, meanwhile the minimal value is selected. So an update

operation costs O(P

2

)�O(L CDB) time.

Since the calculation of Odist has the same complexity as that of Dist, similar to

the revision operation, an arbitration operation K . also costs O(P

2

)�O(L CDB)

time.

5.4 Conclusion

We have considered the computational complexity of �nding the most similar spa-

tial scenes represented by linear constraint databases, from a knowledge-base which

contains a set of spatial scenes that have to be revised, updated or arbitrated. The

operations yield the set of spatial scenes with minimal deformations required to trans-

form one to another. The main discovery is that for all three change operators, the

evaluations are in the complexity level of polynomial time solvable in terms of the

number of objects in a knowledge-base and the number of edges of each object. The

complexity result does not change even for handling complex scenes, concave objects

with holes, irregular shapes and line-region relations because any complex scenes can

be represented as sets of convex polygons and the number of convex polygons do not

grow beyond a polynomial in the number of vertices in the complex scene. As we

mentioned earlier in Section 5.2.1, the way of breaking up a complex scene does not

e�ect the distance measure.

For most problems in constraint databases, it is unrealistic to expect a polynomial

85

solution. Due to �nding suitable restrictions for the various constraint formalisms,

our approach eliminates the sources of intractability. The complexity results give

strong evidence that the similarity measure and change operations can be evaluated

e�ciently. At the same time the operations accomplish a model-theoretic minimal

change. Zeng [67] implements a model-based arbitration operator over knowledge-

bases containing sets of formulas. Models are represented by vectors. In terms of

the number of vectors, it gives a naive approach in complexity O(n

2

). The computer

experiments for propositional databases show that the operators can be evaluated

e�ciently.

86

Chapter 6

Perceptual Experiments on

Similarity Measures

It is easy to come up with a large number of similarity measures that are computable

using computers. It is easy to distinguish two di�erent objects by human vision.

What is di�cult is teaching computers to tell the similarity of two things in a manner

intuitive to humans. This chapter describes some investigations on how similarity

measures correlated with human intuitions, with an emphasis on the experiments

engaged by Brian Boon [2].

6.1 Previous Research

A picture may be represented by points, lines or polygons. The distortions of position,

extension and rotation of each component are frequently used factors to measure

87

similarities.

With a picture consisted of a collection of points, Knapp [28] does some research

to see how the distortion of individual points in a picture would a�ect human's per-

ception of similarity. Presented with a prototype image composed of ten randomly

placed points and then a distortion image of the same ten points, the individual es-

tablishes the similarity between the two images. Research in [28] shows that as more

of the points are perturbed then one's perception of similarity decreases.

Dodwell's research [10] takes consideration of the e�ects of rotation across di�er-

ent vector pattern classi�cations. Two properties of each vector pattern are counted

in, position and orientation. Their �ndings indicate that the e�ects of rotation depend

upon the type of the vector pattern.

Pigeons are thought of capable of attending to common aspects of drawings in

Kirtpatric-Steger's study [37]. After some training, it is shown that pigeons are able

to discriminate among the line drawings of several rearranged di�erent objects. The

pigeons display di�erent degrees of generalization decrement to the di�erent scrambled

versions of the objects.

Studies and experiments done by the psychology community provide some insight

into what the perceiver �nds important in a picture, as above researches. However,

they do little in the way of providing applications. Applications for similarities are

widely studied in the database and image retrieval areas, and can be found in [4,

14, 17, 23, 25, 26] and [41]. These studies were mentioned or discussed in previous

88

chapters. Each article contains good ideas about what similarity is and the best ways

to use the similarity measure in image retrieval. However, they study only design

and implementation issues but no testing on how intuitive to human perception these

ideas are.

6.2 Investigations on Linear Similarity Measures

Recall the similarity measure proposed in Chapter 3. The similarity measure has the

basic form

Sim(V

1

; V

2

) =

n

X

i=1

(�Rotation

i

+ �Translation

i

+ Extension

i

)

Where V

1

and V

2

are two pictures each with n line segments and i indicates the ith line

segment of V

1

and V

2

. To discover a similarity measure intuitive to human perception,

perceptual experiments are established and tests are proceeded by Brian Boon and

Dr. Revesz [2]. The values of �, � and are studied to �nd a best combination of

the amounts that each of rotation, translation and extension contribute to perceived

similarity. The results also show how well the proposed similarity measure correlated

to human intuition.

6.2.1 Methods and Procedures

Linear regression is employed in [2] to estimate the parameters for the linear model

E(Y) = �

0

+ �

1

x

1

+ �+ �

k

x

k

89

. Here we can look Y as Sim, x

i

as the factors contributing to Sim and �

i

as the

constants to be associated with each factor. Let

Y =

y

1

y

2

�

y

n

� =

�

0

�

1

�

�

k

� =

�

1

�

2

�

�

n

X =

x

0

x

11

x

12

� x

1k

x

0

x

21

x

12

� x

2k

x

0

� � � �

x

0

x

n1

x

n2

� x

nk

with x

0

= 1. In this way, the equations representing each of the testing data sets

are expressed as

Y = X� + �

. Where � possesses some probability distribution with E(�) = 0. Then the estimators

^

� for the parameters �

0

; �

1

;�; �

k

are given as

^

� = (X

T

X)

�1

X

T

Y

Examples of �nding a regression formula can be found in [2]. Now it is interesting

to �nd out how accurate a regression formula is, that is, how well the regression

formula is correlated with the actual data. To do this, a r-value is de�ned and

calculated in [2]. Let SS

error

=

P

(Y �

^

Y)

2

, SS

y

=

P

(Y �

�

Y)

2

where

^

Y is the

estimator of Y and

�

Y is the average of Y . Another de�nition of SS

error

adapted in

[2] is

SS

error

= (1� r

2

)SS

y

90

So r is solved as

r =

q

1� SS

error

=SS

y

The range of r-value is from 0 (no correlation) to 1 (perfect correlation).

Three experiments are designed and tested upon the similarity measure proposed

in Chapter 3 and upon the following measure:

Dist(l

1

; l

2

) = � �DistCPnt+ � � LengthDiff + � AngDiff

where LengthDiff is the di�erence in length of the two line segments and AngDiff

equals to the sum of two line segments' length times sin � with � being the minimal

inside angle of the two line segments.

In the �rst experiment, two �gures, constellations Ursa Minor and Columba are

used as prototype pictures. They are made up of line segments. Distortions to

three randomly chosen line segments are in the range of 0, 15, and 30 degrees/pixels.

All possible combinations of distortion across one, two or three line segments with

distortions of 0, 15 and 30 are generated and presented to the subject for comparison

to the prototype picture. The two pictures are displayed on a computer monitor, and

order of display is randomized for each subject. As the subject are presented each

distortion/prototype pair they are asked to decide how similar the two pictures are.

Similarity is given a rank from one to ten where one represents very similar, and ten

means very dissimilar. This ranking is used over through the next two experiments

also.

The second experiment is aimed at testing which is more signi�cant, rotation and

91

contraction or rotation and extension of a line segment. A random set of line segments

and their distortions, either rotation and contraction or rotation and extension, are

presented to each subject. The distortion is generated using the same method as the

�rst experiment and each subject is asked to decide the similarity, given a rank from

one to ten.

In the third experiment, rotation , translation and extension are considered. The

prototype picture consists of a set of ten random line segments. Distortions are

created across rotation , translation and extension in the way that the �rst experiment

employs. The subject is presented with all the combinations of distortions and is asked

to decide the similarity.

Thus, values of Sim, in the other word, Y is collected from each subject's sim-

ilarity measure. The factors contributing to the similarity measure equations are

computed across each distortion. In this way, applying the linear regression method,

the constants �, �, and are estimated and the r-value for each equation can be

calculated and analyzed.

6.2.2 Results

Data collected from the �rst experiment reveal a close association between how the

similarity measures predict similarity of the two chosen pictures. In following table,

Measure 1 is the measure introduced in this chapter, Measure 2 is the measure pro-

posed in Chapter 3. The numbers are r-values corresponding to each picture and

92

measure.

Measure 1 Measure 2

Ursa Columba Ursa Columba

0.635 0.639 0.718 0.753

It appears that a linear regression equation, which incorporates the weighted dis-

tance measure is a very accurate model for predicting similarity among stick �gures.

The most interesting observation from the result of the second experiment is that

the accuracy of Measure 1 is improved when translation is not considered. Although

Measure 1 and Measure 2 perform 100% satis�able, it does perform well enough. This

means that we were able to develop similarity measure that is simple and fast.

The following table contains the r-values for the third experiment.

Measure 1 Measure 2

Ursa Columba Ursa Columba

0.729 0.735 0.733 0.739

From this table, we notice that the two measures are performing closely well and

they have improved over the previous two experiments.

93

6.3 Discussions

It is hard to say which measure is a best one. From the Boon's experiments, we

can �nd that the proposed similarity measure performs well and it is interesting to

discover di�erent means to improve the measure. For example, what is the role that

the orientation of a picture plays in similarity? What if the prototype and distortion

pictures are displayed with di�erent sizes, and then what is the signi�cance of each

factor?

Further, based on the linear regression model, it is possible to assign the constants

to each factor of the equation dynamically. A user can have a customized similarity

measure tailored to what that user thinks is important in the pictures. This can be

integrated into MLPQ/GIS system and enable a personalized measure environment,

which in return, will improve the precision of similarity retrieval.

94

Chapter 7

Implementations

7.1 A Review of MLPQ/GIS System

The MLPQ/GIS system is a constraint database system that handles various spatial,

temporal and GIS data [?]. The system allows constraint relations with any number

of attributes to be represented using linear constraints. The graphic user interface

provides visual and convenient geo-spatial-temporal data querying. For beginning

users, icon-based queries are available to do basic spatial queries, e.g., the intersec-

tion of several relations, which are displayed as sets of polygons or line segments

using di�erent colors. For advanced users, more general queries based on Datalog

query rules are provided. The basic queries are internally translated into conjunction

queries and conjunctive queries are translated into a procedural algebraic language

optimized using algebraic optimizations and then evaluated based on e�cient imple-

95

Query Input
Parser &
Translator

Statistic
Data

IndicesDataData

Query Output

GUI

Datalog Queries
Evaluation
Engine

Optimizer

Execution Plan

Figure 7.1: Steps in Query Processing

mentations of basic queries, selection, projection, join, union and intersection etc. of

constraint databases. Figure 7.1 depicts the steps involved in query processing of the

MLPQ/GIS system. The elements shown as dash lines are under research and not

fully implemented in the system.

In MLPQ/GIS, data are stored in a constraint database format. The user is not

concerned with the storage but the visual display of the objects in the database.

Various data entering tools are provided by the system. For example, the system

allows the user to draw pieces of land in the form of polylines, or polygons. The

drawings are saved as constraint relations automatically. The user is able to save

directly constraint relations in speci�c constraint database format. When related

queries are presented, the �les are loaded and spatial objects represented in this �le

are displayed.

The MLPQ/GIS system has developed great functionality to facilitate GIS appli-

96

cations. The Area query takes a bound as input and output the total area falling

within the bounds. The Bu�er query �nds out the points that locate inside a speci�ed

bu�er region. Aggregation functions like Max or Min are also implemented. Using

Datalog rules, recursive queries which relational database are not capable to pro-

cess, are realized in the MLPQ/GIS system [?]. One of the advantages of constraint

database is that handling spatial-temporal information is much convenient and ef-

�cient against other data models. Another feature of the MLPQ/GIS system is its

animation functionality [40] - changing objects and events can be simulated, snap-

shot of a given time point can be caught and displayed on screen. Further, similarity

queries and database updates are implemented, which makes the system even more

powerful and unique.

7.2 Implementation of Similarity Queries

Given a template object, select all objects that are similar to the given one is called

a similarity query. Similar-based retrieval has a wide range of applications. Based

on the proposed similarity measure, the similarity query is implemented as a module

within the MLPQ/GIS system. Figure 7.2 shows the graphic user interface of the

system.

After import a constraint database which contains a large number of constraint

relations with each relation represents a picture, and then the user clicks the 'S' icon

on the function bar, a dialog window is prompt to specify the prototype picture.

97

Figure 7.2: GUI for Similarity Query

The constraint relations are then translated into 2-Spaggheti model, in which each

line segment is represented using its two end points. The user is not concerned with

this translation. What they see is only the result of the distance calculation. By

representing the line segments using end points, the algorithms employed to compute

the distance between two line segments are e�ciently implemented. To solve the

bipartite matching problem, we study the practical implementations among variants

of the algorithms [18, 20, 30]. The scaling push-relabel method [18] is employed in

our implementation.

The number beside each relation name is the distance between the picture and

the prototype picture. The pictures are sorted according to the distance, as shown

in Figure 7.2. A click on the relation name of the prototype picture brings up the

picture on the right window. Another click on any other relation name displays the

picture over the prototype using di�erent color. In this way, the user can easily see

98

the di�erence between the two pictures. Please be aware that only the stick �gures

or the sketch of a picture is considered at current implementation stage. Further

functional improvement can be made to rank the distance or similarity and allow the

user to apply some �lters to display the top ranked ones. It also may be friendly to

display each picture in a separate window when the pictures are complex.

99

Chapter 8

Conclusions

A design for similarity queries for spatial databases covers three main areas of database

research. The three areas are data representation method, similarity measure and

query processing technique. Each area has been examined in the light of the unique

problems of a linear constraint database system, and new ways of exploiting the

various aspects of constraint databases have been addressed.

An important feature of constraint databases is the ability to represent spatial

information conveniently. Finitely representing the in�nite and non-enumerable set

of points of spatial objets allows more powerful spatial queries in constraint databases.

In Chapter 1, previous research work on similarity-base spatial information retrieval

was investigated and some disadvantages were addressed. The concepts and merits of

constraint databases are described in Chapter 2, showing how spatial objects can be

represented under constraint data model, and how constraint queries can be expressed

100

to exploit the advantages of a spatial database with constraints.

Chapter 3 proposed a new similarity measure for spatial objects. Concerning

the typical geometric transformations such as transition, rotation and scaling, a new

method to measure the similarities between 2-dimentional spatial objects, which are

assumed to contain a set of line segments in the plane. Further extensions to measure

the similarity between any spatial scenes took into consideration of the polygonal

representation of spatial information. An extended similarity measure was presented

and examples were given. The similarity measure proposed is independent of the data

model that the spatial object representation uses.

The measure of the distance between two databases is a key issue not only for

similarity queries, but also for developing change operators carrying the minimal

change model-theoretic characteristics. Chapter 4 studied the challenges of high-level

change operators for linear constraint databases. To solve the inconsistency due to

database changes, the meaning of minimal change is worked out upon the measure of

distance between possible models for the databases. Revision, update and arbitration

operators were de�ned and the their model-theoretic characteristics were analyzed. It

has been proved the three operators satisfy the axioms commonly recognized by the

database research community. Examples presented in this chapter are an epitome of

the wide application areas of high-level change operations.

Chapter 5 presented algorithms for computing the similarity measure and change

operations in a linear constraint database system. This is an important step towards

101

a practical implementation of the similarity queries and change operators. Analysis of

the computational complexities showed that for a linear constraint database, e�cient

evaluation of similarity measures and change operations is feasible and potential.

Chapter 6 described several perceptual experiments on similarity queries that act

upon a linear constraint database. A similarity measure needs to be not only com-

putable e�ciently but also intuitive to human perception. The experiments attempt

to discover the values of the ratio put on each factor contributing to the similarity mea-

sure proposed in Chapter 3. The results of the experiments show that the proposed

similarity measure performs an over 70% correlation on average with experiment data

collected from actual human perception. It is observed that a personalized similarity

measure environment can be constructed by dynamically assigning coe�cients to each

portion of the similarity measure equation.

The similarity query has been integrated into a linear constraint database system,

the MLPQ/GIS system. Chapter 7 described the core functionality of the MLPQ/GIS

system and the query processing techniques developed in this system. Implementation

strategies of the similarity query and extension potentialities are addressed.

A basic theme of this dissertation has been to study the various issues to accom-

plish the advantages of a practical constraint database, particularly the ability of

handling spatial information. One important application is similarity-based spatial

retrieval. The other one is high-level change operations which enhance the intelligence

of a database system. It is valuable to discover a similarity measure not only intuitive

102

to human insight, but also leading to change operators that achieve model-theoretic

minimal change property. The essence of linear constraint database for representing

and accessing spatial information in a natural way and e�ciently makes it a promising

and exciting research area.

8.1 Future Work

The area of constraint database systems is relatively new, so there are many possible

avenues for future work. In each of the areas presented in this dissertation there is

much more to be done.

In the area of spatial informationmodeling, various techniques have been exploited

upon 2-dimentional objects. As the demand of applications on multi-dimensional

objects has increased rapidly, the multi-dimensional spatial modeling favors constraint

databases. The ability of representing n-dimension objects and the expressive power

of constraint databases have been conceived in this dissertation. It is attractive to

extend the similarity measure method to 3-dimensional spatial scenes and develop

e�cient as well as general change operators of constraint databases. It is not obvious

that, to accomplish this mission, how the data complexity would be and how e�cient

algorithms could be developed with diversity spatial information.

Indexing has been studied extensively for relational database systems and query

optimization techniques are well established. In this dissertation, we examined the

costs of similarity query and change operations, but somehow we need to employ

103

indexing technique and constraint query optimizations to enhance the performance

in terms of optimal worst-case access to secondary storage.

Finally, a simple analysis of our proposed similarity query method gives a fair

estimation of computational complexity, but a very detailed test or simulation is

needed to determine what are the precision and recall that can be reached in a real

database system. Also, it would be interesting to see exactly to what extend we

can take advantage of constraint data modeling in the data representation and query

processing.

Bibliography

[1] C. E. Alchourron, P. Gardenfors, D. Makinson. On the Logic of theory change:

Partial meet contraction and revision functions. Journal of Symbolic Logic, Vol.

50, pp.510-530, 1985.

[2] Brian Boon. Perceptual Experiments on Similarity Queries. Master Thesis, Uni-

versity of Nebraska-Lincoln, 1999.

[3] A. Borgida. Language Features for Flexible Handling of Exceptions in Infor-

mation Systems. ACM Trans. Database Systems, Vol. 10, 563-603, 1985.

[4] H. Tom Bruns, Max J. Egenhofer. Similarity of Spatial Scenes. Seventh inter-

national symposium on spatial data handling, Taylor & Francis, London, pp173

- 184.

[5] A. Brodsky, J. Ja�ar, M.J. Maher. Toward Practical Constraint Databases.

Proc. 19th VLDB, 322{331, 1993.

[6] A. Brodsky, Y. Kornatzky. The Lyric Language: Querying Constraint Objects.

Proc. SIGMOD, 35{46, 1995.

[7] R. Bayer, E. McCreight. Organization of Large Ordered Indexes. Acta Infor-

matica, 1:173{189, 1972.

[8] D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11:2:121{137, 1979.

[9] M. Dalal. Investigations into a Theory of Knowledge Base Revision: Prelimilary

report. Proceedings AAAI-88, St. Paul, MN, 475-479, 1988.

[10] P. Dodwell, T. Caelli. Recognition of Vector Patterns Under Transformations:

Local and Global Determinants. The Quarterly Journal of Experimental Psy-

cology. 1-23, 1985.

[11] Y. Deng, P.Z.Revesz. A Similarity Measure of Spatial Databases. 30th Jubilee

International Conference of the Banki Donat Polytechnic. Hungary, Sep. 1999.

[12] Y. Deng, P.Z.Revesz. Revision and Update Operators in Linear Constraint

Databases. Proc. First Midwest Conference of the American Association for

the Advancement of Science, Omaha, Nebraska, Nov. 1999.

104

105

[13] T. Eiter, G. Gottlob. On the Complexity of Propositional Knowledge Base

Revision, Updats, and Counterfactuals. Arti�cial Intelligence, Vol 57, 227-270,

1992.

[14] Myron Flickner, Harpreet Sawhney et. al. Query by Image and Vedeo Content:

the QBIC System. IEEE Compute 28, 9, Sep. 1995. pp. 23-32.

[15] R. Fagin, J. D. Ullman, M. Y. Vardi. On the Semantics of updates in Databases.

Proc. 2nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, 352-365, 1983.

[16] Andrew U. Frank, Mark Wallace. Constraint Based Modeling in a GIS: Road

Design as a Case Study. Cartography pp. 177-186

[17] Amaranth Gupta, Ramesh Jain. Visual Information Retrieval. Communications

of the ACM, Vol.40, No.5, pp.70-79.

[18] Andrew V. Goldberg, R. Kennedy. An E�cient Cost Scaling Algorithm for the

Assignment Problem. Mathematical Programming, 71, (1995) 153-177.

[19] A. V. Goldberg, S. A. Plotkin, P. M. Vaidya. Sublinear Time Parallel Algo-

rithms for Matching and Related Problems. Journal of Algorithms, 14, 180-213,

1993.

[20] H. N. Gabow, R. E. Tarjan. Faster Scaling Algorithms for Network Problems.

SIAM Journal on Computing, 18, 1013-1036, 1989.

[21] V. N. Gudivada, V. V. Raghavan. Design and Evaluation of Algorithms for

Image Retrieval by Spatial Similarity. ACM Transactions on Information Sys-

tems, 13, 2, 115-144, 1995.

[22] M. T. Goodrich, J. J. Tsay, D. E. Vengro�, J. S. Vitter. External Memory

Computational Geometry. Proc. 34th Annual IEEE Symposium on Foundations

of Computer Science, pp.714-723, 1993.

[23] Venkat N. Gudivada, Vijay V. Raghavan. Content-Based Image Retrieval Sys-

tems. IEEE Compute 28, 9, Sep. 1995. pp.18-22.

[24] T. Huynh,C. Lassez, J. Lassez. Fourier Algorithm revisited. Lecture notes in

computer Science, No.463, pp.117-131, 1990.

[25] H.V.Jagadish. Spatial Search with Polyhedra. Sixth international conference

on data engineering, IEEE 1990. pp311-319

[26] H.V.Jagadish. A retrieval technique for similar shapes. ACM SIGMOD, 1991.

[27] J. La�ar,J. L. Lassez. Constraint Logic Programming: A Survey. Journal of

Logic Programming, Vol.19&20, pp.503-581, 1994.

106

[28] A. Knapp, J. Anderson. Theory of Categorization Based on Distributed Meme-

ory Storage. Journal of experimental Psycologu: Learning , Memory, and Cog-

nition, 588-609, 1984.

[29] P.C. Kanellakis, D.Q. Goldin. Constraint Programming and Database Query

Languages. Proc. 2nd TACS, 1994.

[30] M. Klein, A Primal Method for Minimal Cost Flows with Applications to the

Assignment and transportation Problem, Management Science, 14, (1967) 205-

220.

[31] P. Kanellakis, S. Ramaswamy, D. E. Vengro�, S. Vitter. Indexing for Data Mod-

els with Constraints and Classes. Journal of Computer and System Sciences,

Vol.52, pp.589-612, 1996.

[32] Kuijpers,B.; Paredaens,J.; Vandeurzen,L., Semantics in Spatial Databases. Lec-

ture notes in Computer Science, No. 1358, pp.114-135, 1998.

[33] Pradip Kanjamala, Peter Z. Revesz, Yonghui Wang. MLPQ/GIS: A GIS using

Linear Constraint Databases. Proc. Ninth International Conference on Man-

agement of Data, pp. 389-392, Hyderabad, India, December 1998.

[34] P.C. Kanellakis, G.M.Kuper and P.Z.Revesz. Constraint Query Languages.

Journal of computer and system sciences, vol. 51, pp.26-52, 1995.

[35] H. Katsuno, A.Mendelzon, Propositional Knowledge Base Revision and Mini-

mal Change, Arti�cial Intelligence, 52, (1991) 263-294.

[36] H. W. Kuhn. The Hungarian Method for The Assignment Problem. Naval

Research Logistics Quarterly, (2) 83-97, 1955.

[37] K. Kirtpatric-Steger, E. Wasserman, I. Biederman. E�ects of Spatial Rear-

rangement of Object Components on Picture Recognition in Pigeons. Journal

of the Experimental Analysis of Behavior. Vol 65, 465-475,1996.

[38] Lassez,J.-L., Querying Constraints. Proc. 9th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database systems, pp.288-298, 1990.

[39] E.L.Lawler, Combinatorial optimization: Networks and Matroids, Holt, Rine-

hart and Winston, 1976.

[40] Yuguo Liu. Animation of Spatio-Temporal Database. Master Thesis, Mar. 99.

computer science department, UNL

[41] Rajiv Mehrotra, James E. Gary. Similar-shape retrieval in shape data manage-

ment. IEEE Compute. 28, 9, Sep. 1995. pp. 57-62

107

[42] Paredaens,Jan; Bussche,Jan V.; Gucht,Dirk V. Towards a theory of Spatial

Database Queries, Proc. 13th ACM Symp. on Principles of Database Systems,

pp.297-288, 1994.

[43] F.P. Preparata, M.I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, 1985.

[44] Jan Paredaens, Bart Kuijpers. Genericity in spatial Databases. ???

[45] Jan Paredaens. Spatial Databases, The �nal Frontier. Database Theory -

ICDT'95, LNCS No.893, Springer-Verlag

[46] C.H. Papadimitriou, K.Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall Inc., 1982.

[47] Franco P. Preparata, Michael I. Shamos. Computational Geometry: an Intro-

duction. Springer-Verlag Inc. New York, 1985.

[48] Peter Z.Revesz. Constraint Databases. Handouts for CSCE913 Adv. topics on

Databases, spring'98

[49] H. Rafat, Z. Yang, D. Gauthier. Relational Spatial Topologies for History Ge-

ographic Information, International Journal of GIS, Vol.8, no.2, pp.163-173,

1994.

[50] P. Z. Revesz. Constraint Query Languages. Ph.D. Thesis. Brown University,

1991.

[51] Peter Z. Revesz. On the Semantics of Arbitration. International Journal of

Algebra and Computation, 7, (1997) 133-160.

[52] Peter Z. Revesz. Model-Theoretic Minimal Change Operators for Constraint

Databases. International conference on Database Theory, Jan, 1997.

[53] Peter Z. Revesz. Constraint Databases: A Survey. Semantics in Databases, L.

Libkin and B. Thalheim, eds.,Springer-Verlag LNCS 1358, pp. 209-246, 1998.

[54] R. Ramaswamy. E�cient Indexing for Constraint and Temporal Databases.

Proc. 6th Int. Conf. on Database Theory, 419{431, Springer-Verlag, LNCS

1186, 1997.

[55] S. Ramaswamy, S. Submaranian. Path Catching: A Technique for Optimal

External Searching, Proc. 13th ACM PODS, pp.25-35, 1994.

[56] K. Satoh. Nonmonotonic Reasoning by Minimal Belief Revision. Proc. Inter.

Conf. on 5th Generation Computer systems, Tokyo, 455-462, 1988.

[57] A. Silberschatz, H. F. Korth, S. Sudarshan. Database System Concepts,3rd

edition. McGraw-Hill, 1996

108

[58] S. Submaranian, S. Ramaswamy. The P-range Tree: A New Data Structure for

Range Searching in Secondary Memory. Proc. 6th Annual ACM-SIAM Sympo-

sium on Discret Algorithms, 1995.

[59] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image

Processing, and GIS. Addison-Wesley, Reading MA, 1990.

[60] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading MA, 1990.

[61] J. D. Ullman. Database and Knowledge-base Systems, Volume I: Classical

Database Systems. Computer Science Press, 1988

[62] Luc Vandeuzen, Marc Gyssens, Dirk Van Gucht. On the Desirability and Limi-

tations of Linear Spatial Database Models. Lecture Notes in Computer Science,

No.951, 1995

[63] L. Vandeurzen, M. Gyssens, D. V. Gucht. An Expressive Language for Linear

Spatial Database Queries. Proc. ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, Seattle, WA., 1998.

[64] A. Weber. Updating Propositional Formulas. Proc. First conf. on Expert

Database systems, 487-500, 1986.

[65] M. Winslett. Reasoning about Action Using a Possible Models Approach. Proc.

AAAI-88, st. Paul, MN, 89-93, 1988.

[66] M. Zeiler. Inside ARC/INFO. OnWord Press, 1994.

[67] Sheng Zeng. Implementation of Model-Based Arbitration and Update Opera-

tors. Master Thesis, University of Nebraska, 1998.

List of Figures

1.1 Similar Picture Query : 13

2.1 The Constraint Data Model : 19

2.2 The Town Map and Highway Layout : : : : : : : : : : : : : : : : : : 21

2.3 The Proof Tree : 23

3.1 De�nition of AngleDiff : 36

3.2 Distance between two line segments : : : : : : : : : : : : : : : : : : : 38

3.3 Distance between Two Squares : 42

3.4 Distance between a Square and a Diamond : : : : : : : : : : : : : : : 43

3.5 Distance between a Square and a Hexagon : : : : : : : : : : : : : : : 44

3.6 Distance between Two Polygons : 45

3.7 Distance between Two Sets of Polygons : : : : : : : : : : : : : : : : : 48

4.1 Revision Operation : 63

4.2 Update Operation : 67

4.3 Arbitration Operation : 70

5.1 Translation and Triangulation : 75

109

110

7.1 Steps in Query Processing : 95

7.2 GUI for Similarity Query : 97

