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The efficient evaluation of aggregation queries is key to the success of relational

database systems and Geographic Information Systems. However, the aggregation

queries for spatiotemporal databases that represent a set of moving point objects is

a relatively new area. In this dissertation, we provide for the first time efficient ag-

gregation algorithms for spatiotemporal databases. Our algorithms introduce several

novel data structures called Partition Aggregation Trees, Dominance-Time Graphs,

and Dome Subdivisions that are also interesting on their own and could be used for

solving other problems beyond aggregation queries.

We also propose a novel mediation system architecture for spatiotemporal data.

The new architecture makes it possible to collect and summarize the information from

heterogeneous data sources. We also propose within the architecture a subsystem

called DataFoX, that can evaluate Datalog-like queries on constraint databases and

spatiotemporal XML documents in either the VML or the GML format. DataFoX

also supports our new spatiotemporal aggregation operations that are not supported

in other database and Geographic Information systems.
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Chapter 1

Introduction

1.1 Motivation

Geographic Information Systems (GIS) [23, 39, 62] increasingly are important in

various industries including digital government, e-commerce [14], and telecommu-

nications. Many GIS applications require efficient manipulation of spatiotemporal

information for efficient decision support [30, 6, 33].

There are various query languages used in GIS. These query languages often con-

tain aggregate operators such as average, count, max, and area, which take in a set of

values and return a single value. For example, a GIS concerned with traffic monitor-

ing may need to count during a given time interval the total number of vehicles that

enter a highway at a particular entrance. Efficient evaluation of aggregate operators

is essential for the effective database systems and GIS.

Aggregation operations are very important for database related applications, es-

pecially in GIS systems and decision support systems. The efficiency of database

queries with aggregate operators is well understood and studied in the context of

traditional relational data. However, aggregation operators also are important for
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more complex data that cannot be represented in relational databases.

The efficient evaluation of aggregate operators is always based on some index-

ing structure [5, 37, 44, 53, 57] for spatial and spatiotemporal data. For example,

Bentley [7] describes the ECDF-tree data structure that enables efficient evaluation

of some spatial aggregation operators on multi-dimensional set of points. Zhang et

al. [63] extended Bentley’s structure to other aggregate operators that deal with static

spatial objects that are hyperrectangles.

However, aggregation on moving objects was not considered by either Bentley [7]

or Zhang et al. [63]. Some more recent papers deal with moving objects, but only

when those objects are moving along a line or a fixed set of lines [44]. That is still

too limited for expressing many practical problems. For example, suppose several

vehicles are move in the plane with fixed speed and direction, and we need to find

out what is the maximum number of cars in a certain “window” or rectangular area

at any time. Many indexing structures can answer such window queries on static

objects or those that move along a line, but they fail to answer this query. There are

no efficient proposed solutions for this spatiotemporal aggregation problem. Hence

the study of aggregation operators is still an important problem, and it is a main

topic of this thesis.

It is difficult to answer complex queries that need to use information together

from several different Internet sites, beacuse of the great variety of data models in

GIS [11, 56, 60]. If different sites are using different data models, then some data

needs to be translated from one data model to another, which is commonly referred to

as the problem of data interoperability. While eXtensible Markup Language (XML)

is touted as a standard data model for data representation and exchange on the

Internet, even XML has several different versions to describe spatial data. In this

thesis we consider two of these versions: the Vector Mark-up Language (VML) and the
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Geography Markup Language (GML), which is proposed by the OpenGIS consortium

of companies.

The main challenges in this dissertation are the development of efficient algorithms

to evaluate aggregation operators on spatiotemporal data, and the interoperability

of spatiotemporal data. These issues are studied first in a theoretical sense. Second,

the best algorithms also are implemented in a prototype system called DataFox. A

detailed description of contributions is listed in Section 1.4, after a brief review of

some related work.

1.2 Related Work for Chapters 2-4

1.2.1 Constraint Databases

Constraint databases, introduced by Kanellakis, Kuper & Revesz [35], is still a growing

research area. Kuper, Libkin & Paredaens [38] and Revesz [48] are two recent books

on constraint databases. Constraint databases generalize relational databases by

finitely representable infinite relations. In the constraint data model, each attribute

is associated with an attribute variable and the values of the attributes in a relation

are specified implicitly using constraints.

A constraint database is a finite set of constraint relations. A constraint relation is

a finite set of constraint tuples, where each constraint tuple is a conjunction of atomic

constraints using the same set of attribute variables. For example, linear inequality

constraints are considered atomic constraints. A conjunction of linear inequality

constraints is a constraint tuple.

Example 1.2.1 Suppose that a large company has a number of manufacturing plants

P1, P2, P3, . . . . Each plant produces four different products X1, X2, X3 and X4. The
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profit at each plant for each product changes over time as shown in Table 1.2.1. In

this table, each of the rows is a polynomial constraint tuple.

Table 1.1: Profits for various plant and product combinations.
Id X1 X2 X3 X4 T

1 x1 x2 x3 x4 t x1 = t2 + 2t + 10, x2 = 80, x3 = t + 30, x4 = 5t − 10
2 x1 x2 x3 x4 t x1 = t3 − 8t − 10, x2 = 10t, x3 = t2 − 2t, x4 = t3 − 3t + 4
3 x1 x2 x3 x4 t x1 = t2 − 50, x2 = 3t, x3 = 5t − 10, x4 = t − 10
4 x1 x2 x3 x4 t x1 = t4 − 16, x2 = 7t, x3 = 5t2, x4 = t − 30
5 x1 x2 x3 x4 t x1 = t3 + 81, x2 = 4t, x3 = t3 − 21, x4 = t + 10
...

...
...

...
...

...
...

Example 1.2.2 We show in Figure 1.1 a L-shape park and it’s two different repre-

sentations in constraint database. We use two different constraint database tables, as

shown in Table A and Table B in the following, to represent this spatial object.

Table A

X Y

x y 0 ≤ x ≤ 20, 0 ≤ y ≤ 40

x y 20 ≤ x ≤ 30, 0 ≤ y ≤ 20

Table B

X Y

x y 0 ≤ x ≤ 30, 0 ≤ y ≤ 20

x y 0 ≤ x ≤ 20, 20 ≤ y ≤ 40

1.2.2 SQL

SQL is the standard query language for relational database systems. The SQL query

language does not support spatio-temporal queries directly. However, it can be ex-

tended to query spatio-temporal information represented by constraint databases [35,

31, 46, 47].
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(A) (B)

Figure 1.1: Different representations for the Park

We assume some familiarity with the SQL language [35, 46]. However, we illustrate

below with a few examples how SQL can be applied to the constraint database shown

in Table 1.2.1.

Example 1.2.3 The company has the opportunity to buy a new plant Q where

profits are rising rapidly. The board of directors would approve the buy only if five

years from now Q will be more profitable for each product than 10 of the current

plants.

In this case, the input relations P (Id, X1, X2, X3, X4, T ) and Q(X1, X2, X3, X4, T )

form a constraint database [35, 38, 48]. Therefore, we can find out how many plants

are less profitable in 2008 by the following SQL query:

select count(Id)

from P, Q

where P.X1 < Q.X1 and

P.X2 < Q.X2 and

P.X3 < Q.X3 and
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P.X4 < Q.X4 and

P.T = 2008 and

Q.T = 2008;

Suppose that the company has a long-term plan to eliminate all products except

X1. Therefore, the board of directors gives an approval for the purchase plan sub-

ject to the following extra condition: Q should have the potential to some day be

more profitable on product X1 than 20 of their current plants. We can find out the

maximum number of plants that will be less profitable than Q by the following SQL

query:

select count(Id)

from P, Q

where P.X1 < Q.X1 and P.T = Q.T

group by T

having count(Id) >= all

(select count(Id)

from P, Q

where P.X1 < Q.X1 and P.T = Q.T

group by T);

While Example 1.2.1 can be extended to any higher dimension, many practical

aggregation queries use only one, two or three dimensional moving objects.

Example 1.2.4 Consider a set of ships moving on the surface of the ocean. The

locations of these ships are known by an enemy submarine which moves secretly

underwater at constant depth. If the submarine fires, it calls attention to itself.

Hence the submarine wants to wait until the maximum number of ships are within its
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firing range (which is some rectangle with the submarine in the center) before firing

at as many ships as possible.

Let Ship(Id, X, Y, T ) and Range(X, Y, T ) be two relations, which describe the

ships and the firing range of the submarine, respectively. A ship is in the firing range

at a time instance if its (X, Y ) location is equal to a point in the Range at the same

time instance. Hence, the above can be expressed by the following SQL query using

a maximum aggregation operator.

select max(ship-count))

from (select count(Id) as ship-count

from Ship, Range

where Ship.X = Range.X and

Ship.Y = Range.Y and

Ship.T = Range.T

group-by T);

There are many alternatives to express in SQL the same query. For example, the

above SQL query could be also expressed by another SQL query that has a structure

similar to the second SQL query in Example 1.2.1.

1.2.3 Datalog

Datalog is a rule-based query language, which is a natural language for querying con-

straint databases. Datalog has some features that SQL does not have. For example,

Datalog support recursive queries.

Example 1.2.5 Consider the the following query on the constraint database shown

in Example 1.2.2:
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Compute the intersection of the park with a rectangular area represented by relation

Rectangle(x,y).

For this, we may use the following Datalog query:

Intersect area(x, y) : −Park(x, y), Rectangle(x, y)

Example 1.2.6 Compute the area of the L-shape object shown in Example 1.2.2.

Park Area(area < x, y >) : −Park(x, y).

Every spatial object on the map is assumed to have two spatial attributes, x and

y. The area operator, denoted as area<x,y>, takes the relation as the input, and

calculates the area of the object represented by the relation.

Example 1.2.7 Let a spatiotemporal database relation LinconCityMap(id, x, y,

t) represent the growing city. The following query finds the area of the city in the

year 2003:

LincolnArea(area<x,y>) :- LincolnCityMap(id, x, y, 2003).

1.2.4 Spatial and Spatiotemporal Aggregate Operations

Many recent papers study aggregate operations for multi-dimensional point datasets [34,

59, 13, 20, 29].

Some common definitions related to aggregate operators follow.

Definition 1.2.1 (dominance) Given two d-dimensional points x = (x1,...,xd), y =

(y1, ..., yd), x dominates y if xi > yi for every i, 1 ≤ i ≤ d.

Definition 1.2.2 (dominance-sum) Given a set S of points and a query point Q,

compute the sum of the points in S that are dominated by Q.
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Example 1.2.8 Figure 1.2 shows a set S of eight points in the two dimensional space,

and a query point Q. Five points are dominated by Q in S. That is, dom−sum(Q) =

5.

y

x

Q

Figure 1.2: Dominance-sum for static points

Definition 1.2.3 (range-sum) Given a set S of points and a query box q, compute

the sum of all points in S that are contained in q.

Range-sum can be reduced to dominance-sum. ECDF-tree [7] is a multi-level

data structure that answers the dominance-sum queries. The main branch of a d-

dimensional ECDF-tree is a binary search tree whose leaves store the data points,

ordered by their position in the first dimension. Each internal node of the main

branch stores a pointer, which points to a (d-1)-dimensional ECDF-tree. This sub-

level data structure is called the border.
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Example 1.2.9 Figure 1.3 (A) shows a set of eight points in the two dimensional

space. b1 is the x coordinate of the vertical line, such that half of points in S lie to

the left of the line and the rest lie to the right. All points to the left of the vertical

line x = b1 are sorted by their y-coordinates and stored in the border as shown in

Figure 1.3 (D). For a given query point q, q.x > b1, three points in the border, p3, p5

and p7 have smaller y-coordinates then q, hence they are dominated by q.

(D)

(C)(B)

(A)

border

P7, P3 b3b2 P6, P4

P7, P5, P3, P1b1

b3b2

b1

P7

P5

P3

P1

P7

P5

P3

P1
P2

Q

P8
P6

P4

P2

Q

P8
P6

P4

Figure 1.3: ECDF tree

Zhang et al. [63] addressed box-sum aggregations like sum, count and avg with

related to spatial objects with extent. A typical box-sum query is: “Find the total

volume of pesticide sprayed in Orange County for March 1999.”
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The following spatial aggregations are also addressed:

Definition 1.2.4 Given a set of objects, each having a box and a value function,

and a query box q, compute the total value of all objects that intersect q, where the

value contributed by an object r is the integral of the value function of r over the

intersection between r and q.

1.3 Related Work for Chapter 5

1.3.1 XML and Spatiotemporal XML

The eXtensible Markup Language (XML) is a tag-based notation for “marking” doc-

uments. It is a simple and flexible text format derived from SGML [1]. Originally

designed to meet the challenges of large-scale electronic publishing, XML is playing an

increasingly important role in the exchange of a wide variety of data on the Internet.

XML

Elements are the basic content units in XML. An element may contain character

data, or other elements. Element tags in XML are defined by text surrounded by

angle brackets, i.e., <...>. Tags generally come in matching pairs, with a beginning

tag and a matching ending tag that is the same text starting with a slash.

Example 1.3.1 In the following sample XML document, the root tag is addressbook.

There are two entries surrounded by the tags <contact> and </contact>. There is

an email element for the first entry and a phone element for the second entry. Each

of the name elements is surrounded by the tags <name> and </name> and contains

two sub-elements, namely first-name and last-name, which contain only character

data.
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<addressbook>

<contact>

<name>

<first-name> Yi </first-name>

<last-name> Chen </last-name>

</name>

<email> ychen@cse.unl.edu </email>

</contact>

<contact>

<name>

<first-name> Lin </first-name>

<last-name> Lin </last-name>

</name>

<phone> 402-742-7719 </phone>

</contact>

</addressbook>

Document Type Definition

XML documents are required to satisfy a Document Type Definition (DTD), which

specify components that are available for a particular type of document and the way

those components can be mixed in order to produce a valid instance.

The general structure of a DTD is:

<!DOCTYPE root-tag[

<!ELEMENT element-name (components)>

...

]>

The root-tag is the name of a document. An element is described by its name,

which is the tag used to surround portions of the document that represent that

element, and a parenthesized list of components. The latter are tags that must

appear within the tags for the element being described. (#PCDATA) after an element

name means that element has a value that is text.

Example 1.3.2 The following DTD specifies the structure of addressbook.xml.
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The root element is addressbook, which contains zero or more contact elements.

The first element definition says that inside the matching pair of tags

<addressbook>...</addressbook> we find zero or more contact tags, each rep-

resenting the contact information of a person.

<!DOCTYPE addressbook [

<!ELEMENT addressbook (contact*)>

<!ELEMENT contact (name, phone*, email*)>

<!ELEMENT name (first-name, last-name)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT first-name (#PCDATA)>

<!ELEMENT last-name (#PCDATA)>

]>

Spatial XML Documents

Several XML-based languages have been proposed for both two dimensional vec-

tor rendering, and for encoding geographic data. Among these the Vector Markup

Language (VML) format provides a mechanism for encoding graphic primitives for

rendering in a Web browser. For example, VML is implemented in Microsoft Internet

Explorer. It is also the graphics interchange format within the Microsoft Office 2000

suite. The Geographic Markup Language (GML) provides a set of semantic tags for

encoding coordinates of OpenGIS features.

VML

Vector Markup Language (VML) is an XML-based exchange, editing, and delivery

format for high-quality vector graphics on the Web. VML is currently supported by
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Microsoft Internet Explorer 5 or greater for Windows 95, Windows 98, and Window

NT 4.0 or greater.

VML was proposed as a standard for vector graphics on the Web [40]. VML is

supported by Microsoft Office 2000 Beta 2 or greater. Microsoft Word, Microsoft

Excel, and Microsoft PowerPoint can be used to create VML graphics.

Within VML the content is composed of paths described using connected lines

and curves. The markup gives semantic and presentation information for the paths.

Basic types for VML include boolean, fraction, ordinate, length, measure,

angle, color, font, bitmap, and vector.

Example 1.3.3 The following code draws a rectangle with width 150 and height 50

and fills it with yellow color.

<html xmlns:v="urn:schemas-microsoft-com:vml"> <head>

<title>Simple VML Example</title>

<style>

v:* {behavior: url(#default#VML);}

</style>

</head>

<body>

<v:rect style = "width:150pt;height:50pt" fillcolor="yellow">

</v:rect>

</body>

</html>

The advantages of VML can be summarized as follows:

• VML makes writing easier yielding greater productivity for users and authors.
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It facilitates the exchange and subsequent editing of vector graphics between a

wide variety of productivity and design applications.

• VML provides faster graphic downloads and a better user experience. It allows

the delivery of high-quality, fully integrated, scalable vector graphics to the

Web, in an open text-based format.

• VML is open and standards-based. It is an XML-based format.

GML

Geography Markup Language (GML) [21] is an XML-based encoding standard for geo-

graphic information developed by the OpenGIS Consortium. A digital representation

of the real world can be thought of as a set of features. The state of a feature is

defined by a set of properties, where each property can be thought of as a {name,

type, value} triple. The number of properties a feature may have, together with their

names and types, are determined by its type definition.

GML encoding already allows for quite complex features. A feature can, for

example, be composed of other features. A single feature like an airport might be

composed of other features such as taxi ways, runways, hangers and air terminals. The

geometry of a geographic feature can also be composed of many geometric elements. A

geometrically complex feature can thus consist of a mix of geometric types, including:

• Point

• LineString

• LinearRing

• Polygon

• MultiPoint



16

• MultiLineString

• MultiPolygon

• MultiGeometry

In addition, there are coordinates and coord elements for encoding coordinates.

There is also a Box element for defining the dimension of rectangle objects.

Example 1.3.4 The following GML feature describes a lecture building. This Feature

contains the properties NumFloors and NumStudents, and a basic geometry class Box.

The Box element is defined by the coordinates of the lower-left and the upper-right

vertices.

<Feature fid="142" featureType="building"

Description="A lecture building">

<Property Name="NumFloors" type="Integer" value="3"/>

<Property Name="NumStudents" type="Integer" value="987"/>

<Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<coord>

<X> 0.0 </X>

<Y> 0.0 </Y>

</coord>

<coord>

<X> 100.0 </X>

<Y> 100.0 </Y>

</coord>

</Box>

</Feature>
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The current version of GML uses a FeatureCollection as the basis of its document.

A FeatureCollection is a collection of GML Features combined with an Envelope (which

bounds the set of Features), a collection of Properties that apply to the FeatureCollection

and an optional list of Spatial Reference System Definitions.

Example 1.3.5 Figure 1.4 is an example of a feature collection, which contains a Point

and a Box.

<FeatureCollection xmlns:ogcgml="http://www.opengis.org/gml#" >

<Feature>

<Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<coord>

<X> 5.0 </X>

<Y> 40.0 </Y>

</coord>

</Point>

</Feature>

<Feature>

<Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<coord>

<X> 0.0 </X>

<Y> 0.0 </Y>

</coord>

<coord>

<X> 100.0 </X>

<Y> 100.0 </Y>

</coord>

</Box>

</Feature>

</FeatureCollection>

Figure 1.4: An example of feature collections

1.3.2 XML Document as Database

Even though XML is mainly regarded as a data exchange and transportation model on the

Internet, the large volume of XML documents online also motivates the idea of using XML
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Figure 1.5: The LOREL model for an XML document

as a data storage model [25, 36]. Hence, it is important to find efficient technologies for XML

query processing. Traditional database query languages, such as SQL, are not appropriate

for querying XML, because XML is a semistructured data model without a rigid structure.

Novel languages for querying XML documents have been proposed [2, 32, 27, 10, 52].

Example 1.3.6 Figure 1.5 shows the LOREL graph model which represents the addressbook.xml

in Example 1.3.1.

1.3.3 XML-based Information Integration

Information integration systems take data that is stored in two or more databases (in-

formation sources) and build from them one large database, possibly virtual, containing

information from all the sources, so that data can be queried as a unit. The sources may

be conventional databases or other types of information [28].

There are several ways that databases or other distributed information sources can be

made to work together. Typical solutions include federated databases, warehousing, and

mediation.
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Figure 1.6: A typical mediator system architecture

Mediator systems [61] are systems that integrate multiple heterogeneous data sources,

providing an integrated global view of the data and providing query facilities on the global

view. Figure 1.6 shows the typical architecture of a mediator system. The wrapper is the

software component developed for each data source, which provides a view of the local data

in the global schema. Wrappers also translate queries on the global schema into queries

into queries on the local schema, and translate results back into the global schema.

1.4 Overview of Research Contributions

The main contribution of this dissertation are the following.

1. Chapter 2, which is based on [50], defines the Count aggregation operation, illustrates

its applications, and describes two novel solutions. In particular:

(a) Section 2.2.1 develops the Partition Aggregation Tree or PA Tree data structure,

which can answer Count aggregation queries over a set of moving objects that
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move according to a linear function in O(
√

N) time (measured in number of

disk access operations) and O(N) space.

(b) Section 2.2.2 develops another novel data structure called Dominance-Time

Graph or DT graph, which also can answer Count aggregation queries in O(log N)

time and N2 space. DT graphs allow moving objects to move according to a

polynomial function of time.

2. Chapter 3, which is based on [50], defines the Max-Count aggregation operation, which

also has a wide range of applications, and describes a novel solution for it. For this

problem, we introduce the Dome Subdivision data structure, which can answer Max-

Count aggregation queries with O(log N) time and O(N2) space when the objects

move linearly along the x-axis.

3. Chapter 4, which is based on [17], introduces the use histograms for the estimation

of Max-Count aggregation queries over moving objects. The resulting algorithm can

work in any fixed constant time and space, which is a constant chosen by the user. In

general, the larger the chosen constant the more accurate the estimation will be. The

results of an extensive set of computer experiments evaluate the impact of various

parameters on the estimation accuracy.

4. Chapter 5, which is based on [16, 15, 18], explains the limitations of current extensions

of XML documents in representing spatiotemporal data. This chapter also describes

the limitations of current query languages for XML documents in expressing some

high-level queries. This chapter also describes the design of a constraint database-

based spatiotemporal database mediator system that allows querying heterogeneous

spatiotemporal data sources. In particular:

(a) Section 5.1 designs a system architecture for querying heterogeneous spatiotem-

poral documents.

(b) Section 5.2 describes our design of the underlying data model used for DataFoX.
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Table 1.2: Computational complexity of aggregation on moving objects.
Query Time Space Dimension Function Method

Count O(
√

N) O(N) d linear PA tree
Count O(log N) O(N2) d polynomial DT graph
Max O(log N) O(N2) 1 linear Dome subdiv
Max O(c) O(c) 1 linear Histogram

(c) Section 5.3 introduces the Layer Algebra and illustrates each of the operators in

the Layer Algebra.

(d) Section 5.4 introduces the DataFoX query language and explains the evaluation

of DataFoX queries, based on a translation into the Layer Algebra of Section 5.3.

(e) Section 5.5 illustrates several detailed examples for the DataFoX system, which

was implemented on the top of the MLPQ/PReSTO constraint database sys-

tem [51, 43, 49, 48].

The complexity of all the aggregation query algorithms using the various novel data

structures is summarized in Table 1.2, where c is a constant.
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Chapter 2

Efficient Spatiotemporal

Aggregation: Count

2.1 Basic Concepts

Duality [22] allows mapping k-dimensional moving points into 2k-dimensional static points.

Partition Trees proposed by Agarwal et al. [5] are search trees for moving points.

2.1.1 Duality

Suppose the positions of the moving points in each dimension can be represented by linear

functions of time of the form f(t) = a · t + b, which is a line in the plane. This line can be

represented as a point (a, b) in its dual plane. Similarly, a point (c, d) can be represented

as a line g(t) = c · t + d in its dual plane. Suppose line l and point P have dual point L′

and dual line p′ respectively. Then, l is below P if and only if L′ is below p′.

Lemma 2.1.1 Let P = aP · t + bP and Q = aQ · t + bQ be two moving points in one

dimensional space, and P ′(bP , aP ) and Q′(bQ, aQ) be their corresponding points in the dual
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plane. Suppose P overtakes Q or vice versa at time instance t, then

t = −aP − aQ

bP − bQ

Let Slope(P ′Q′) denote the slope of the line P ′Q′. Then we have t = − 1
Slope(P ′Q′) .

Hence, given a time instance t, the problem of finding how many points are dominated

by Q reduces to the problem of finding how many points are below l, where l is a line

crossing Q in the dual plane with the slope −1/t.

Definition 2.1.1 Let S be a set of N points and l be a line in the plane. We define the

function CountBelow(l) as follows. If l is a vertical line with r1 points on the left and r2

points on the right, then CountBelow(l) = max(r1, r2). Otherwise, if r number of points

are below l, then CountBelow(l) = r.

Note that Definition 2.1.1 is logical, because if l is a vertical line, then we can always

tilt it slightly left or right to get another line that has the same value of CountBelow as we

defined.

Example 2.1.1 Figure 2.1 shows a set of points and two lines l1 and l2. There are four

points below l1, hence CountBelow(l1) = 4. There are five points to the left and one point

to the right of l2, which is a vertical line. Hence CountBelow(l2) = 5.

2.1.2 Partition Trees

Given a set S of N points in two dimensional space, we represent a simplicial partition of

S as Π = {(S1,∆1), (S2,∆2), ..., (Sm,∆m)}, where Si’s are mutually disjoint subsets of S

whose union is S, and ∆i is a triangle that contains all points of Si. For a given parameter

r, 1 ≤ r < N , we say this simplicial partition is balanced if each subset Si contains between

N/r and 2N/r points.



24

l

l

1

2

(A) (B)

Figure 2.1: Rank of a line.

Figure 2.2(A) shows an example of balanced simplicial partition for 35 points with r = 6.

The crossing number of a simplicial partition is the maximum number of triangles crossed

by a single line. The following is known about crossing numbers:

Theorem 2.1.1 (Matousek [41]) Let S be a set of N points in the plane, and let 1 < r ≤

N/2 be a given parameter. For some constant α (independent of r), there exists a balanced

simplicial partition Π of size r, such that any line crosses at most cr1/2 triangles of Π for a

constant c. If r ≤ Nα for some suitable α < 1, Π can be constructed in O(Nlog r) time.

Using Theorem 2.1.1, it is possible to recursively partition a set of points in the plane.

This gives a partition tree.

2.2 Count Aggregation Queries

Section 2.2.1 explains an extension of the partition tree. With the modification, the count

query can be answered in O(
√

N) time. Then a more novel data structure, called a

dominance-time graph, is described. This data structure can answer the count query in

logarithmic time.
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Figure 2.2: A partition aggregation tree.

2.2.1 Partition Aggregation Trees

Definition 2.2.1 Let S be a set of N points in k dimensional space and T be a multi-level

partition tree for S. Let vi be an internal node in T , which stores a triangle ∆i. A new

value Ai is attached to node vi, such that Ai is the number of points in Si. The new tree

structure is called the Partition Aggregation Tree (PA Tree).

Theorem 2.2.1 PA Tree is a linear size data structure that answers the count query in

O(
√

N) time.

Proof First, consider the case of one dimensional moving points, that is, when the dual

is the plane. To construct the data structure that answers the aggregation operation,



26

first build a partition tree T . Following [5], choose the degree of the node v as rv =

min{cB, 2Nv}, where B is the size of a disk block, c is a constant integer, and Nv is the

number of points represented by the node v. Then, with a bottom-up fashion, the aggregate

value of each triangle in the partition tree is recursively computed and attached to the node

v.

To answer the aggregation problem by the query line l, visit T in a top down fashion.

Suppose a node v in the tree is reached. If v is an internal node associated with triangle

∆i, test if ∆i is below the query line l. If so, add Ai to the final result. If ∆i is above l,

just ignore it. If ∆i intersects with l, then traverse recursively to the subtree of v.

Following [5], the query can be answered with O(
√

N) time and the data structure re-

quires O(N) space. The generalization to higher dimensional case follows the generalization

of partition trees in [5].

Example 2.2.1 Figure 2.2(B) shows a partition tree with four top level triangles A,B,C

and D. The query line q crosses two top level triangles A and B. There are three second-

level triangles A4, B2 and B3 that are crossed by q. Figure 2.2(C) shows the structure of

the PA-tree. For simplicity, this figure only shows for each node the triangle name and the

count of the points contained in that triangle.

To find CountBelow(q), start from the root of the PA-tree, load all top level triangles

into memory and compare them to the query line q. Because both triangles C and D are

below the line, add the precomputed value to the result CountBelow(q) = 12 + 17 = 29.

For the triangles A and B, traverse their children recursively. In this case, triangle B4 is

below q, then CountBelow(q) = CountBelow(q) + CountIn(B4) = 29 + 4 = 33, where

CountIn(B4) is the number of points in the subset associated with B4. When the leaf

nodes of the PA-tree are reached, compare each point in the node with q and add the

number of points below q. There is one point in triangle B3 that is below q. Finally, the

answer to the aggregation problem is 34. In Figure 2.2(C), those nodes that are accessed

by this algorithm are indicated using double-sided rectangles.
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Example 2.2.2 Figure 2.3 shows three cars driving along three pathes. Assume each car

travels at a constant speed in each line segment. Assume a plane flying in the air keeps

taking pictures of the ground, which is represented as the rectangular area in Figure 2.3.

Given a time instance, find out how many cars will be covered in the picture at that time.

Figure 2.3: Aggregations on piecewise linearly moving points

In Example 2.2.2, the movement of a car can be represented by piecewise linear functions.

When the direction or speed changes, it is like replacing a car by a new car with different

direction or speed. We have the following theorem for the piecewise linearly moving points

in one-dimensional space:

Theorem 2.2.2 Let S be a set of piecewise linearly moving points with N number of pieces

in one dimensional space. The dominance-sum problem of S can be answered in O(
√

N)

time with O(N) space.

This theorem addresses the case in one-dimensional space, such as the situation when

each car is going on a straight highway, but each car may slow down in certain intervals due

to road construction or heavy traffic, and they change direction only if they make U-turns.

It is an open problem to find a similarly efficient solution for two or higher dimensional

space.
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2.2.2 Dominance-Time Graph

Partition aggregation trees are limited because they only work when the points are moving

linearly. This section introduces dominance-time graphs, a novel index data structure that

can handle polynomial functions of time.

Definition 2.2.2 For two k-dimensional moving points P = (f1, ..., fk) and Q = (g1, ..., gk),

P dominates Q at time t, denoted as dom(P,Q,t), if and only if fi(t) > gi(t) for 1 ≤ i ≤ k.

If P does not dominate Q at time t, then we write ndom(P,Q,t).

Example 2.2.3 Figure 2.4 shows the positions of two moving points P and Q in the two

dimensional space at time t1 and t2, t1 < t2. According to the above definitions, both

ndom(P,Q, t1) and dom(P,Q, t2) are true.

P

Q

y

x

P

Q

(A) (B)
x

y

Figure 2.4: the positions of P and Q at time t1 and t2

Definition 2.2.3 Let S be a set of N moving points in k dimensional space. The dominance-

time graph G(V,E) for S is a directed labeled graph, such that for each point in S, there

exists a corresponding vertex in V , and there is an edge in G from P to Q labeled by the

set of disjoint intervals {(a1, b1), ..., (am, bm)}, if and only if dom(P,Q, t) is true for time

instance t that is within any of the open intervals. Note that any real number and −∞ and

+∞ can be an interval endpoint.
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Figure 2.5: A dominance-time graph.

Example 2.2.4 Suppose that we are given the following set of two dimensional moving

points:

P1 = (t + 10, t − 5)

P2 = (2t, 2t − 10)

P3 = (3t + 5, 3t − 15)

P4 = (4t − 5, 0)

The dominance-time graph of these moving points is shown in Figure 3. Note that for

any time instance t ∈ (5, 10) the condition dom(P3, P4, t) is true. Hence, the edge from P3

to P4 is labeled {(5, 10)}. The labels on the other edges can be found similarly.

Definition 2.2.4 Let P and Q be two moving points and t0 and t be two time instances

such that t0 < t. Between t0 and t an increment event happens to P with respect to Q if
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ndom(P,Q, t0) and dom(P,Q, t). Similarly, between t0 and t a decrement event happens to

P with respect to Q if dom(P,Q, t0) and ndom(P,Q, t).

Definition 2.2.5 Let Rank(P,t) be the number of points that are dominated by P at

time t.

Lemma 2.2.1 An increment event happens to P with respect to Q if and only if there is

an outgoing edge from P that has a label in which no interval contains t0 and some interval

contains t. Similarly, a decrement event happens to P with respect to Q if and only if

there is an outgoing edge from P that has a label in which some interval contains t0 and

no interval contains t.

Lemma 2.2.2 Let t0 and t be two time instances such that t0 < t. Let P be any vertex

in a dominance-time graph. Let m (and n) be the number of increment (and decrement)

events that happen to P with respect to different other vertices between t0 and t. Then the

following is true:

Rank(P, t) = Rank(P, t0) + m − n

Proof There are m increment events and n decrement events that happen between t0 and

t. Each of the increment events increases by one the number of points dominated by P .

Similarly, each of the decrement events decreases by one the number of points dominated

by P . Therefore, the formula must be true.

Example 2.2.5 Table 2.1 shows the rank of each point of Example 2.2.4 at time in-

stances t = −8 and t = 12. Note that dom(P2, P3,−8) and ndom(P2, P3, 12) are both

true. Hence, an increment event happened to P2 between time t = −8 and t = 12. Sim-

ilarly, ndom(P2, P1,−8) and dom(P2, P1, 12) are also both true. Hence a decrement event

happens to P2 between the same times. Thus, according to Lemma 2.2.2, we have

Rank(P2, 12) = Rank(P2,−8) + 1 − 1 = 1
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Table 2.1: Location and rank of points at times t = −8 and t = 12.
Point Location Rank Location Rank

t = -8 t = -8 t = 12 t = 12

P1 (2, -13) 2 (22, 7) 0
P2 (-16, -26) 1 (24, 14) 1
P3 (-19, -39) 0 (41, 21) 2
P4 (-37, 0) 0 (43, 0) 0

2.2.3 Time and Space Analysis

This section describes the basic structure of dominance-time trees and show how to use

them to answer count aggregation queries in O(log mN) time, where N is the number of

moving points and m is the maximum degree of the polynomial functions used to represent

the position of the points.

A dominance-time tree for point P is a B-tree to index the consecutive time intervals:

(−∞, t1), (t1, t2), . . . , (ti, ti+1), . . . , (tn,+∞)

such that during each interval (ti, ti+1), the rank of P remains unchanged. The rank of P

during these intervals and the ti endpoints of these intervals can be precomputed and stored

in the B-tree.

Lemma 2.2.3 Let S be a set of N moving points. For any point P in S, we may compute

(precisely for polynomials up to degree 5 and approximately for higher degree polynomials)

a set of n time instances ti (1 ≤ i ≤ n) such that during each interval (ti−1, ti) the rank of

P remains unchanged.

Proof In the dominance-time graph of S, for each time interval (ti, tj) that contained in

labels of outgoing edges from P , ti and tj indicate the time instances of an increment event

and a decrement event for P . The set of time instances ti can be obtained by the following

steps:
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First, order all ending points of these intervals incrementally and denote them as t1, ...,

ti, ti+1, ..., tj . If there exists two consecutive instances ti = ti+1, then delete ti+1. If there

exist two consecutive intervals (ti, ti+1), (ti+1, ti+2) in which the ranks of P are the same,

then delete ti+1.

Example 2.2.6 Suppose in a dominance-time graph, there are four outgoing edges, e1, e2,

e3 and e4 for a point P . They are labeled as the following respectively:

e1 : (5, 18), (22, 35)

e2 : (9, 30)

e3 : (0, 9), (22,+∞)

e4 : (0, 22)

Figure 2.6 shows the intervals contained in the labels with thick line segments. In this

case, the B-tree contains the time instances 0, 5, 9, 18, 22, 30, 35 and the following time in-

tervals:

(−∞, 0),(0, 5),(5, 9),(9, 18),(18, 22), (22, 30),(30, 35), (35,+∞)

Definition 2.2.6 Suppose G is a dominance-time graph for a set of moving points and P

is a vertex in G. A Dominance-Time Tree TP is a data structure based on a B-tree, which

indexes all end points of time intervals contained in the labels of outgoing edges from P .

The leaf node of the dominance-time tree contains a list of consecutive time instances,

t1, t2, ..., tb, and b+1 data fields v1, v2, ..., vb+1 where b is chosen according to the size of the

disk pages. The precomputed rank of P during the interval (ti−1, ti) is associated with each

field vi for 1 ≤ i ≤ b. Given a time instance t, the rank of P can be found by searching the

dominance-time tree until the leaf node with the interval that contains t is reached.
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Figure 2.7: A dominance-time tree.

Example 2.2.7 Figure 2.7 shows the rank tree TP for P , whose outgoing edges are de-

scribed in Example 3. In this case, each node of the tree can contain at most three time

instances. To find the rank of P at 20, start from the root of the tree, compare each time

instance in the internal node and search the sub-tree recursively, until the leaf node which

contains the interval (18, 22) is found. Hence, Rank(P, 20) = 2 because the data field in

the leaf node associated with the interval contains the precomputed rank 2.

Theorem 2.2.3 Let S be a set of N moving points in k-dimensional space. Let m be

a fixed constant and assume that the position of each moving point in each dimension is

represented by a polynomial function of degree at most m. Given a point P in S and a
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time instance t, the Dominance-Time Tree for each P ∈ S requires O(N) space. Hence the

count aggregation problem can be done in O(logB N) time using a total of O(N2) space.

The preprocessing of the dominance-time tree structure involves computation of polyno-

mial functions. However, for a moving point which is represented by a polynomial function,

it is not difficult to use piecewise linear functions to approximately represent its trajec-

tory. Using this approximation method, the number of time intervals when the rank of a

particular point remain unchanged will remain unchanged.

Proof The total number of time instances for N moving points is O(mN) where m is the

maximum degree of the polynomial functions of time. The dominance-time tree is a B-tree,

which is a linear space data structure. Hence, the dominance-time tree TP requires a total

of O(mN/B) blocks where B is the size of disk blocks.

Now, consider the time for the count aggregation problem. For a given point P in a

set of N moving points, there are at most N outgoing edges starting from P . Because

the max degree of the polynomial functions is m, there are at most m time intervals for

each outgoing edges. Hence, the total number of time intervals for outgoing edges of P is

at most mN . Each of the 2mN ending point of these intervals indicates an increment or

decrement event to P . Note that for any two consecutive time instances ti and ti+1, the

rank of P can be precomputed. These time instances partition the time line into at most

(2mN + 1) segments. Let B be the block size, these segments can be organized into a

B+-tree structure, such that given a time instance t, the segment where t is contained can

be identified in O(logB(mN)) time.



35

Chapter 3

Efficient Spatiotemporal

Aggregation: Max-Count

3.1 Max-Count Defined

Many aggregation problems can be answered by the query-and-aggregate method, given an

efficient index structure that can answer the query efficiently. For example, a naive way to

answer the aggregation query: “Find the number of points that will be taken over by q” is:

(i) use spatiotemporal index data structure to find out what are those points that will be

taken over by q; (ii) count the result set of the above query. Observe that the aggregation

performance depends on the size of the query result.

This chapter introduces the max-count spatio-temporal aggregation, which has not been

studied before, and shows that it cannot be answered by the query-and-aggregate method.

An example of max-count query is: “A group of enemy tanks are moving with fixed speed

and direction. When and where should the bomber plane drop a bomb so that it can hit the

max number of tanks?”

Observe that this query is different from traditional spatio-temporal window queries,

that the query time could be open ended. We define the max-count query as the following:
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Figure 3.1: Max-Count for moving points in one dimensional space

Definition 3.1.1 (Max-Count)

Given a collection S of moving points and a moving query point q, compute

MAX{COUNT(p) | p ∈ S and p is dominated by q}.

3.2 Max-Count in Dual Plane

According to Lemma 2.1.1, given a set of moving points in one dimensional space, a moving

query point Q and a time instance t, the problem of finding how many points are dominated

by Q reduces to the problem of finding how many points are below l, where l is a line crossing

Q in the dual plane with the slope −1/t. Similarly, the problem of finding the max number

of points dominated by Q reduces to the problem of finding what is the max number of

points that are below l at any given time.

Example 3.2.1 Figure 3.1 shows a set of four moving points in one dimensional space,

which are represented by static points in a two dimensional space, and a query point Q. At

time t = 0, A and D are dominated by Q. At time t = 2, all four points are dominated by

Q.

There is always a line crossing Q, such that all points in the set are below the line, if

Q lies above the convex hull of the point set, to the left of all points, or to the right of all
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points.

Example 3.2.2 Figure 3.2 (A) shows the area described in the above as shaded area.

Observe that this area is the union of four areas, including the area above line AD as shown

in Figure 3.2(B), the area above line CD as shown in Figure 3.2(C), the area left to the

vertical line crossing A as shown in Figure 3.2(D), and the area right to the vertical line

crossing C as shown in Figure 3.2(E). Obviously, if Q lies in the shaded area in Figure 3.2(B),

there is always a line crossing Q, which is parallel to the line AD, such that all points are

below this line. Similarly, this line always exists if Q lies in the shaded area. Besides, if Q

lies below the shaded area, it is impossible to find a line crossing Q such that all four points

will be below that line. That is, Max Count(Q) = 4. Observe that these areas are layered.

A

D

C

B

(E)

A

D

C

B

(D)(C)

(B)
(A)

D

C

B
A

D

C

B
A

D

C

B
A

Figure 3.2: If Q lies above the convex hull of the point set with 4 points, then
Max − Count(Q) = 4

Similarly, if Q lies above the line AC, there is always a line l crossing Q, such that there

are at least three points below l. Because Q is above AC, there exists a line l crossing Q that
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parallels to AC, such that all points below AC and the points on AC will all lie below l.

So, if Q lies in the shaded area shown in Figure 3.3(A), then Max Count(Q) ≥ 3. Combine

this area with the shaded area shown in Example 3.2.2. If Q lies in the light-shaded area

as shown in Figure 3.3(B), then Max Count(Q) = 3.

(A)
(B)

C

B
A

D

A
B

C

D

Figure 3.3: If Q lies in the shaded area in (A), then Max − Count(Q) ≥ 3. If Q lies
in the light-shaded area in (B), then Max − Count(Q) = 3

3.3 Dome and Layer

Our max-count aggregation algorithm uses a novel data structure built on the concept of

domes, which is introduced here as a new type of spatial partition of the dual plane of a set

of one-dimensional moving points.

Definition 3.3.1 Let S be any set of points in the plane. For any new point Q, define

MaxBelow(Q) to be the maximum number of points below any line that passes through

Q.

Example 3.3.1 Example 3.4 shows a set of four points A,B,C,D, and a point Q in the

two dimensional space. In this example, MaxBelow(Q) = 3, because for any line crossing

Q, there is at least one point that is above this line.
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QA

D

C
B

Figure 3.4: MaxBelow(Q) = 3

Definition 3.3.2 Let S be any set of points in the plane. Let L be the set of lines that

cross at least two points in S or cross at least one point in S and are vertical. For 0 ≤ i ≤ N ,

we define Li = {l ∈ L|CountBelow(l)+CountOn(l) ≥ i}, where CountOn(l) is the number

of points in S crossed by line l.

Example 3.3.2 Figure 3.5 shows a set of four points A,B,C, D. L3={l1, l2, l3}. l4 doesn’t

belong to L3 because CountBelow(l4) + CountOn(l4) = 2.

Definition 3.3.3 For any line l, let Below(l) be the half-plane below l, or if it is a vertical

line, then the half-plane on that side of the line that contains more points. Let Below(Lk)

be the intersection of the half-planes associated with the lines in Lk. Let k-dome, denoted

as dk, be the boundary of the region Below(Lk).

The intuition is that any point above dk has a line through it with at least k points

below.
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Figure 3.5: The line set L3

Definition 3.3.4 Layer(k)= {Q|Q ∈ Below(Lk+1) and Q 6∈ Below(Lk)}.

Example 3.3.3 In Figure 3.3(B), Layer(3) is the light-shaded area. The upper boundary

of the light-shaded area is d4, the lower boundary of the area is d3.

Example 3.3.4 Figure 3.6 shows a set of seven points. In this case, L7 is composed of the

dotted lines (i.e., the lines crossing P2P3, P3P4,P4P5 and the two vertical lines crossing P2

and P5), while L6 is composed of the union of the dotted and dashed lines (i.e, the lines

crossing P2P7, P3P5, P4P6, P4P7 and the two vertical lines crossing P3 and P6). The two

thick polygonal lines in the figure are d7 and d6, respectively, and Layer(6) is the area

between them.

Lemma 3.3.1 For any i and j such that i ≤ j, the following holds.

(1) Li ⊆ Lj.

(2) Below(Li) ⊆ Below(Lj).

(3) No point of dome di is above any point of dome dj.
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Lemma 3.3.2 Layer(k) consists of those points that are strictly outside dk and on or inside

dk+1.

Lemma 3.3.3 Each point belongs to only one layer.

Proof Suppose that Q belongs to both Layer(i) and Layer(j) where i < j. By Defini-

tion 3.3.4, Q must be between di and di+1 and also between dj and dj+1. That means that

Q ∈ Below(Li+1) and Q 6∈ Below(Lj). By Part (2) of Lemma 3.3.1, it must be the case

that Below(Li+1) ⊆ Below(Lj) because i + 1 ≤ j. However, there is no Q that satisfies all

of the above conditions. This is a contradiction, showing that the lemma holds.

Theorem 3.3.1 Q ∈ Layer(m) ↔ MaxBelow(Q) = m.

Proof It is easy to see that region Below(k) contains at most k points. Because these

points are a subset of S, k ≤ N must hold. In the worst case, these points will be all on

the boundary of Below(k), that is, on dome dk.

Theorem 3.3.1 implies that the layers partition the plane in such a way that there is a

one-to-one correspondence between any element of the partition and the MaxBelow value

of the points in that element. A data structure can be built based on this theorm for

efficiently identifying which element of the partition a new point is located in, using the

following well-known result from computational geometry.

Theorem 3.3.2 [45] In an N-vertex planar subdivision the point location problem can be

solved in O(log N) time using O(N) storage, given O(Nlog N) preprocessing time.

Lemma 3.3.4 Any dome dk has O(N) edges.

Lemma 3.3.5 Let S be any set of N points in the plane and Q a query point. Then,

MaxBelow(Q) = m can be found in O(log N) time using an O(N2) space data structure.
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Proof By Lemma 3.3.4, each dome has O(N) edges. There are only N/2 different domes,

namely dN , dN−1, . . . , dN/2. Therefore, the total number of edges and vertices on all of

these domes is O(N2). First, draw all of the domes and find the partition of the plane

according to layers. Using this partitioning and Theorem 3.3.2, the layer in which Q lies

can be found in O(log N) time. Then, by Theorem 3.3.1, MaxBelow(Q) can be calculated.

Lemma 3.3.6 Let S be a set of N points and Q a query point moving along the x axis.

Let S′ and Q′ be the duals of S and Q, respectively. Then, the following holds.

1. For any time instance t, the moving point Q dominates CountBelow(l) number of

points in S, where line l crosses Q′ and has slope −t.

2. The maximum number of points that Q dominates is MaxBelow(Q′).

Theorem 3.3.3 The Max-Count aggregation query can be answered using an O(N2) size

data structure in O(log N) query time and O(N2 log N) preprocessing time.

Proof Let Q′ be the dual of the query point. By Lemma 3.3.6, the max-count aggregation

problem can be answered by finding MaxBelow(Q′). By Lemma 3.3.5, MaxBelow(Q′) can

be found in the required time and space.

The above considers only objects that exist at all times. Suppose that objects only exist

between times t1 and t2. That means that only lines passing Q and having slopes between

−t2 and −t1 are interesting solutions. Let L
(t1,t2)
i be the modification of Li that allows only

lines that have slopes between −t2 and −t1 and cross two or more points or cross only one

point and have slopes exactly −t2 or −t1. With this modification, the definition of layers

can be modified correspondingly. Then, Theorems 3.3.1 and 3.3.3 still hold.
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Figure 3.6: Layer(6) for seven points.
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Chapter 4

Efficient Aggregation:

Approximation

Many spatio-temporal aggregate operations can be evaluated in logarithmic time. For

example, the Count aggregation 2 and Max-Count 3 can both be answered in O(log N)

time for a set of N moving points.

However, in many time critical applications even logarithmic query time may be too

slow. Accuracy can be sacrificed to obtain more efficient performance. Several authors

considered recently the estimation of aggregation operators on spatial data.

4.1 Max-Count Aggregation Estimation

The special case is studied when the set of moving points in one dimensional space has

uniform distribution of initial position (at time t = 0) and velocity.

Let S be a set of N moving points in one dimensional space. The position of a point

Pi ∈ S at time t can be represented by a linear function of time Pi(t) = ait+ bi. In the dual

plane, this point can be represented as a static point with the coordinate (ai, bi). Suppose

that the N points represented in the dual plane are distributed uniformly in a rectangular
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area R as shown in Figure 4.1. The following lemma is based on the histogram method.

Definition 4.1.1 The spatio-temporal histogram consists of a partitioning into a set of

rectangular areas, called buckets, the two dimensional dual space of the one-dimensional

moving point set. Each bucket is described by its corner vertices and the total number of

points in it.

Lemma 4.1.1 Let S be a set of N moving points which are all mapped within a rectangular

area R in the dual plane, and let Q1(t) and Q2(t) be two moving query points. Then, the

number of points in S that lie between Q1(t) and Q2(t) at time t are the points that lie in the

intersection of the rectangular area R and the query band area defined as the area between

the two parallel lines l1 and l2, which cross the dual points of Q1(t) and Q2(t) respectively

and have slopes −1/t. Suppose the area of the intersection is A, then the number of points

that lie between Q1(t) and Q2(t) at time t can be estimated to be N · A/R assuming a

uniform distribution of the points in R.

Proof The proof follows from the fact each moving point of S and the query points are

mapped into points in the dual plane such that the query band at time t contains those

points which are between l1, which is y−d1 = −1
t (x−v1) and l2, which is y−d2 = −1

t (x−v2),

where v1 and v2 are the velocities and d1 and d2 are the initial positions of Q1(t) and Q2(t).

That is, if the area of the intersection can be calculated, the estimated aggregation

result can be efficiently calculated. If l1 is below l2, the area of the intersection A can be

represented as A = A2 − A1, where A1 is the area in the rectangle that is below l1, and

A2 is the area in the rectangle that is below l2. On the contrary, if l1 is above l2, then

A = A1 − A2.

It is also clear that A1 and A2 can be calculated in a constant time. For example, given

a time instance t, (i) if l1 is above the rectangular area, then A1 = R; (ii) if l1 is below

the rectangular area, then A1 = 0; (ii) if l1 intersects the rectangular area, we have the

following cases as shown in Figure 4.2:
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Q1

Q2

R

Figure 4.1: Estimation idea assuming uniformly distributed point sets.

1. Only the upper-right vertex is above l1.

2. Only the upper-left vertex is above l1.

3. Both the upper-left and upper-right vertexes are above l1.

4. Both the upper-left and lower-left vertexes are above l1.

5. Both the upper-right and lower-right vertexes are above l1.

6. Only the lower-left vertex is below l1.

7. Only the lower-right vertex is below l1.

The above lemma shows that a constant number of calculations are needed to find

the count aggregate. When we pose Max-Count aggregates on spatiotemporal points, we

are given a query time range (t[, t]). The following shows that only a constant number of

calculations are needed to find Max-Count, given a query time range.

Lemma 4.1.2 Let S be a set of moving points in one dimensional space, and they are uni-

formly distributed in a rectangular area R in the dual plane. Let Q1 and Q2 be two moving
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Figure 4.2: Cases with one bucket and one line.

points. Given a query time range (t1, t2), the Max-Count aggregation can be computed by

a constant number of calculations.

Proof Let (t′1, t
′

2) be a time interval, such that t1 ≤ t′1 ≤ t′2 ≤ t2, and during this time

range, the two lines l1 and l2 do not sweep through any of the corner vertices of the rectangle.

Then, the Max-Count can be computed during this time range (t′1, t
′

2). This is because when

none of the corner vertices is swept through by l1 or l2, then the relationship between l1,

l2 with the rectangle remains the same. For example, if l1 crosses the rectangle at time

t′1, it might be one of the seven cases described above, and it will remain the same case

during the whole time range from t′1 to t′2. This is because if l1 doesn’t sweep through

any corner vertex, then the area below l1 can always be represented by a function of time

A1 = at+ b
t + c, where a, b and c are constants. Hence, neither l1 nor l2 sweeps through any

corner vertex, then the intersection area A can also be represented by a function of time

of the form A = at + b
t + c. Obviously, given the time range, the maximum value of this

function can be computed. There are only four vertices for a rectangle, hence there are at

most eight time intervals during which l1 and l2 do not sweep through any corner vertex.

That is, in the worst case, the maximum value of eight functions need to be calculated to

find the estimated Max-Count value.
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Lemma 4.1.3 Let R be a rectangle, such that the lower-left and upper-right corner points

are represented as (x1, y1) and (x2, y2). Let l be a line that crosses a point (x0, y0). Then,

the area in R that is below or above l can always be represented by a function of the form

A = a · t + b
t + c, where a, b and c are constants.

Proof Without loss of generality, first consider two cases. In the first case, l intersects two

perpendicular edges of R, and, in the second case, l crosses two parallel edges of R.

Case (1): In this case, the area below l is a triangle as shown in Figure 4.3(A). Suppose

the lower-left and upper-right corner points of R are (x1, y1) and (x2, y2), and l crosses a

point (x0, y0), then l can be represented by

y − y0

x − x0
= −1

t
,

when x 6= x0. The above can be rewritten in terms of x and then y as:

x = x0 − t(y − y0) y = y0 −
(x − x0)

t
.

Now, the triangular area which is the intersection of R and the area below l can be repre-

sented as follows.
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Area(R ∩ Below(l)) =
1

2
· (x3 − x1)(y3 − y1)

=
1

2
· ((x0 − t(y1 − y0)) − x1) · ((y0 −

(x1 − x0)

t
) − y1)

=
1

2
· (−t(y1 − y0) + x0 − x1) · (y0 − y1 −

(x1 − x0)

t
)

=
1

2
· (t(y0 − y1) + (x0 − x1)) · ((y0 − y1) +

(x0 − x1)

t
)

=
1

2
· (t(y0 − y1)

2 + 2(x0 − x1)(y0 − y1) +
(x0 − x1)

2

t
)

=
t(y0 − y1)

2

2
+ (x0 − x1)(y0 − y1) +

(x0 − x1)
2

2t

= a · t +
b

t
+ c

where a = (y0−y1)2

2 , b = (x0−x1)2

2 , and c = (y0 − y1)(x0 − x1). Similarly, the area above l is:

Area(R ∩ Above(l)) = Area(R) − Area(R ∩ Below(l))

= (x2 − x1)(y2 − y1) − at − b

t
− c

= a1t +
b1

t
+ c1

where a1 = −a, b1 = −b and c1 = (x2 − x1)(y2 − y)1) − c.

Case (2): In this case, without loss of generality, consider the situation shown in

Figure 4.3(B). Here, the area in R that is below l can be represented as follows.
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Area(R ∩ Below(l)) =
1

2
· (y2 − y1)((x3 − x1) + (x4 − x1))

=
1

2
· (y2 − y1)(x0 − t(y1 − y0) + x0 − t(y2 − y0) − 2x1)

=
1

2
· (y2 − y1)(2x0 − 2x1 + t(2y0 − y1 − y2))

=
(y2 − y1)(2y0 − y1 − y2)

2
· t + (y2 − y1)(x0 − x1)

= a2 · t +
b2

t
+ c2

Figure 4.3: The intersection of a bucket and the area below a line.

Now, the following lemma shows that the area in R that are between two parallel lines

l1 and l2 can also be represented by a function of time in a similar form.

Lemma 4.1.4 Let S be a set of moving points in one dimensional space, let H be the

histogram of S, and let Q1(t) and Q2(t) be two moving query points. Then, the estimated

number of points that are located between these two points at time t can be represented by
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a function of the form

count(t) = a · t +
b

t
+ c

where a, b and c are constants.

Proof The query band area is always the sum or difference of the basic areas shown in

Figure 4.2. By Lemma 4.1.3 the basic areas are also of the stated form, which is closed

under difference and addition.

Lemma 4.1.5 Suppose the dual plane is partitioned into rectangular buckets. We can

calculate the Max-Count of a query band during a query time interval when the query band

covers the same set of corner points of the buckets.

Proof For a function of time in the form f(t) = a · t + b
t + c and a given time interval, the

maximum value of f(t) during that time interval can always be calculated in a constant

time.

Definition 4.1.2 Let H be a histogram. Let Q1(t) and Q2(t) be two query points. Let

(t[, t]) be the query time interval. Define the Time Partition Order to be the set of time

instances TP = {t1, t2, ..., ti, ..., tk}, such that t1 = t[ and tk = t] and for each time interval

[ti, ti+1) the set of bucket corner vertices that lie within the query band remains the same.

The slopes of l1 and l2 change with t. For the query band to remain in one of the states

shown in Figure 4.2 during a time interval [ti, ti+1), it cannot change so much that it either

leaves a corner vertex or adds a new corner vertex of a bucket.

Therefore, throughout the time interval [ti, ti+1), the number of points within the query

band can be estimated by the same function of the form a · t + b
t + c, where a,b and c are

constants.

All the above lemmas and observations lead to the following algorithm to estimate the

Max-Count value.
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Algorithm 1 Max-Count Algorithm

Input: A histogram H, query points Q1(t) and Q2(t) and a query time interval (t[, t]).

Output: The approximated Max-Count value.

1. Find all bucket corner vertices in H. Find the lines between the corner vertices and

the dual of the query points. Order the lines by their slopes. Find the Time Partition

Order of the time interval (t[, t]).

2. For each time interval associated with the Time Partition Order calculate the function

of time having the form a · t + b
t + c, where a, b and c are constants.

3. For each such function of time, calculate the maximum value within the corresponding

time interval. Store the result in a list.

4. The maximum value in the list is the final result.

Theorem 4.1.1 Let H be a histogram with B number of buckets. Let Q1(t) and Q2(t)

be two moving query points, and let (t[, t]) be a time interval. It takes O(B log B) time to

calculate the estimated Max-Count value.

Proof Because the histogram has B number of buckets, the total number of corner vertices

in the histogram is O(B). To find the time intervals, calculate the slope of the line from each

corner vertex to the dual points of Q1(t) and Q2(t). Then, order all these lines according

to their slopes. This takes O(B log B) time. Note that the slopes are equivalent to −1/t.

Hence when ordering the lines by their slopes, the time instance associated with them are

also ordered. Note that only the lines that have slopes between −1/t[ and −1/t] where t is

nonnegative are considered.
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During any time interval [ti, ti+1) used by Algorithm 1, the set of bucket corner vertices

within the query band remains the same. Hence, according to Lemma 4.1.2, the Max-

Count value during that time interval can be calculated in constant time. Finally, because

the number of corner vertices is O(B), the total number of time intervals is O(B).

A B
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E
F

G

H A B

CD

E

G

H

F

P

Q

P

Q

(A) t (B) ti i+1

Figure 4.4: The query band at two different times.

Example 4.1.1 Figure 4.4 shows a histogram which contains three buckets and in which

P and Q are the duals of the two moving query points. There are a total of eight corner

vertices for the buckets in the histogram, as shown in the figure. Figure 4.4(A) shows the

query band at time ti. The query band consists of two parallel lines which have the slope

−1/ti. The line crossing P also crosses F . This means that at time ti, G lies in the query

band, and F enters the query band. Sweep the query band counterclockwise and at a later

time ti+1, F still lies in the query band, but G is leaving the query band, as shown in

Figure 4.4(B).

During the time interval [ti, ti+1), the query band intersects with all three buckets.

Moreover, the intersection between each bucket and the query band remains in one of the
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states shown in Figure 4.2. For example, for the intersection of the query band and bucket

DEFG remains in the case shown in Figure 4.2(5). Hence, the area of the intersection

between the query band and bucket DEFG can be represented by the same function of time.

According to Lemmas 4.1.1 and 4.1.3, the number of points can be estimated by a function

of time f1 = a1 · t + b1
t + c1. Similarly, the number of points in the intersection of the query

band and buckets AHFE and HBCG can be estimated by functions f2 = a2 ·t+ b2
t +c2 and

f3 = a3 ·t+ b3
t +c3. Then, the total number of points during the time interval [ti, ti+1) can be

estimated by the function of time f = f1+f2+f3 = (a1+a2+a3)·t+ b1+b2+b3
t +(c1+c2+c3).

Observe that the Max-Count value during this time interval can be calculated with constant

time. Because the number of such time intervals formed by Time Partition Order is O(B),

it takes O(B) time to calculate the Max-Count of all such intervals and the final result.

4.2 Experiments

This section studies the impact of various parameters for the performance of the algorithm.

We systematically generate several synthetic datasets that consist of a large number of one-

dimensional moving points. Both the initial positions and the speeds of these points are

distributed between 0 and 10, 000 according to the Zipf distribution. In the Zipf distribution,

there are more points with bigger displacement value for the same speed, and there are more

points with higher speed for the same displacement. That is similar to the dataset used

in [19, 58]. Therefore, in the dual plane the dataset was distributed within a rectangular

area with height 10, 000 and width 10, 000 with a greater density of points in the upper and

right regions of the histogram.

4.2.1 Experimental Parameters

We consider the estimation accuracy with respect to the following parameters:

Number of Buckets: This is the number of rectangles that the plane is divided into using
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the histogram algorithm of [4]. In this study, the number of buckets was either 10

or 20.

Number of Points: This is the number of points in the histogram. Because the same

Zipf distribution in is used all of our experiments, the higher number of points also

mean a higher density of the points. We varied the number of points from 8000 to

40000.

Query Range: This is the distance between the duals of the two moving query points.

The query range is changed from 400 to 2000, that is, from 2% to 20% of the width

of the histogram.

Query Type: The position of the dual of the two moving query points can be either in

a dense region or a sparse region of the histogram. One dense and one sparse query

were studied in the experiments.

Initially, the query type was not considered as a parameter. However, it is included

because the experiments show that it is actually an important parameter. Presenting only

an average running time of a set of different queries would actually hide an interesting and

non-obvious relationship.

4.2.2 Dense Queries

In our first set of experiments, the location of the duals of the moving query points was in

a dense region of the histogram. These queries are called dense queries.

Bucket Size 10

The bucket size was fixed to be 10 and varied the number of points and the query range.

Figure 4.5 shows that the error rate decreases exponentially as the number of points

increase. The error rate also decreases slightly as the query range increases.
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Impact of range and sparsity

’queryabucket10.dat’

400 600 800 1000 1200 1400 1600 1800 2000

Range

5000
10000

15000
20000

25000
30000

35000
40000

Number of points

0

10

20

30

40

50

60

Error Rate

Figure 4.5: Performance measures for a dense query and 10 buckets.

Discussion: These findings were as expected. Obviously, as the number of points in-

creases, the histogram does not change, but the distribution of the points within the buckets

will tend to be more uniform. Hence the accuracy increases.

The query range data is harder to explain. Intuitively, in general the higher the inter-

section area between a bucket and the query band the less is the error rate. When the query

range is wider, the intersection areas between the buckets and the query band tends to be

greater, in fact, the query band may completely cover many buckets. For those buckets

that are covered completely, the estimation would be accurate.

Bucket Size 20

Figure 4.6 shows that the error rate decreases exponentially as the number of points increase.

The error rate also decreases slightly as the query range increases. This results are similar

to the results in Section 4.2.2, with a slightly lower error rate here than in the previous

section for most combinations of number of points and query ranges.
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Impact of range and sparsity
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Figure 4.6: Performance measures for a dense query and 20 buckets.

Discussion: Intuitively, when more buckets are allowed in the histogram, the distribution

in each bucket is more uniform, hence the total error rate should be lower. However, there

is no visible decrease of the error rate when the number of buckets increases from 10 to 20.

Apparently most of the extra buckets do not intersect with the query band, hence increasing

the number of buckets does not significantly lower the error rate.

For dense queries, with either 10 or 20 buckets, a slight change in time could result in

a large change in the estimate of the number of points in the query band. This explains

why the error rate can be high (up to 50%) in the case of a relatively few number of points

but remains low in the case of a high number of points. Apparently, the estimate and the

actual values change more in tandem with the higher density.

4.2.3 Sparse Queries

Sparse queries mean those queries that are the opposite of dense queries. In sparse queries,

the duals of the moving query points are located in a sparse region of the histogram.
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Bucket Size 10

Impact of range and sparsity
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Figure 4.7: Performance measures for a sparse query and 10 buckets.

Figure 4.7 shows the relationship of the error rate, number of points and query range

when the bucket size is 10 in the case of sparse queries.

The error rate is always relatively small, always below 10%. There is no clear relationship

between the error rate and query range. In fact, the error rate decreases about linearly when

the number of points is 24,000, but it increases linearly when the number of points is 8,000

and 40,000. Similarly, there is no clear relationship between the error rate and the number

of points. For example, the error rate goes up and down for query range 400 and down and

up for query range 2, 000.

Discussion: The lack of a clear relationship between the error rate and the query rate

in this case may be due simply to the fact that the error rate remains lower than 7% in

most cases. With such a relatively small error rate, the ups and downs in Figure 4.7 cannot

be statistically significant.
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Figure 4.8: Performance measures for a sparse query and 20 buckets.

Figure 4.8 shows that the error rate is again very small in most cases of sparse queries

when the bucket size 20. The highest error rate occurs in one corner of the picture when

the number of points is 8, 000 and the query range is 2, 000. There seems to be a decrease

in the error rate from that corner in any direction, either decreasing the query range or

increasing the number of points.

Discussion: In many ways, these results are similar to those in Section 4.2.3. The most

surprising result again is that the error rate is small, always less than 10%. It was also

noteworthy that in the case of sparse queries the average error rate seems to be slightly

lower with 20 buckets than with 10 buckets.

For sparse queries, with either 10 or 20 buckets, a slight change in time results only in

a small change in the estimate of the number of points in the query band. This explains

why the error rate is always small even when there are relatively few number of points.

Our experiments show that the query type is an important, perhaps the most important,
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parameter in the performance of the Max-Count estimation algorithm. That is surprising,

because it is a less obvious variable than the others. However, even in the case of dense

queries a good performance can be guaranteed if the number of points is high, the query

range is not too small, and the bucket size is 10 or higher.

4.3 Summary

The Max-Count aggregation problem arises as a natural problem for moving object databases.

Our estimation algorithm is a practical solution when the objects move along one line, the

number of moving objects is large, and the query range is not too small. Extensive ex-

periments show that a histogram with a small number of buckets can can achieve high

estimation accuracy.
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Chapter 5

DataFoX: An Constraint-based

Spatiotemporal XML Mediator

System

XML has emerged as the standard data model for data representation and exchange on

the Internet. Several XML-based languages encode geographic information. XML is eas-

ily extended to represent almost any spatio-temporal data model. Vector Markup Lan-

guage (VML) can represent vector objects, and Geography Markup Language (GML)

can represent coordinates of OpenGIS features. The parametric rectangle data model

is encoded easily in XML. We refer to this encoding as PRML. However, the proposed

XML query languages, for example, XQuery [11], Quilt [12], Lorel [3], XML-QL [24] and

XPathLog [42] do not fully support geographic queries of spatio-temporal XML documents.

Other XML query solutions, such as querying XML documents using relational database

systems [9, 26, 28, 55, 54], do not support spatio-temporal queries.

The previously proposed XML query languages have the following limitations.

• The method of querying XML using relational database systems includes both the

translation of XML schemas into relational schemas and the translation of tree-
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structured XML data into relational tables. Some semantic information that is en-

coded in the tree structure might lost. For example, a rectangle and a straight-line

object in GML have identical structures. These is no automatic translation algorithm

that can maintain the XML schema information.

• Tree algegras do not allow grammar heterogeneity of XML data. For example, a

single spatial object with rectangle shape also can be encoded as the combination of

two rectangles. The structure and content of the GML data that result from these

different combinations are different. The proposed tree algebra regards them as two

different objects.

• Many XML standards provide a strict structure for part of the data. For example,

spatial attribute data in GML are well structured. Unfortunately, most previously

proposed XML query languages and XML algebras do not provide sufficient support

for well-structured data in a semi-structured environment. For example, previously

proposed XML query languages do not support spatio-temporal queries on GML

although the spatio-temporal attributes are well structured in GML.

To overcome the above problems, a rule-based XML query language, Datalog For XML

(DataFoX), is presented, which combines the simplicity of Datalog with the support for

spatio-temporal data in constraint databases [35, 48]. A Layer Algebra, which is an extension

of relational algebra for XML is also introduced. This algebra provides the basis of query

evaluation and optimization for XML queries. The primary challenges we address are: (i)

how to identify and represent trees in the query language, and (ii) how to evaluate the

tree-based query language.

5.1 The DataFoX System Architecture

The architecture of the DataFoX system is outlined in Figure 5.1. XML Data sources

in different formats are wrapped into a uniform representation called Layer Constraint
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Databases, which are powerful for capturing the XML tree structure and GML, VML, and

PRML spatio-temporal information. The DataFoX query language is translated into a

Datalog query, which is further translated into the layer algebra. The query is evaluated

and the query result may be translated back to XML encodings using wrappers.

Query Evaluation

Layer Algebra

Layer Constraint Database

Datalog Query

DataFoX Query

Query Translator 

Constraint DB 

VML Wrapper

VML Data GML Data 

GML Wrapper

Figure 5.1: The DataFoX Architecture

Note that this architecture not only supports spatio-temporal queries using the con-

straint data model, but it also offers the power to integrate heterogeneous data sources.

Consider the following example shown in Figure 5.2. This digital map of part of an uni-
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versity campus is composed of different data sources with different formats. The building

data are represented in GML shown in Figure 5.3. The stadium, which has the shape of an

ellipse, is represented in VML as shown in Figure 5.4. A moving bus, following a rectangle

route with a constant speed, and a helicopter, flying northwest, are represented in PRML

as shown in Figure 5.5, the XML encoding of Parametric Rectangles [8].

Stadium

Ferguson Hall

Avery Hall

Bus

Helicopter

x

y

Stadium Square

Figure 5.2: Campus Map

Typical queries on this map can be stated as:

Query 1 Find out when the bus will pass the east gate of the football stadium.

Query 2 Find out when the helicopter will fly over the stadium.
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<buildings>
    <lecture_hall>
        <name> Ferguson Hall </name>
        <dept> Computer Science </dept>
        <boundedby>
            <rectangle>
                <coord> <x> 35 </x> <y> 15 </y> </coord>
                <coord> <x> 45 </x> <y> 30 </y> </coord>
            </rectangle>
            <rectangle>
                 <coord> <x> 45 </x> <y> 15 </y> </coord>
                 <coord> <x> 50 </x> <y> 20 </y> </coord>
            </rectangle>
         </boundedby>
      </lecture_hall>
      .
      .
      .
</buildings>

Figure 5.3: A fraction of GML document

Query 3 Find out if the helicopter will fly right above the bus. If yes, find out when the

helicopter will fly right above the bus.

In the DataFoX system, the three different data sources can be translated into layered

constraint databases.

5.2 Layer Model

In XML, the type of each node is defined as an “element”. nodes are regarded as the

counterpart of tuples in relational databases. The difference is that the data type of the

field in a certain element could be another element. All of the nodes of the same element

type belong to a layer, which is the counterpart of a relation in relational databases. The

layer name is the same as the element name defined for these nodes. Layer A is the parent
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<sport_facilities>
   <stadium>
      <name> Husker Stadium </name>
      <shape>
         <ellipse>
            <x> 15 </x>
            <y> 40 </y>
            <w> 10 </w>
            <h> 15 </h>
         </ellipse>
      </shape>
   </stadium>
   <square>
      <name> Stadium Square </name>
      <shape>
         <rectangle>
            <x> 30 </x>
            <y> 40 </y>
            <w> 5 </w>
            <h> 5 </h>
         </rectangle>
      </shape>
   </square>
</sport_facilities>

Figure 5.4: VML Document

layer of layer B if the element B is the sub-element of element A in the XML document.

Define Inferred Layers of a layer L as the set of layers, which are child layers of L.

Similarly, the Inferred Layer of a node is the sub-tree that is rooted from this node. Thus,

the inferred nodes of a certain node n and the edges between these nodes form an XML

treewith the root n. Assume that each node has a virtual attribute called nid as the identifier

of the node and a hidden attribute pid as a pointer to the parent node. we may use the nid

to access a node, from which we may access its child nodes. In DataFoX, we also use this

“nid” to identify the sub-tree that is rooted with the current node.
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<transportation>
    <vehicle>
        <name> Bus </name>
        <schedule>
            <prectangle>
                <x>
                    <from> <a> 0 </a> <b> 32 </b> </from>
                    <to> <a> 0 </a> <b> 33 </b> </to>
                </x>
                <y>
                     <from> <a> 1 </a> <b> 5 </b> </from>
                     <to> <a> 1 </a> <b> 6 </b> </to>
                </y>
                <t>
                      <from> 0 </from>
                      <to> 55 </to>
                </t>
             </prectangle>
              .
              .
              .
           </schedule>
      </vehicle>
       .
       .
       .
</transportation>

Figure 5.5: PRML Document

Also assume nid is ordered, to maintain the order information of the XML tree model.

For those elements defined as primitive data types, assign an internal attribute named data

for the elements defined as primitive data types, and the value of this attribute is the content

of the element. For example, the node in XML document <author>Maggie</author> can

be represented by the schema Author(nid, data) such that the value of “data” is “Maggie”

in this case.

Apply the same notation used to represent relational schema to represent the layer

schema. However, the domain of variables for the layer schema is “tree”. For example,
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the layer schema LAYERNAME(L1,...,Ln) means that there is an element named “LAYER-

NAME” defined in the XML document, which has n child elements, with the layer names

L1, L2, ..., Ln respectively. The data type of the child layers can be atomic (e.g.: string,

integer etc.) or a tree type defined by another layer schema. An instance of a layer and all

of its inferred layers is a tree, whose root is an instance of the root layer.

The layer definition can be generated from the element definition of the XML docu-

ment. Assume that every XML document comes with a Data Type Definition (DTD).

XML Schema is a stronger schema definition of XML, but DTD is adequate. (Note: we

can always generate DTD from the XML schema to create the layer data model.) With the

layer data model, an XML document is treated as a collection of layers, and the traversal

of the XML document is actually the traversal between the layers.

It is emphasized that the layer data model shares common features with the relational

data model. However, in DataFoX, the layer model is a logical representation of XML, and

the XML is not translated into flattened tables.

Example 5.2.1 (Layer Model)

The XML document shown in Figure 5.6 can be modeled in the layer model shown in

Figure 5.7. Every layer corresponds to an “element” definition in DTD. The book layer and

author layer are called the inferred layers of the library layer. The layers with primitive

data types like “PCDATA” are merged into their parent layer for simplicity.

5.3 DataFoX: Layer Algebra

With the self-description feature of XML, every spatio-temporal data can be encoded easily

in XML. Typically, GML defines a class of spatial features to represent OpenGIS data and

VML encodes vector information in XML. The Parametric Rectangle data model, used to

model moving objects, also can be encoded in XML, which we refer to as PRML.
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<!ELEMENT library (book*)>

<!ELEMENT book (title, year,

author+)>

<!ELEMENT title #PCDATA>

<!ELEMENT year #PCDATA>

<!ELEMENT author #PCDATA>

<library>

<book>

<title>Landscape</title>

<year>1997</year>

<author> Steve </author>

</book>

<book>

<title>Portrait</title>

<year>2000</year>

<author>John</author>

<author>Maggie</author>

</book>

</library>

Figure 5.6: Library Document

These data models share a common characteristic, namely, the structures of the spatio-

temporal attribute are well formatted, and generally form a well formatted sub-tree in the

document (although the structure could be very complex.) Applying the layer data model,

the upper layer is used to aggregate the object using constraints. The wrapper performs

this work.

5.3.1 The Operators

A layer in XML can be regarded as a relation in relational databases. A tree-type variable

is acceptable in a layer, and it is defined as child layers. We can define the operators on

layers, which are very similar to those of relational databases. In this section, we introduce

the Layer Algebra.
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library

year

author author

book book

title year author
title
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nid <year> <author>book

2

3

1997

2001

<book>

<title>
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data
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1
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Figure 5.7: Layer Model for Library Document

Selection

The “selection” operation identifies all nodes in a layer which satisfy some selection predi-

cate. “selection” is a “horizontal” operation on XML in the sense that no traverse between

layers is involved. The input of selection in layer algebra is a layer L, and a set of predicates

SL as parameters. It returns an output layer O, which has the same schema as the input

layer L. The children of the output layer are lost except for those fields with atomic data

types. The selection can be denoted as σL
SL(L). A node n belongs to the output layers if it

satisfies the selection predicate S.

Example 5.3.1 Consider the layer algebra query: σL
year=1997(Book). The Figure 5.9 shows

the result of selection operation on the layer model shown in Figure 5.7.

Projection

Define the projection operation as an orthogonal operation to the selection operation. It

is a “vertical” operation on XML in the sense that the traverse between layers is involved

in the operation. The input of projection is a layer L (and all of its inferred layers), and

a set of projection list PL as projection parameters. The projection list is a set of child

layer names of the input layer L, which are associated with a set of sub-elements of the

element defined for the input layer L. The output of projection operation is an output layer
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O, such that only those child layers that satisfy the projection predicates are kept as the

inferred layer of output layer O. That is, the child layers in the output layer are a subset

of child layers in the input layer, and all child layers of these returned layers are copied to

the output. The projection can be denoted as πL
PL(L). Formally, the projection operation

is defined as follows.

• A node n in the input layer belongs to the output if and only if the element type of

it is included in the projection list PL.

• A node m in the input layers belongs to the output layers, if the parent node of m

belongs to the output layers.

Example 5.3.2 Consider the projection operation πL
title,year(Book) on the XML shown in

Figure 5.7. The result of projection is shown in Figure 5.10.

Example 5.3.3 The projection operation should be considered as the vertical tree traversal

operation, that return a sub-tree from a set of nodes. For example, the selection operation

shown in Example 5.3.1 only returns a single node, and the author information which is

the child of the returned node is lost. The projection operation will return a sub-tree from

the current node according to the schema of the source document as shown in Figure 5.11.

Note that the internal attribute nid is used to denote the whole node.

Consider the query: Find all information about books that were published in 1997.

This can be expressed as: πL
nid(σ

L
year=1997(Book))

Product and Join

The input of a product operation is two layers, L1 and L2, with the schema L1(L1,1, ..., L1,m)

and L2(L2,1, ..., L2,n). The output of the product operation is a new layer O, with the layer

schema O(L1,1, ..., L1,m, L2,1, ..., L2,n). Formally, the product operation can be defined as

follows.
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For every pair of nodes n1 and n2, such that n1 belongs to layer L1 and n2 belongs

to layer L2, a new node n is created for the output layer O. The new nodes have m + n

children, such that the first m children are the same as the children of n1, and the remaining

n children are the same as the children of n2.

The join operation can be expressed as selection operation posed on the result layer of

the product operation. The formal definition of the join operation can be defined as follows.

Definition 5.3.1 (Join) Let L1 and L2 be two layers, with the schema L1(x1, ..., xi, ..., xm)

and L2(y1, ..., yj , ...yn), respectively. Then the join operation ⊲⊳ creates a new layer L, such

that

• The layer L has the schema L(x1, ..., xi, ..., xm, y1, ..., yj , ..., yn).

• If a node n1 belongs to layer L, there must be two nodes n1 and n2 that belongs to

layer L1 and L2 respectively, such that the inferred layer xi of node n1 has the same

value with that of the inferred layer yj of node n2.

The join operation can be denoted as L1 ⊲⊳L
xi=yj

L2.

Path Join

We introduce Path Join to join two layers with path predicates. The input is two layers

A and B, and the output of the path join operation is two layers, A′ and B′, which has

the same schema with A and B respectively. The path join operation will have the form

of A ⊲⊳L
PP B, while PP i s the path predicates. The path join can be defined formally as

follows.

• A node n belongs to the output layer of A′ if and only if n also belongs to A, and

there exists a node m in B′, such that n and m satisfy the path predicate nθm.

• A node m belongs to the output layer of B′ if and only if m also belongs to B, and

there exists a node n in output layer A′, such that m and n satisfy the path predicate

nθm.
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Example 5.3.4 The query in the Example 5.3.3 also can be expressed in path join in the

following: (σL
year=1997Book) ⊲⊳L

Book.nid/Author.nid Author

5.3.2 Translation of Layer Algebra

Layer Algebra is the basis for query evaluation and optimization. This section shows the

translation of Layer Algebra to Relational Algebra.

Theorem 5.3.1 Let L be an expression of Layer Algebra. There is an expression E in

Relational Algebra that is equivalent to L.

Proof A Layer Algebra expression L that consists of projection, selection and join can be

translated into a Relation Algebra expression E because there are equivalent operators for

each layer algebra operator.

• (Selection) Selection operation only returns a set of nodes that belong to the in-

put layer. Thus, the layer algebra σL
SL(L) can be translated into relational algebra

expression σSL(R), such that the relation R has the same schema with the layer L.

• (Projection) For a projection operation with the form πL
PL(L), such that the PL is

the list of fields to be projected, translate the expression into relational operation

πPL(L), followed by σIL(L), in which IL is the inferred layers of L.

• (Join) The join operation on two layers can be translated straightforwardly into a

join operation on two relations.

For the selection, projection and join operation on a layer that do not have inferred

layers, the translation is straightforward.

Example 5.3.5 Consider the join operation between the book layer and the publisher

layer, Book ⊲⊳L
Book.title=Publish.title Publish.

Figure 5.12 (a) and (b) show the original data, Figure 5.12 (c) shows the schema of the

output for the join operation, and Figure 5.12 (d) shows the tree structure result of the join

operation.
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5.4 DataFoX Query Language

DataFoX is a Datalog-like declarative query language. It is a high-level language that

extends Datalog with tree type variables. A DataFoX query can be translated into a

constraint query, which can be evaluated in the running constraint database system MLPQ.

5.4.1 Syntax

The input of a DataFoX query is a set of XML documents, and the output of a DataFoX

query is also an XML document. Each DataFoX query consists of a finite set of rules of the

form:

Q(y1, y2, ..., ym) : −R1(x1,1, ..., x1,k1
), ..., Rn(xn,1, ..., xn,kn

)

where each Ri is either a name of element in the XML document or a defined relation name,

including predefined spatio-temporal function names. The x’s and y’s are either variables,

or constants. When xi,j is a variable, it is bounded to the jth child of the Ri element. The

sub-element type of the variable xi,j is allowed, by adding the element name ei,j, with the

form of ei,j : xi,j.

The rule head relation Q is the root element name of the query result. The variables yi

define the values of the elements which are the sub-elements of the resulting root element

Q. Each variable yi has to appear somewhere in the rule body.

DataFoX Query Body

We categorize the predicates in the DataFoX query body into three classes: Extensional and

Intensional Predicates, Built-in Predicates, and user defined functions. Similar to Datalog,

the extensional predicates are relational database relations and the intensional predicates

are the database relations defined by the rules.

Built-in predicates include arithmetic comparison predicates, =, <, and so on. “/”

and “//” are two path predicates which refer to the parent-child and ascendant-descendant
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relationships of two nodes. For example, x/y means the node x is the parent node of the y.

A variable in DataFoX can denote a tree in XML. An internal attribute node ID (nid)

for an extensional predicate refers to the current node that satisfies the predicate, and this

nid is used to identify the tree with the root node nid. For example, in the predicate

A(a,B : b, C : c) the variable a refers to the current node with the element type A, which

has two sub-elements B and C. Two boolean predicates will hold from this extensional

predicate: a/b and a/c, because the node b and c are both children of node a.

Example 5.4.1 Consider the following query on the XML document show in Figure 5.3.2:

Find all the lecture halls that have offices for the computer science department. The query

is expressed as:

CS_Lecture_Hall(lecture_hall:lh):- Lecture_Hall(lh, dept:"Computer Science")}.

The variable lh in the query body is an internal attribute referring to the node with

the type lecture hall that satisfies the query condition. The query result is an XML

document with the root element “CS Lecture Hall” and a set of “lecture hall” trees as the

children of the root element.

User-defined predicates are introduced to handle the operation between tree type vari-

ables. Tree data is more complex then atomic data. The predicate between two tree

variables can not simply be mapped to the predicates of the nodes and edges of the tree.

For example, a single spatial object can be divided into two rectangles in two different ways.

Thus, this spatial object can be encoded in GML in two different ways, but they are de-

scribing exactly the same object. Equality, as applied to two trees, means that there exists

a mapping between nodes or edges of the two trees. This concept focuses on the equality

of structure detail, but misses the semantic information provided by the tree as a whole.

The introduction of user-defined predicates also allows hiding of structure detail of

variable from user. This provides a data integration mechanism.
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Example 5.4.2 Consider the query:

Find all the buses that will intersect with the bus named “schoolbus” from time 0 to time

100.

This can be expressed as:

Vehicle(bus: u):- Bus(v, name:’’schoolbus’’),

Bus(u),

Intersect(v, u, x, y, t),

0<=t, t<=100.

In this example, buses u and v have the same data type, defined as “Bus” element in

the document, but the structural details of the data are hidden. The user-defined predicate

Intersect handles the details of these two trees.

DataFoX Query Head

Each DataFoX query head has two roles: (1) it specifies the projection operation on the

relation created by the query body and (2) it defines the schema for each variable.

This means that each variable in the DataFoX rule head must appear in the rule body.

The data type of a variable in the rule head is the same as that of the matching variable

in the rule body. The query result is tagged as an XML document according to the query

head.

Consider the query in Example 5.4.1, the query head CS Lecture Hall( lecture hall:lh)

defines the result schema, with the root element CS Lecture Hall. The element contains

a child element Lecture Hall which has the value lh. Note that lh is a tree variable, the

projection operation on this variable copies the whole substree start from this element.
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5.4.2 Tree Operation

One of the advantages of Layer Algebra for XML is that it provides a data abstraction

based on the tree data types. A sub-tree in XML is abstracted as a tree type variable in

the root layer of this sub-tree. The details of the tree variable (the structure and content)

are all hidden from the user. In implementation, the corresponding XML wrapper will be

triggered when a tree variable is used in the query.

A typical application of tree operation is the manipulation of spatio-temporal data

encoded in XML.

Example 5.4.3 Consider the query:

Find the intersect time and position of two vehicle.

This can be expressed as:

Intersect_time(x, y, t) :- Vehicle(name:’’Bus’’, schedule:s1),

Vehicle(name:’’Shuttle’’,schedule:s2),

Intersect(s1, s2, x, y, t).

The schedule layer and its inferred layers encode spatio-temporal information of the

vehicle in a tree structure. Tree variables s1 and s2 are used to abstract the tree and take

part in the intersect spatio-temporal operation. The tree structure details are hidden from

the user.

The operations on tree structures are very difficult to express in other XML query

languages. Consider the intersection of two line segments AB and CD represented in

GML. The coordinates of the four points can be queried by XQuery. Suppose these four

points are represented in coordinates A(0, 0), B(5, 5), C(0, 5), D(5, 0). The coordinates

of the intersection point is (2.5, 2.5), which does not exist in the XML source. Handling

spatial data types is an even more complex problem. For example, the intersection of two

rectangular objects could be another rectangle, but it also could be a line segment or a single
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point. To represent this query with XQuery language, the user has to take into account

each case separately.

In the layer model, a tree type variable is used to represent the spatio-temporal object

and introduce a set of built-in operations defined on these variables. For example, a function

area() can be defined on the Boundedby element in GML to compute the area of the

region represented by this element. The task of translating the spatio-temporal objects to a

constraint representation is shifted to the wrapper. That makes the query language easier

to understand.

5.4.3 Recursive Queries

As a rule-based query language, DataFoX also can express recursive queries. Figure 5.6

shows part of a large an XML document that contains descriptions of books. Suppose

author Maggie wants to find potential co-authors for her future books. The potential

co-authors should be co-authors of her books, or those recommended by the co-authors.

Suppose that everyone will recommend to Maggie his/her co-authors and everyone who is

recommended to him/her. The query can be expressed as follows:

Co-Author-Book(book: bk) :- Book( bk, author: ‘‘Maggie’’).

Co-Author-Book(book: bk) :- Co-Author-Book(book: bk0),

Book(bk0, author: auth),

Book(bk, author: auth).

Recommended_Author(author: auth):- Co-Author-Book(book: bk),

Book(bk, author: auth).

The first rule finds all books authored by Maggie. The body says the sub-tree bk has

an element author with the value “Maggie”. The second rule finds those books that have a

common author with some book written by recommended authors. The third rule projects

all authors involved in those books. This example shows the power of recursive queries in

DataFoX, which is not supported in XQuery.
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5.4.4 DataFoX Evaluation

To support the tree data type, DataFoX includes path predicates and tree operations. This

section addresses the problem of DataFoX evaluation.

Theorem 5.4.1 (Least Fixpoint Evaluation) The least fixpoint of any DataFoX query and

input database (XML document) with path constraints is closed-form evaluable.

Proof Each of the extensional database sub-goals in the DataFoX rule body is associated

with a layer with the scheme defined in the input database, which is an XML document. The

path constraints with the form a/b and a//b can be expressed in Datalog as parent(a, b) and

ancestor(a, b) respectively. Thus, there is an equivalent Datalog with set data types where

the set variables range over R3 and are specified with linear constraint. It is well-known

that this case of Datalog is closed-form evaluable in this case [48].

5.4.5 Translating DataFoX Queries

DataFoX uses a similar syntax to Datalog, and Layer Algebra is an extension of Relational

Algebra with tree operations. This section discusses the translation of DataFoX rule bodies

into Layer Algebra.

Algorithm 2 Computing the layer for a DataFoX rule body using Layer Algebra

INPUT: The body of a DataFoX rule r, which consists of subgoal s S1, ..., Sn. For each

Si = pi(Ai,1, ..., Ai,ki
) with an ordinary predicate, there i s a layer Li already computed

where the A’s are either an internal attribute nid for the layer or a variable term with the

form ei,k : xi,k, or a constant term with the form ei,k : ci,k.

OUTPUT: An expression of layer algebra.

METHOD:

1. For each subgoal Si, let Qi be the expression πL
PL(σL

SL(Li)), such that all variables

appear in the predicate are included in the projection term pl, and sl is the conjunction

of the following conditions: (i) If there is a constant a appear in the subgoal with the
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form ei,k : a, then sl has the term ei,k = a; and (ii) if two sub-elements have the same

variable with the form ei,k : x, ei,l : x, then sl has the term ei,k = ei,l.

2. For each subgoal Si which is path predicate with the form aθb, let Qi be the expression

Li,j ⊲⊳Li,j .nidθLi,k.nid Li,k, such that the variable a and b appears as the internal

attributes in two other subgoals Sj and Sk respectively.

Theorem 5.4.2 Translating a DataFoX Query

Let Q be a DataFoX query not involving recursion, function calls (spatio-temporal

functions). Then, there is an expression E in layer algebra that is equivalent to Q.

Proof The DataFoX query body can be translated into Layer Algebra expression by the

Algorithm 2, with the result expression E. The query head which consist of variables

X1, ...,Xn can be expressed in layer algebra by the projection of the n variables from the

expression E. That is, the query statement can be expressed as πL
X1,...,Xn

(E).

The input of a DataFoX query is a set of EDBs (Extensional Databases) in the form

of XML and a set of IDBs (Intensional Databases) which can be generated from other

rules. The major challenge of DataFoX evaluation resides in the manipulation of tree type

variables. The essential steps in DataFoX evaluation include elimination of tree variables

and substitution of spatio-temporal operators. The result of these two steps is a Datalog

query with constraints.

The elimination of tree variables in path predicates is straightforward. The evaluation

of the path predicate a/b can be translate to relational algebra to check if there exists a

tuple (a, b) in the relation edge.

5.4.6 Translation to Layer Algebra

With Algorithm 2 all spatio-temporal operations can be converted into constraint queries.

This section focuses on the translation to layer algebra. We also show how to eliminate

path predicates.
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The query body of DataFoX can be translated into Datalog easily, provided a schema

information of the XML document (DTD format).

To simplify the query statement, DataFoX extensional and intensional predicates allow

the explicit specification of the field name. The complete predicate can be retrieved by

looking up the internal schema information.

The translation of DataFoX to layer algebra can be summarized by the following steps:

1. If any constant appears in a predicate, then the predicate is translated into a “se-

lection” operation. For example, the predicate Book(title :′′ portrait′′, ...) can be

translated into πtitle=′ portrait′(Book).

2. For any variable that appears in more than one predicate, a “join” operation is used

between these predicates. For example, the DataFoX query Example 5.3.5 can be

expressed as:

Publishers():- Book(title:t),

Publish(title:t).

The same variable t appears in two predicates, the corresponding algebra is

Book ⊲⊳L
Book.title=Publish.title Publish.

3. Path predicates, such as a/b, are regarded as a special path join operation between

the two nodes and the edge relation. Example 5.4.4 shows how to translate a path

predicate into layer algebra. Note that by giving an edge relation that stores all

edges, the descendant predicate with the form a//b also is translated into a set of join

operations on the edge relation. The descendant predicate is described as recursive

Datalog as follows:

Descendant(a, b) :- Parent(a,b).

Descendant(a, b) :- Parent(a,c),

Descendant(c,b).
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DataFoX maintains a lightweight tree to abstract the path information and use a

bottom-up traversal to bypass the evaluation of recursive join operations.

Example 5.4.4 Consider this query of finding the book authored by “Steve”.

The DataFoX statement can be expressed as follows:

Book(title: t) :- Book(id1, title: t),

Author(id2, ‘‘Steve’’),

id1/id2.

In this example, the book predicate is linked to the extensional database relation by

looking up the schema information. The predicate Book(id : id1, title : t) can be translated

into relational algebra: πid,titleBook.

The query body can be translated into relational algebra as follows:

σAuthor.data=′Steve′(Book ⊲⊳Book.nid/Author.nid Author)

5.5 Implementations

Our implementation of the DataFoX query language is based on the MLPQ/PReSTO [43]

constraint database system. We have implemented the wrapper for GML and PRML.

Figure 5.13 shows in MLPQ the integrated digital map from different XML formats, GML

and PRML. The map is represented internally by constraint databases.

In this example, the campus building data are encoded in GML, as shown in Figure 5.3.

The moving bus represented in PRML is shown in Figure 5.5.

The DataFoX query to determine the time when the helicopter flies over the stadium is

expressed in DataFoX as the following:

Fly_over_Stadium(x, y, t) :- Vehicle(name:’’Helicopter’’, schedule:p),

Lecture_Hall(name:’’Ferguson Hall’’, boundedby:q),

Intersect( p, q, x, y, t).



83

The DataFoX parser detects and aggregates the spatio-temporal variables in the state-

ment and then translate the statement into Datalog. The corresponding Datalog represen-

tation of this query is:

Fly_over_Stadium(x,y,t) :- Vehicle(id1, pid1, ‘‘Helicopter’’,x, y, t),

Lecture_Hall(id2, pid2, ‘‘Ferguson Hall’’,dept,x,y).

The constraints generated from the original GML data model shown in Figure 5.3 are

as follows. The above Datalog query regards these constraints as the data source.

Lecture_Hall(id, pid, name, dept, x, y):- id=10, pid = 8,

name = ‘‘Ferguson Hall’’,

dept = ‘‘Computer Science’’,

35 <=x, x <= 45,

15 <=y, y <= 30.

Lecture_Hall(id, pid, name, dept, x, y):- id=10, pid = 8,

name = ‘‘Ferguson Hall’’,

dept = ‘‘Computer Science’’,

45 <= x, x <= 50,

15 <= y, y <= 20.

The Datalog query is evaluated and executed in MLPQ/PReSTO system and the query

result is represented in the form of linear constraints. The wrapper produces the result with

the corresponding XML encoding.
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Figure 5.13: DataFoX Implementation on MLPQ/PReSTO
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Chapter 6

Conclusion

This dissertation discusses aggregate operations over spatiotemporal databases. Efficient

data structures are proposed to answer count aggregates, and a new aggregate operation

max-count is introduced.

Constraint databases can easily represent moving objects. Linear functions of time

were used to represent and approximate continuously moving objects. Either PA tree or

DT graph data structures can answer Count aggregate queries efficiently.

The efficiency of the algorithms is examined from the perspective of computation time.

Due to the space requirements of the above two data structures, these methods might not

be practical enough in most commercial GIS systems for large data sets.

A new spatiotemporal aggregate operator Max-Count is addressed for the first time.

The dome data structure can be used to answer Max-Count aggregation queries efficiently

in logarithmic time. The histogram-based approximation algorithm also answers the same

with O(B), where B is a chosen constant. The experiments show that a very small B can

be chosen to calculate the aggregation approximation without sacrificing much accuracy.

This work may be very suitable for time-critical applications and seems the most practical

of our algorithms.

The work discussed in this dissertation can be extended in several directions. Here are
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some open problems:

1. Dynamic data structures should be studied, which are needed when for example the

course of a moving object changes or a new moving object is introduced. In this case,

the data structure should be efficiently updated.

2. Implementing polynomial constraints that represent moving objects is still an open

problem. It is more accurate to use polynomial constraints to represent scientific data

(for example, the moving of the planets along an elliptical course). Spatiotemporal

aggregations with Max-Count should be investigated.

3. We also should study how to estimate efficiently the aggregate queries over moving

objects that are represented by polynomial constraints.

4. The Max-Count aggregation problem needs to be investigated when the moving point

objects move in a multidimensional space, not all along the x-axis. Answering this

open problem probably would require another novel data structure.
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