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Computer controlled systems contribute to safety in transportation systems and

many other critical life-saving and life-support systems. Part 1 presents the imple-

mentation and exploration of arbitrarily precise semantic approximations for soft-

ware verification using over-approximation and under-approximation techniques in

constraint databases. The approximations are implemented in the MLPQ system

and several program examples are analyzed in comparison to previous results. Part 2

presents novel MaxCount, ThresholdRange, ThresholdCount, Thresh-

oldSum, ThresholdAverage and CountRange estimation algorithms for mov-

ing points in d dimensions and a new spatiotemporal bucketing technique for indices.

Each query runs in constant time and is based on skew-aware static size buckets.

This bucket technique allows constant time inserts, deletes and updates needed for

highly dynamic spatiotemporal databases. The technique is also decomposable to

allow partial results to be calculated simultaneously and recombined in linear time.

We performed extensive experiments that show these threshold aggregation estima-

tion algorithms run up to 35 times faster than a precise algorithm with accuracy

above 95%.
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CHAPTER 1

Introduction

Programs increasingly control many aspects of our daily lives such as air traffic

control (ATC) systems. Failures such as the computer controlled Airbus A320 crash

on June 26, 1988 (Kilroy 1997) show that programs need thorough debugging and

verification before risking lives. We propose a new constraint-database approach to

program debugging and verification in Part 1 of this dissertation.

Programs also increasingly need to efficiently deal with moving objects, which

are also called spatiotemporal objects, such as airplanes in the case of air traffic

control systems. To increase program efficiency, we propose new spatiotemporal

aggregation operators in Part 2 of this dissertation.

We outline the main issues about software verification in Section 1.1 and about

spatiotemporal aggregation in Section 1.2.

1.1. Software Verification

Verifying the correctness of software is undecidable in general. That is easy to

see by looking at the well-known Halting Problem, which is the problem of deciding

whether a given program with a given input will terminate. Since the Halting

Problem is undecidable in general and termination of programs is usually considered

one of the conditions of correctness, it is clear that software verification is also

undecidable in general.
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However, let us take a deeper look at software verification and identify what can

be done. We start with the following definitions.

Definition 1.1 (Program State). A program state is a pair consisting of the

values assigned to the program variables and the specific location of the program

code where such an assignment occurs during an execution of the program.

We call the meaning of the program the semantics of the program. In this disser-

tation we are concerned with the following program semantics, called the collecting

semantics1.

Definition 1.2 (Collecting Semantics). The collecting semantics is the set of all

possible program states that a program may enter during some execution and some

input.

A key idea in software verification is that the program semantics can be approx-

imated using a terminating program that takes as input the program and some

approximation parameters and gives either an under-approximation or an over-

approximation, which we define as follows.

Definition 1.3 (Over-Approximation). Let S be the semantics of a program.

We say that any P l where S ⊆ P l is an over-approximation.

Definition 1.4 (Under-Approximation). Let S be the semantics of a program.

We say that any Pl where Pl ⊆ S is an under-approximation.

1see P. Cousot lecture notes: http://www.cs.wisc.edu/∼cs704-1/LectureNotes/9.

AbstractInterpretation.txt
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The approximation is often useful to check certain concerns about the program.

These concerns are expressed as some conditions called error states that need to be

avoided by the program to be considered correct.

If the over-approximation does not contain the error states, then the program is

considered correct. However, error states contained in an over-approximation may

be spurious. Hence they do not prove the program incorrect.

The spurious error states may be avoided by tightening the over-approximation.

If repeated tightening fails to eliminate the error states, then we may suspect that

the program is incorrect. By using an under-approximation, we can often prove that

the program is incorrect, i.e., falsify it. If an under-approximation of the semantics

contains some error state, then the program is incorrect. Falsification identifies some

of the errors in the program, hence it is a useful aid in debugging the program.

Chapter 2 reviews software verification literature with respect to Abstract In-

terpretation. Chapter 3 presents the constraint database approach to software ver-

ification. The chapter includes the improvements to MLPQ and the framework to

translate programs into Datalog rules that represent program semantics. Chapter 4

discusses the experiments, results, conclusions, and future work.

1.2. Spatiotemporal Aggregation

Max, Min, Count, Sum and Average form the set of natural aggregation-

operators for relational databases. Spatiotemporal databases containing moving

objects can not apply these operators in the same way. However, these operators

may still function in interesting ways for moving objects. For example, one can
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ask how many moving point objects exist within a rectangular area at a certain

time, or what is the maximum distance between two moving points at certain times.

Obviously, when we are interested in a certain time, then the moving point object

database can be reduced to a relational database and the above queries can be

expressed as simple Count or Max queries.

Moving object databases naturally suggest new aggregate operators that have

no equivalents in relational databases. For example, one may ask what is the max-

imum number of moving-point objects that exist simultaneously within a moving

rectangular area at any time instance during a time interval T? We call this the

MaxCount query (symmetrically we can also find the Min-Count). One may

also ask during what time intervals in T does there exist more than M moving ob-

jects within a rectangular area? We call this the ThresholdRange. We show that

a strong relationship exists between MaxCount and ThresholdRange, and we

show that ThresholdRange forms the bases for a family of threshold operators

that include: ThresholdCount, ThresholdSum, and ThresholdAverage.

A related, though less complex, operator answers the question: what is the num-

ber of moving objects that exist within or intersect a rectangular area at any time

instance during interval T . We call this the CountRange query.

Threshold aggregation operators are important in many applications such as

tracking airplanes or mobile clients of wireless networks.

Example 1.1. Airplanes are commonly modeled as linearly moving objects with

preestablished flight plans. Suppose, at any time, at most a constant number M of

airplanes is allowed to be in the O’Hare airspace to avoid congestion. Suppose also
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a new airplane requests approval of its flight plan for entering the O’Hare airspace

between times ta and tb. The air traffic controllers can avoid congestion as follows.

If after adding a new flight plan, the MaxCount between ta and tb is still less than

M , then they can approve the flight. Otherwise, they need to find some alternative

path, and check it again against the database.

Air traffic controllers try to direct airplanes as linearly moving objects for fuel

efficiency, among other reasons. If they recognize a developing congestion too late,

then they often must direct the airplane to fly in circles until the congestion has

cleared. That solution wastes fuel. On the other hand, if they recognize the devel-

oping congestion early, then they can often simply tell the airplane to change its

speed, which saves fuel. Therefore, it is important to identify congestions as early

as possible. We may identify congestions by using a MaxCount query where a

moving box around the airplane and a time interval [ta, tb] define the query. If the

MaxCount predicts congestion, then the airplane’s speed can be adjusted early in

the flight.

Example 1.2. Suppose we want to alert pilots if their current flight path takes

them through at least one congested region.

Traffic Alert/Collision Avoidance Systems (TCAS) is a system that provides

similar functionality. TCASs only provide alerts for current congestion, not pre-

dictive congestion. Although TCASs were implemented in 1986, we continue to

have mid-air collisions and near misses indicating that the system still needs im-

provement. ThresholdRange is a modification of MaxCount that returns all
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predicted time intervals on the flight path where the Count exceeds a given thresh-

old. Hence using ThresholdRange we can alert a pilot of predicted congestions

where more than M other airplanes will be within the space B around the airplane.

Predicting and avoiding these areas can significantly reduce the chances of mid-air

collisions.

Example 1.3. Suppose we are especially concerned about a rush-hour period

[ta, tb] that is particularly stressful to air traffic controllers. Suppose controllers can

direct at most M airplanes safely. We can determine the number of controllers

needed during the rush-hour time by executing the CountRange query over the

controlled airspace during the rush-hour and dividing by M . By ensuring that a

sufficient number of controllers are present, safety is achieved and controllers are

not over stressed.

These questions and examples, motivated by research on MaxCount, led us to

explore complex threshold aggregations and indexing techniques to support them.

1.3. Overview of Contributions

The detailed contributions of this dissertation can be described chapter-by-

chapter as follows.

Chapter 2 describes some basic concepts and previous work related to software

verification. Chapter 3 describes the general constraint database approach to soft-

ware verification and the details of constraint database approximation. Further, we

extend the MLPQ constraint database (Revesz et al. 2000) system to include both

over-approximation and under-approximation techniques. Chapter 4 gives three
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examples of software verification and falsification. We use these examples to com-

pare the constraint database approach to other techniques and conclude that our

method provides higher levels of precision than the other methods. This work is

based on Anderson & Revesz (2005) and Anderson & Revesz (2007a).

Chapter 5 describes some basic concepts and previous work related to spatiotem-

poral aggregation. Chapter 6 describes the theory of our new bucket structure

and how it allows a wide range of indices to perform dynamic updates. Chap-

ter 7 gives the theoretical basis for our spatiotemporal aggregation technique and

develops the d-dimensional MaxCount algorithm. We analyze the MaxCount

algorithm and show that it runs in constant time, and present motivating examples

in 3-dimensional space. Chapter 8 extends the theory for MaxCount to include

ThresholdRange, ThresholdCount, ThresholdSum, and ThresholdAv-

erage. We analyze these operators in relation to the MaxCount operator, and

show that each runs in constant time. Chapter 9 describes a new estimation al-

gorithm for CountRange, and shows that it runs in constant time. Chapter 10

gives our methods for measuring precision and accuracy of the different aggregation

operators. We present some new methods for generating data used in the experi-

ments, and show how it relates to other data generators for spatiotemporal data. We

analyze the accuracy and precision of our estimation methods related to the exact

methods, and give an empirical result that describes when each method should be

used. This work is based on (Anderson 2006) and Anderson & Revesz (2007b).
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Appendix A gives integral evaluations for each case given in Chapter 7. Ap-

pendix B discusses the implementation used in the experiments. Appendix C gives

additional results not shown as part of Chapter 10.



Part 1

Software Verification in Constraint

Databases
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CHAPTER 2

Literature Review

Abstract interpretation techniques provide the framework for extracting abstract

semantics of a program (Cousot & Cousot 1977, Cousot & Halbwachs 1978, Cousot

& Cousot 1992a, Halbwachs 1993, Kerbrat 1995, Cousot 2005).

Definition 2.1 (Abstract Semantics). We define the abstract semantics of a

program by approximating the set of possible program states at a certain location in

a program with a finite set of invariants (usually a certain type of constraint).

The abstract semantics over-approximate the values of the program variables

in a convex state space. Hence, the abstract semantics model all possible program

states and make verification of program correctness possible. The abstract interpre-

tation framework gathers information about programs in order to build the abstract

semantics. These abstract semantics provide sound answers to questions about the

program run-time behaviors. Given the type of invariants, these semantics can then

be used to design automatic program analyzers (Cousot & Cousot 1992a). Abstract

interpretation is often understood in terms of abstract-evaluation of the program.

Hence, we describe abstract interpretation in terms of the following:

(1) Program P .

(2) Abstract evaluation of P . And,

(3) Abstract semantics.
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We elaborate on items 2 and 3 below and in Figure 2.1.

Abstract Evaluation
(using Widening)

Program: P

Abstract Semantics
(invariants)

Modifies

Reached
Fixpoint?

No

Output: OA
(Over-Approximation)

Yes

Error state E

Program considered
Correct

tighten the
approximation

No

Yesis
E in OA

Figure 2.1. Abstract interpretation process.



12

Definition 2.2 (Abstraction operator). Given a program P written in a lan-

guage L and abstract domain D♯, define the abstraction operator as:

α : L→ D♯ (2.1)

Then the abstract semantics of P in D♯ represents the over-approximation.

In Step (2) of Figure 2.1 the process finds the abstract semantics by repeatedly

performing an abstract evaluation that modifies invariants of the program P . When

the process discovers only states already contained in the invariants, then the process

has reached a fixpoint and terminates. Figure 2.1 shows the process of reaching an

over-approximation.

Definition 2.3 (Counter Automata). Counter automata A are defined by tuples

(S,X, τ, s0, A) where S is a finite set of states, X is a finite set of counters x1, . . . , xk,

which are integer variables, τ is a finite set of transitions from S to S, s0 is an

initial state, and A ≡ a1, . . . , ak is an initial assignment of the state variables.

Each transition has two parts, a guard constraint over the variables that needs to be

satisfied before the transition takes place and a set of assignments to the variables

that update their values as the automaton enters the new state.

An example of counter automata is counter machines which allow only guard

constraints that compare variables and constants, and perform assignments that

increment and decrement a variable by one or set a variable to a constant. Floyd &

Beigel (1994) give an introduction to automata theory that covers counter machines.
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Boigelot & Wolper (1994), Fribourg & Olsén (1997), Fribourg & Richardson (1996),

Halbwachs (1993), and Kerbrat (1995) study extensions of counter machines.

The counter automata restricts the kind of operations needed to perform abstract

evaluation and build the abstract semantics. The transitions in the automata (i.e.

the arrows and constraints on the arrows) can represent different things depending

on the language of L used in the constraints.

As an example of counter automata, consider the subway control program shown

in Figure 2.2.

b−s>1?,s++

STOPPEDINITIAL

LATE ON TIME BRAKE

b:=s:=d:=0

b−s=1?,s++ d<=9?,b++

b−s<−1?,b++

b−s=−9?,s++

b−s<9?,b++

b−s=9?,b++,d:=0

d<9?,b++,d++b−s>−9?,s++

b−s=1?,s++

b−s>1?,s++

b−s=−1?,b++

Figure 2.2. The subway automaton.

Example 2.1 (Subway Counter Automata). Figure 2.2 shows an example counter

automaton A that represents the control program of a subway system. Although A
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has a finite set of states as shown, the values of b, d, and s increase with each tran-

sition.Therefore, there exists an infinite number of states. We analyze A in detail

in Chapter 4.

The abstraction operator α transforms A into a set of invariants in the abstract

domain that hold between the different variables. We can express the invariants

of this automaton using difference constraints. Other common abstractions repre-

sent invariants using intervals, linear inequalities, or convex polyhedra (Cousot &

Halbwachs 1978).

Example 2.2 (Interval Domain). Suppose that an interval abstract domain

represents the states of the program variables and that at point after repeatedly

applying the abstract evaluation to P we have

0 ≤ x1 ≤ 10 ∧ 0 ≤ x2 ≤ 10 (2.2)

Further, suppose in the next application of abstract evaluation of P , we discover

the state x1 = 5, x2 = 20 exists. This addition widens the abstract semantics to

0 ≤ x1 ≤ 10 ∧ 0 ≤ x2 ≤ 20 (2.3)

This widening doubles the representation size for a single state as shown in Figure 2.3

(a) and (b).

This simple example demonstrates the problems of any type of convex abstract

domain. The example above uses the interval abstract domain and expresses the

idea of widening. The widening operator invoked by abstract evaluation takes the
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states found during the abstract evaluation and expands the abstract semantics to

include any new states discovered.

Hence, when abstract evaluation reaches the fixpoint, the widening operator can

no longer expand the representation of the state. While the interval abstract domain

from Example 2.2 allows fast calculations, the results are usually too imprecise for

most applications. Clearly different abstract domains and widening operators must

be used.

Definition 2.4 (Widening Operator (Cousot & Cousot 1976, 1992b)). Let L be

a lattice and ⊑ be the ordering operator. The expression a ⊑ b reads “a precedes b”

where a, b ∈ s and s is an increasing sequence in L. A widening operator is defined

as a mapping ∇ : L× L→ L such that

∀x, y ∈ L : x ⊑ x∇y

∀x, y ∈ L : y ⊑ x∇y
(2.4)

and for all increasing chains in L, x0 ⊑ x1 ⊑ . . ., the increasing chain defined by

y0 = x0, . . . , yi+1 = yi∇xi+1, . . . is not an infinite, strictly increasing chain.

Widening operators of many varieties (Cousot & Cousot 1976, 1992b, Bagnara

et al. 2005, Revesz 2007) provide the mechanism for expanding abstract semantics

to find an over-approximation.

Widening operators serve three main purposes (Cousot & Cousot 1992a):

(1) Force the stabilization of approximated iteration sequences after a finite

number of iterations.

(2) Speed the convergence of iteration sequences. And,
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(3) Select a (possibly infinite) set of approximations of concrete elements when

considering abstract domains that are algebraically weak.

The convex-polyhedra domain with various associated widening techniques intro-

duced by Cousot & Halbwachs (1978) and expanded by Halbwachs (1979) is the

most widely used abstract domain (Bagnara et al. 2005).

(a) (b) (c)

Figure 2.3. (s) Original state space. (b) Widened using intervals. (c)
Convex polyhedra.

Example 2.3 (Convex Polyhedra Domain). Suppose instead of using intervals

as in Example 2.2, a convex polyhedra represented by linear constraints is used to

bound the state space. The representation for the state space in the abstract domain

of complex polyhedra in Figure 2.3 (a) gives:

x1 ≥ 0 ∧ −x1 ≥ −10 ∧ x2 ≥ 0 ∧ −x2 ≥ −10 (2.5)

However, widening increases the state space by half as much as in Example 2.2 as

follows.

x1 ≥ 0 ∧ −x1 ≥ −10 ∧ x2 ≥ 0 ∧

2x1 − x2 ≥ −10 ∧ −2x1 − x2 ≥ −30
(2.6)
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Figure 2.3 shows the original state space in (a) and the results of widening using

intervals in (b) versus widening using convex polyhedra in (c). In each case the gray

areas show the widened section.

The proliferation of tools for software verification gives a hint to the broad spec-

trum of approaches used to solve this important problem. The YAHODA verification

tools database (Crhová et al. 2002) lists 57 tools. The most relevant approach to

our constraint database approach is Abstract Interpretation. However, constraint

database approximation is different from abstract interpretation methods. The main

difference is that, at least in theory (Revesz 1999), both an under-approximation

and over-approximation of the least fixpoint can be arbitrarily close to the actual

least fixpoint. Second, constraint databases use a natural under-approximation and

over-approximation that does not use a widening operator. Third, our method

allows disjoint, non-convex regions to represent invariants. Naturally, increasing

precision in our method increases the running time. More details about constraint

logic programming and constraint databases can be found in the surveys by Jaffar

& Maher (1994), and Revesz (1998), and the books by Kuper et al. (2000), Marriott

& Stuckey (1998), and Revesz (2002).
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CHAPTER 3

The Constraint Database Approach

In the constraint database area, researchers have found methods for finding over-

approximations and under-approximations of the least fixpoint semantics of Datalog

programs. MLPQ Revesz et al. (2000) is a constraint database system that provides

a high degree of precision by allowing non-convex and disjoint regions to represent

collecting semantics. The level of approximation is controlled by a single parameter

l.

Figure 3.1 provides the general constraint database approach to the verification

of programs (Revesz 2007).

Section 3.3 describes the first two steps in detail. These steps form the frame-

work that translates a program into Datalog. The next step calculates an over-

approximation given the bounding parameter l. The results from the over-approximation

(or under-approximation) often contain a large set of data due to the disjunctive

representation of variable values. The constraint database approach simplifies inter-

pretation of results by providing native facilities to query the results for error states

using Datalog or SQL. Not finding the error state in the over-approximation verifies

program correctness. If we suspect that the error state is present, we perform the

under-approximation. Finding the error state in the under-approximation falsifies

the program.
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Error States: E

Yes: Decrease l

Approximation
Try Over−

Again?

Program considered correct

No

Yes: Decrease l

Not known

Input Program P

Find an under−approximation

semantics of D

Program considered incorrect

Try Under−
Approximation

Again?

Translate P into a transition

Translate T into a Datalog
program D that uses 

      of the least fixpoint

Find an over−approximation
of the least fixpoint semantics
 of D No

No

Yes

Yes

No

Addition Constraints

System T

E ∩ P l = ∅

E ∩ Pl = ∅

P l

Pl

Figure 3.1. Constraint database approach.

In theory, the constraint database approach can reach arbitrary precision by cal-

culating the under-approximation and over-approximation repeatedly as l → −∞.

Hence, this method approaches a precise evaluation. While this approach may not

be possible for every constraint, it may be reasonable to lower l to a point where

the constraint used to query for an error state converges. This method provides a

way to find constraints in the program that converge in conjunction with constraints

that do not. Chapter 4 gives an example of convergence in the subway automaton.
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3.1. Approximation Background

It is easy to express in Datalog with addition constraints a program that will

not terminate using a standard bottom-up evaluation (Revesz 2002). Consider the

following Datalog program:

D(x, y, z) :— x− y = 0, z = 0.

D(x′, y, z′) :— D(x, y, z), x′ − x = 1, z′ − z = 1.
(3.1)

This query expresses that the Difference of x and y is z. Further, based on

Equation (3.1) we can also express a Multiplication relation as follows:

M(x, y, z) :— x = 0, y = 0, z = 0.

M(x′, y, z′) :— M(x, y, z), D(z′, z, y), x′ − x = 1.

M(x, y′, z′) :— M(x, y, z), D(z′, z, x), y′ − y = 1.

(3.2)

Using Equations (3.1) and (3.2) we can express any Diophantine equation (Anderson

2003), which by Matiyasevich (1993), is Turing complete.

Definition 3.1 (Addition Constraints). Addition constraints (Revesz 2002) have

the form:

± x± y θ b or ± x θ b (3.3)

where x and y are integer variables, and b is an integer constant called a bound,

and θ is either ≥ or >.

Addition constraints can be represented using Addition Bound Matrices (ABM)

defined as follows.
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Definition 3.2 (Addition Bound Matrices (ABM) (Miné 2001)). Given a con-

junction of addition constraints with variables x1, . . . , xn, represent each variable in

two cases:

+ xi → x+
i (3.4)

−xi → x−
i (3.5)

Hence we will represent the variables using 2n symbols in an Addition Bound Matrix

as:

x+
1 x−

1 . . . x+
n x−

n

x+
1 e1,1 e1,2 . . . e1,2n

x−
1 e2,1

. . .
...

. . .
...

x+
n

x−
n e2n,1 . . . e2n,2n

Each entry ei,j represents the bound in the constraint X − Y ≥ B where X is the

row variable and Y is the column variable. If there is no constraint between a row

and column variable the bound is given as −∞.

Example 3.1 (ABM (Revesz 2007)). Consider the following upper bound, lower

bound and addition constraints:

− x ≥ −25, y ≥ 3, x− y ≥ 4, x + y ≥ 10, −x− y ≥ −40. (3.6)
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Translating these constraints into difference constraints we have:

x− − x+ ≥ −50

y+ − y− ≥ 6

x+ − y+ ≥ 4

x+ − y− ≥ 10

x− − y+ ≥ −40

(3.7)

For constraint databases, Revesz Revesz (1999) introduced two methods for ap-

proximating the least fixpoint evaluation of addition constraints by modifying the

standard bottom-up evaluation.

Definition 3.3 (Lower-Bound Modification). Let l < 0 be any fixed integer

constant. We change in the constraint tuples the value of any bound b to be max(b, l).

Given a Datalog program P , the result of a bottom-up evaluation of P using this

modification is denoted Pl.

Definition 3.4 (Upper-Bound Modification). Let l < 0 be any fixed integer

constant. We delete from each constraint tuple any constraint with a bound that is

less than l. Given a Datalog program P , the result of a bottom-up evaluation of P

using this modification is denoted P l.

These modifications lead to the following approximation theorem:

Theorem 3.1 (Revesz 1999). For any Datalog program P and constant l < 0

the following is true:

Pl ⊆ lfp(P ) ⊆ P l (3.8)
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where lfp(P ) is the least fixed point of P . Further, Pl and P l can be computed in

finite time.

We implemented these two constraint modifications in MLPQ to allow the over-

approximation and under-approximation of the semantics of Datalog with addition

constraints for software verification.

3.2. Improvements to MLPQ

Figure 3.2. Approximation dialog box.

MLPQ is a research implementation of a Constraint Database system developed

using Microsoft Visual C++. Over several years many different graduate students at

the University of Nebraska-Lincoln have contributed to this project. The on-going

effort to add new features and fix bugs has made this program a viable research

tool.
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We implemented the lower-bound and upper-bound approximation techniques

given in Definitions 3.3 and 3.4. In addition we made several memory handling

modifications to speed up the query evaluation and conserve system resources.

The program does not apply an approximation modification by default, but the

user may turn the modification on by clicking the “Apx” button shown in Figure 3.3.

Pressing the ”Apx” button pops up a dialog box (shown in Figure 3.2) which allows

the user to turn on the approximation, set the “Approximation Bound” l and select

the type of evaluation to use. MLPQ implements constraints using predicates =, <

Figure 3.3. Approximation added to toolbar.

and ≤ whereas the theory (Revesz 2002) uses > or ≥. This change in predicate has

led to a completely symmetric, but consistent implementation. As such the value

for l must be positive and increased for increased accuracy, whereas, in the theory,

l must be decreased to decrease error. In the experiments we express l as positive

to be consistent with the implementation.

3.3. Framework for Translating Programs into Datalog

The framework we give adapts the standard pre-condition transition system used

in static analysis and compiler optimization techniques.
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Definition 3.5 (Transition System). A transition system is a tuple (S,∧,→)

where S is a set of states, ∧ is a set of labels and→⊆ S×∧×S is a ternary relation

of labeled transitions. If p, q ∈ S and β ∈ ∧, then (p, β, q) ∈→ is written as:

p
β→ q (3.9)

where β is a set of conditions and operations to the source state variables that must

be made to enter the target state.

The abstract domain we use consists of addition and difference constraints. The

framework translates a program into Datalog in two steps:

(1) Create the transition system T .

(2) Translate that system into a Datalog query that uses only addition and

difference constraints.

Step (1) and (2) perform the step of translating a program P to a transition system

and then into Datalog with addition constraints. The two translations correspond

to the first optional step in Figure 2.1, which translates P into P ′.

Given a program P with n lines of code and m variables, step (1) gives the

transition system where a program statement (or state) pi ∈ S denotes the pro-

gram statement on line i about to be executed. A transition from some state pj

to pi denoted pj
β→ pi represents the rule to enter state pi where β contains the

“execution” of the program statement on line j. The values changed by β affect

the values available for execution in pi. How the new values affect the pi state will

determine the type of approximation. In Datalog these values will be added to the
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set of existing values. In abstract interpretation the new values widen the existing

invariants.

Example 3.2 (Transition System Framework). Suppose we have the program:

L1: a = 1; b = 2; c = 1
L2: d = b2 − 4ac

L3: return d

If we assume no initialization then we must allow any values on entry to L1. Fig-

ure 3.4 shows this transition system where U(v) means the variable v is uncon-

strained.

(L0, All unconstrained by default)

(U(a) ∧ U(b) ∧ U(c) ∧ U(d))

(L1, All unconstrained)

L1(a1, b1, c1, d1) ∧ a = 1 ∧ b = 2 ∧ c = 1

(L2, a = 1 ∧ b = 2 ∧ c = 1 ∧ U(d))

L2(a1, b1, c1, d1) ∧ d = b2 − 4ac

(L3, a = 1 ∧ b = 2 ∧ c = 1 ∧ d = b2 − 4ac)

L3(a, b, c, d)

(LTerminated,∧b = 2 ∧ c = 1 ∧ d = b2 − 4ac)

Figure 3.4. Example 1 transition system.
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Translating the output of step (1) consists of creating a Datalog rule from each

β→ rule on an edge from any state to pi. We use the difference relation D from Equa-

tion (3.1), the multiplication relation M from Equation (3.2) and the Unconstrained

relation defined by:

D(x) : − x ≥ 0.

D(x) : − x < 0.
(3.10)

Example 3.3 (Translation to Datalog). Continuing Example 3.2, gives the fol-

lowing Datalog program:

begin%RECURSIVE%
L0(a,b,c,d) :- U(a),U(b),U(c),U(d).
L1(a,b,c,d) :- L0(a,b,c,d).
L2(a,b,c,d) :- L1(a1,b1,c1,d), a=1, b=2, c=1.
L3(a,b,c,d) :- L2(a,b,c,d1), M(b,b,b2), M(a,c,e1), M(e1,4,e2), D(b2,e2,d).
LT(a,b,c,d) :- L3(a,b,c,d).
end%RECURSIVE%

Clearly this Datalog program can be optimized by removing L0 and substituting

the body of L0 into the body of L1. Also LT is the same as L3 and thus we can

delete it as well. However you may not always be able to do this in general since

there may be calculations in a return statement. We use this framework to translate

the examples in Chapter 4.
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CHAPTER 4

Verification Experiments and Results

Sections 4.1–4.3 demonstrate the techniques presented with several programming

examples starting with a simple recursive goto program and ending with the subway

counter automaton. Section 4.4 gives conclusions and future work.

4.1. Recursive goto Program

The simple program below demonstrates how a previous abstract interpretation

approach gives an invariant that includes an error state that the constraint-database

invariant correctly excludes.

1. a ← 0
2. a ← a + 1
3. if a > 2 then goto 6
4. if a = 2 then goto 7
5. goto 2
6. ...
7. ...

→

begin%RECURSIVE%
L2(a) :- a=0.
L2(a) :- L5(a).
L3(a) :- L2(a1), a-a1=1.
L4(a) :- L3(a), a≤2.
L5(a) :- L4(a), a<2.
L5(a) :- L4(a), a>2.
L6(a) :- L3(a), a>2.
L7(a) :- L4(a), a=2.
end%RECURSIVE%

Miné (2001) defines an abstract interpretation widening technique as follows:
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Definition 4.1 (Widening Operator of Miné (2001)). Let M and N be two

ABMs. Then the widening of M by N , written as M∇N is defined as:

[M ∨N ][i, j] =











M [i, j] if M [i, j] ≤ N [i, j]

−∞ if N [i, j] ≤M [i, j]











(4.1)

Table 4.1 shows invariants found by two passes using the Miné widening tech-

nique given above. In the second entry, an invariant of a ≥ 1 entering line (3)

indicates that line (6) is executed.

Table 4.1. Invariants obtained by Miné widening.

Line 1st Entry 2nd Entry
2 0 ≤ a ≤ 0 0 ≤ a

1 ≤ a
3 1 ≤ a ≤ 1 if condition a > 2 true

goto 6
4 1 ≤ a ≤ 1
5 1 ≤ a ≤ 1

When evaluating the Datalog program semantics using MLPQ, the invariant for

line 3 never indicates that a > 2, and hence, we find that the L6(a) relation is

empty. If line (6) identifies an error, then our program technique identifies the error

state correctly where this abstract interpretation method does not.

4.2. Ship resupply problem

Suppose a yacht is traveling through the ocean between two locations. The

yacht does not have enough supplies to make the trip, hence it must resupply at

several possible locations. The program below determines if a point (22, 19) can be



30

reached from a starting position of (0, 0). It includes the Depot relation containing

possible resupply locations. The Leg and Reach rules calculate Euclidian distance

using the D (difference) and M (multiplication) relations. The approximation value

l limits the evaluation of D and M, which may be pre-computed to save time. The

reach relation determines if the destination can be reached. This example can be

extended by adding a relation for multiple destinations. In that case, knowing error

destinations would allow us to query the reach relation for incorrect values.

The results of running this program in MLPQ verify that the reach relation

contains the values x = 22 and y = 19. The existence of these values verifies the

Resupply Depot program as correct.

begin%SupplyDepotOptimized%
Depot(id,x,y) :- id=1,x=0,y=19.
Depot(id,x,y) :- id=2,x=6,y=8.
Depot(id,x,y) :- id=3,x=15,y=12.
Depot(id,x,y) :- id=4,x=25,y=5.
D(x,y,z) :- x-y=0,z=0.
D(x,y,z) :- D(x1,y,z1),x-x1=1,z-z1=1.
D(x,y,z) :- D(x1,y,z1),x-x1=-1,z0z1=-1
M(x,y,z) :- x=0,y=0,z=0.
M(x,y,z) :- M(x1,y,z1),D(z,z1,y),x-x1≥1,x1-x≥-1.
M(x,y,z) :- M(x,y1,z1),D(z,z1,x),y-y1≥1,y1-y≥-1.
Leg(x,y) :- x=0,y=0.
Leg(x,y) :- Leg(x1,y1),Depot(id,x,y), AD(x,x1,dx),AD(y,y1,dy),

M(dx,dx,dx2),M(dy,dy,dy2), dx2+dy2≤100,dx≤10,dy≤10.
Reach(x,y) :- x=22,y=19,Leg(x1,y1), AD(x,x1,dx),AD(y,y1,dy),

M(dx,dx,dx2),M(dy,dy,dy2),dx2+dy2≤100,dx≤10,dy≤10.
end%SupplyDepotOptimized%
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4.3. Subway Counter Automaton

Consider the subway train speed regulation system in Figure 2.2 (from Chap-

ter 2) described by Halbwachs (1993). Each train detects “beacons” that are marks

placed along the track and receives a “second” signal from a central clock.

Let b and s be counter variables for the number of beacons and second signals

received. Further, let d be a counter variable that describes how long the train is

decelerating by applying its brake. The goal of the speed regulation system is to

keep | b− s |≤ 20 while the train is running.

The speed of the train is adjusted as follows. When s + 10 ≤ b, then the train

notices it is early, and applies the brake as long as b > s. Continuously braking

causes the train to stop before encountering 10 beacons.

When b + 10 ≤ s, the train is late and will be considered late as long as b < s.

As long as any train is late, the central clock will not emit the second signal.

The counter automaton enforces the conditions described above using guard

constraints followed by question marks, and x + + and x − − as abbreviations for

the assignments x := x + 1 and x := x− 1, respectively.

The subway counter automaton from Figure 2.2 can be translated into the Dat-

alog program below. It expresses the semantics (combinations of states and state

variable values) of the automaton using difference constraints.



32

//Subway Automaton
begin%RECURSIVE%
Ontime(b,s,d) :- b=0, s=0, d=0.
Ontime(b,s,d) :- Stopped(b,s1,d), b-s1=1, s-s1=1.
Ontime(b,s,d) :- Ontime(b1,s,d), b1-s<9, b-b1=1.
Ontime(b,s,d) :- Ontime(b,s1,d), b-s1>-9, s-s1=1.
Ontime(b,s,d) :- Onbrake(b,s1,d), b-s1=1, s-s1=1.
Ontime(b,s,d) :- Late(b1,s,d), b1-s=-1, b-b1=1.
Onbrake(b,s,d) :- Ontime(b1,s,d1), b1-s=9, b-b1=1, d=0.
Onbrake(b,s,d) :- Onbrake(b1,s,d1), d1<9, b-b1=1, d-d1=1.
Onbrake(b,s,d) :- Onbrake(b,s1,d), b-s1>1, s-s1=1.
Stopped(b,s,d) :- Onbrake(b1,s,d), d≤9, b-b1=1.
Stopped(b,s,d) :- Stopped(b,s1,d), b-s1>1, s-s1=1.
Late(b,s,d) :- Ontime(b,s1,d), b-s1=-9, s-s1=1.
Late(b,s,d) :- Late(b1,s,d), b1-s<-1, b-b1=1.
end%RECURSIVE%

Error Condition: Suppose that this automaton is correct if |b − s| < 20 in all

states at all times. Then, this automaton is incorrect if |b− s| ≥ 20 at least in one

state at one time. The table below shows the result of the under-approximation

using the MLPQ constraint database system.

MLPQ Under Approximation

Brake Late Ontime Stopped

1 ≤ b− s ≤ 19 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 20

10 ≤ b ≤ 19 10 ≤ s ≤ 19 0 ≤ b ≤ 9 11 ≤ b ≤ 20

0 ≤ s ≤ 18 0 ≤ d ≤ 9 0 ≤ s ≤ 18 0 ≤ s ≤ 9

0 ≤ d ≤ 9 0 ≤ d ≤ 9 0 ≤ d ≤ 9

The above was obtained by using an approximation bound of l = 30. If l is

increased, then the upper bounds of b and s increase. Therefore, in the limit, those

upper bounds can be dropped.
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Further, for any value of u, since the above is an under-approximation, any

possible integer solution of the constraints below the state names must occur at

some time. For example, the Stopped relation must contain the case b− s = 20 at

some time. Therefore, this automaton is incorrect by our earlier assumption.

The Verimag laboratory has software for testing program correctness using ab-

stract interpretation. Halbwachs (1993) gave the following over approximation de-

rived using Verimag’s software for the subway automaton.

Verimag Over Approximation

Brake Late Ontime Stopped

1 ≤ b− s ≤ d + 10 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 19

d + 10 ≤ b s ≥ 10 b ≥ 0 19 ≤ 9s + b

0 ≤ d ≤ 9 s ≥ 0 b ≥ 10

Surprisingly, this result does not match our result. In particular, the over ap-

proximation for the Stopped state contains the constraint b − s ≤ 19, which says

that the value of b−s cannot be 20, but our lower bound says that 20 must be one of

the cases. To resolve this apparent contradiction, we need to look more closely at the

automaton. We can see that the following is a valid sequence of transitions, where

S(b, s, d) represents the values of b, s, and d is each state S ∈ {Brake, Initial,

Late, Ontime, Stopped}.

Initial(0, 0, 0) −→ Ontime(0, 0, 0) −→ Ontime(1, 0, 0) −→ Ontime(2, 0, 0) −→

Ontime(3, 0, 0) −→ Ontime(4, 0, 0) −→ Ontime(5, 0, 0) −→ Ontime(6, 0, 0) −→

Ontime(7, 0, 0) −→ Ontime(8, 0, 0) −→ Ontime(9, 0, 0) −→ Brake(10, 0, 0) −→
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Table 4.2. Subway automaton running times and memory usage.

Bound Over Approximation Under Approximation

22 1:55:09 @ 312,396KB 0:20:48 @ 50,164KB
21 1:43:28 @ 286,264KB 0:16:35 @ 43,308KB
20 1:33:16 @ 277,648KB 0:12:51 @ 32,364KB
19 1:15:50 @ 231,596KB 0:09:32 @ 31,028KB
18 1:14:35 @ 237,744KB 0:07:01 @ 25,900KB

Brake(11, 0, 1) −→ Brake(12, 0, 2) −→ Brake(13, 0, 3) −→ Brake(14, 0, 4) −→

Brake(15, 0, 5) −→ Brake(16, 0, 6) −→ Brake(17, 0, 7) −→ Brake(18, 0, 8) −→

Brake(19, 0, 9) −→ Stopped(20, 0, 9)

Note that Stopped(20, 0, 9) contradicts the first constraint in the Verimag over

approximation for the Stopped state. Hence, we suspect that the Verimag software

contains some bug or there was some problem in data entry.

But is the MLPQ bound tight? We made several runs with different l values

ranging from 10 to 30 for both over and under approximations. By increasing the

l value to 20 alone and performing the evaluation with both approximations, we

derive a tight bound −10 ≤ b− s ≤ 20 across the four constraint relations.

The running times and memory usage for various runs are given in Table 4.2.

These experiments were run on an AMD X2 64bit computer with 1 GB of RAM.

4.4. Conclusions and Future Work

Using constraint databases with the approximation techniques implemented, we

verified correctness and falsified correctness of Datalog programs and described a
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framework for translating imperative programs into Datalog with addition con-

straints. Using these techniques we have given tighter bounds in Section 4.1 than

the previous method of Miné. In Section 4.3 we discovered errors in published re-

sults of the Verimag system. We have shown that our method can find tight bounds

for constraints involving unbounded variables in the subway automaton. With large

result sets representing the semantics of programs, the constraint database approach

provides a natural way to find error conditions using the standard query languages:

Datalog and SQL. However there are limitations to the use of our system. 1) In the

worst case the system runs in exponential time of the input. 2) The system uses

quite a bit of memory, which depends on l and the query. However, it is still a good

alternative to other systems when they do not give satisfactory results.

Eliminating disjoint and non-convex regions from the abstract representation has

been the approach to software verification up to this point. In the future we wish

to explore abstract domains with limited numbers of non-convex, disjoint regions.

We are currently working on a project called VODAC (Verification Of Datalog with

Addition Constraints) specifically to continue this research area. This program will

also allow research in the area of query optimization and indexing of constraint

databases with addition constraints.



Part 2

Spatiotemporal Aggregation
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CHAPTER 5

Literature Review

This chapter reviews the literature specific to aggregation including estimation

and indexing techniques. Spatial and spatiotemporal databases have attracted an

enormous amount of interest, and there exists a wide range of literature with only

a titular relationship to our work. For books on the subjects of spatiotemporal and

constraint databases we suggest: Rigaux et al. (2001), Revesz (2002), Samet (1990,

2005), and Guting & Schneider (2005).

5.1. Threshold and Other Spatiotemporal Aggregation

There exists only a few previous algorithms to compute MaxCount (Revesz &

Chen 2003, Chen & Revesz 2004, Anderson 2006). None of those previous algorithms

provides efficient queries without rebuilding the index (i.e., they do not provide

dynamic updates).

Previous approximate MaxCount solutions use indices (Acharya et al. 1999)

that minimize the skew of point distributions in the buckets by creating hyper-

buckets based on the properties of all points at index creation time. Updates require

the index to be rebuilt because the buckets depend on the point distribution at a

specific time. In contrast, the probabilistic method we present recognizes point

density skew in each bucket instead and creates a density distribution to model it.

We present the first efficient and dynamic algorithm for MaxCount. Table 5.1
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compares the results of earlier MaxCount algorithms with our current algorithm

where N is the number of points and B is the number of buckets in the index.

Table 5.1. MaxCount aggregation complexity on linearly moving objects.

Max. Worst Case Space Exact Static or Reference
Dim. Time or Est. Dynamic

1 O(log N) O(N2) Exact Static Revesz & Chen (2003)
1 O(B log B) O(B) Est. Static Chen & Revesz (2004)
2 O(B log B) O(B) Est. Static Anderson (2006)
d O(B) O(B) Est. Dynamic Dissertation
d O(N) O(1) Exact Dynamic Dissertation

We present the following threshold aggregation operators formally defined below:

(1) MaxCount

(2) ThresholdRange

(3) ThresholdCount

(4) ThresholdSum

(5) ThresholdAverage

Definition 5.1 (MaxCount (MinCount)). Let S be a set of moving points.

Given a dynamic query space R defined by two moving points Q1 and Q2 as the lower-

left and upper-right corners of R, and a time interval T , the MaxCount (Min-

Count) operator finds the time tmax(min) and maximum (or minimum) number of

points Mmax(min) in S that R can contain at any time instance within T .

Throughout this dissertation we develop the MaxCount operator because wher-

ever we find a maximum in the dissertation, a minimum can be found similarly.
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Definition 5.2 (ThresholdRange). Let S be a set of moving points. Given

a dynamic query space R defined by two moving points Q1 and Q2 as the lower-

left and upper-right corners of R, a time interval T , and a threshold value M , the

ThresholdRange operator finds the set of time intervals TM where the count of

objects in R is larger than M .

ThresholdRange is directly related to MaxCount in that when M is raised

to Mmax, then ThresholdRange returns a time interval containing tmax and dur-

ing this time interval, the count will be Mmax.

Definition 5.3 (ThresholdCount). Given a ThresholdRange, Thresh-

oldCount returns the number of time intervals.

Definition 5.4 (ThresholdSum). Given a ThresholdRange, Thresh-

oldSum returns the total time Ts during which the count is above M . That is,

for each Ti ∈ TM , ThresholdSum return:

Ts =
∑

i

|Ti| (5.1)

where |Ti| means the length of the interval.

Definition 5.5 (ThresholdRange). Given a ThresholdRange, Thresh-

oldAverage returns the average length of the intervals in TM .

To our knowledge, we present the first proposal of these threshold aggregate op-

erators for moving points. Together MaxCount (and MinCount), Threshol-

dRange, ThresholdCount, ThresholdSum, and ThresholdAverage form
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a complete set of threshold aggregation operators comparable to the aggregation

operators given in relational databases.

In addition to the threshold aggregation operators, we also use our bucketing

method to implement the CountRange defined as follows.

Definition 5.6 (CountRange). Let S be a set of moving points. Given a

dynamic query space R defined by two moving points Q1 and Q2 as the lower-left

and upper-right corners of R and a time interval T , the CountRange query returns

the total number of points that intersect R in T .

Definition 5.7 (Spatiotemporal Range). Let S be a set of moving points. Given

a rectangular query space R defined by two points Q1 and Q2 as the lower-left and

upper-right corners of R, and a time interval T , the Spatiotemporal-Range

query returns the objects that intersect R in T .

Notice that Spatiotemporal-Range differs from our implementation in that

it does not allow Q1 and Q2 to move. In our implementation, we consider the more

general case where the query space can move.

We can modify Spatiotemporal-Range algorithms to return the Coun-

tRange by counting the objects returned. Several other algorithms were proposed

directly for the CountRange problem. We summarize previous Spatiotemporal-

Range and CountRange algorithms in Table 5.2, where N is the number of mov-

ing objects or points in the database, d is the dimension of the space, and B is the

number of buckets. All algorithms listed are dynamic, which means that they allow

insertions and deletions of moving objects without rebuilding the index.
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Table 5.2. Range and CountRange aggregation summary.

Max. Worst Case Worst case Exact Reference
Dim. Time Space or Est.

2 O(N
3
4
+ǫ + k) O(N) Exact Kollios et al. (1999)

2 O(log2 N + k) O(N2)1 Exact
2 O(N) O(N) Exact Papadopoulos et al. (2002)
3 O(N) O(N) Exact Saltenis et al. (2000)
d O(N) O(N) Exact Porkaew et al. (2001)

d O(Bd−1 logd
B N) O(N

B
logd−1

B N) Exact Zhang et al. (2003)
2 O(logB N + C)/B O(N) Est. Kollios et al. (1999)2

2 O(B) O(B) Est. Choi & Chung (2002)
d O(B) O(B) Est. Tao et al. (2003)

d O(
√

N) O(N) Est. Tao & Papadias (2005)
d O(B) O(B) Est. This Dissertation

In all our work we consider time as a continuous variable. Time as a discrete

variable is discussed in both temporal and spatiotemporal aggregation by Agarwal

et al. (2003), Tao & Papadias (2005) and Bohlen et al. (2006). In the discrete

approach, time stamps describe the temporal nature of objects. This approach is

less relevant to our work, but is relevant to many applications.

5.2. Indices and Estimation Techniques

There are many ways our work is indirectly related to previous work on indexing

structures and estimation techniques. Count and Max aggregation operators have

only a titular relationship to the MaxCount aggregation, because one cannot

1This is a restricted future time query with expected O(N) space that becomes quadratic if

the restriction is too far into the future.

2C = K + K ′, where K ′ is the approximation error.
3Although Tao, Sun & Papadias (2003) allow dynamic updates, over time the index must be

rebuilt.
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use the Count and Max aggregation operators to implement the MaxCount

aggregation. Nevertheless, several techniques used in the MaxCount problem are

also used in other indices and algorithms designed for range, max/min, and count

queries. We summarize several of these related techniques next.

5.2.1. Indices

The index structure of Agarwal et al. (2003) finds the 2-dimensional moving points

contained in a rectangle in O(
√

N) time. Gunopulos et al. (2005) gave a selectivity

estimation with a histogram structure of overlapping buckets designed to approxi-

mate the density of multi-dimensional data. The algorithm runs in constant time

O(d|B|), where d is the number of dimensions and B is the number of buckets.

Gupta et al. (2004) gave a technique for answering spatiotemporal range, intercept,

incidence, and shortest path queries on objects that move along curves in a planar

graph. Civilis et al. (2004, 2005) also gave indexing methods that use networks,

such as roads, to predict position and motion changes of objects that follow roads

and characteristics of routes. Zhang et al. (2001) proposed the multiversion SB-tree

to perform range temporal aggregates: Sum, Count and Avg in O(logb n), where

b is the number of records per block and n is the number of entries in the database.

Revesz (2005) gave efficient rectangle indexing algorithms based on point dominance

to find count interpreted in k dimensions using the following concepts:

(1) stabbing gives the number of objects that contain a point;

(2) contain gives the number of rectangles that contain the query rectangle;
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(3) overlap gives the number of rectangles that overlap the query rectangle;

and

(4) within gives the number of rectangles within the query space.

These four operators have a running time of O(logk n) where k is the number of

dimensions and n is the number of points.

Saltenis et al. (2000) gave an R∗-tree based indexing technique for 1, 2, and

3 dimensional moving objects that provide time-slice queries (selection queries),

windows queries, and moving queries. Window queries return the same information

as range queries, but with a valid time window starting at the current time and

continuing to th. Window queries may request predictions for range queries within

this window of time. Moving queries, similar to incidence queries, return the points

that are contained within the space connecting one rectangle at a start time to a

second rectangle at an end time. The proposed time parameterized R-tree (TPR-

Tree) search runs in expected logarithmic time. Another R∗-tree extension given by

Cai & Revesz (2000) forms tighter parametric bounding boxes than Saltenis et al.

(2000) and has similar running time. Tao, Papadias & Sun (2003) proposed the

TPR∗-Tree that extends the TPR-Tree with improved insert and delete algorithms.

In the context of a variety of count queries it performs similarly to previous indices.

Recently, Pelanis et al. (2006) proposed the RPPF -tree that indexes past, present

and predictive positions of moving points, and extends the previous work on TPR-

Trees (Saltenis et al. 2000) with a partial persistence framework. Earlier work

by Tayeb et al. (1998) adapted the PMR-quadtree (Samet 1990), a variant of the

quadtree structure, for indexing moving objects to answer time-slice queries, which
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they called instantaneous queries, and infinitely repeated time-slice queries, called

continuous queries. Search performance is similar to quadtrees and allows searches

in O(log N) time.

Mokhtar et al. (2002) use the sweeping technique from computational geometry

to define a query language to evaluate past, present, and future positions of moving

objects in constraint databases.

Finally, Hadjieleftheriou et al. (2003) use an efficient approximation method to

find areas where the density of objects is above a specific threshold during a specific

time interval. This method comes the closest to the method used in our aggregation

operators, but does not allow for the query to move or change shape over time. In

fact, this method is not applied to counting at all.

Note that each of these indexing methods that return the moving points in a

query window or rectangle can be easily modified to return instead the count of the

number of moving points. However, they may not be easily extended to provide a

MaxCount within a changing, moving query space.

With a few exceptions you can see that Count aggregation is O(log N + d) for

exact methods and O(B) or better for estimation methods. The hidden constant

in the exact method is the number of buckets that must be traversed to find the

Count. Estimation methods vary in many ways and asymptotic running time

doesn’t always give a meaningful estimate as to how big B will be.
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5.2.2. Estimation Techniques

Our work is related to several other papers that estimate the count aggregate oper-

ation on spatiotemporal databases.

Acharya et al. (1999) gave an algorithm that can estimate the Count of the

number of the rectangles that intersect a query rectangle for Selectivity Estimation.

Choi & Chung (2002) and Tao, Sun & Papadias (2003) proposed methods that

can estimate the Count of the moving points in the plane that intersect a query

rectangle. More recently, Kollios et al. (2005) gave a predictive method based on

dual transformations.

Wolfson & Yin (2003) and Trajcevski et al. (2004) gave a method for generating

pseudo trajectories of moving objects. Most of these estimation algorithms use

buckets as basic building structures of the index. In extending this idea, we use 2d-

dimensional hyper-buckets in our algorithms where d is the number of dimensions

in the moving-objects space.
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CHAPTER 6

Dynamically Indexing Linear Motion

We present an updatable skew-aware bucket for indices that models the skewed

point distributions in each bucket. The skew-aware technique allows the index

structure to perform inserts, deletes, and updates in fast constant time using a

HashTable to store the buckets. Many spatiotemporal applications, such as track-

ing clients on a wireless network, particularly need these fast updates and no other

MaxCount presented prior to this can meet that requirement. Because the buckets

are spatially defined, the bucketing technique also easily adapts to other spatial and

spatiotemporal indices such as the R-tree Guttman (1984). Hence the technique

performs well for applications where search operations or update operations occur

more frequently by using an appropriate index.

Our algorithm uses a sweeping method to evaluate the threshold aggregation op-

erators similar to previous approaches from Chen & Revesz (2004), Revesz & Chen

(2003) and Anderson (2006). The algorithm differs in that the sweeping algorithm

integrates a skew-aware density function over the spatial dimensions of the bucket

to obtain the time dependent count function. The density function in the bucket

increases accuracy over methods given in (Chen & Revesz 2004, Anderson 2006)

while maintaining the same number of buckets. This idea is a crucial improvement

because we model the point distribution skew in a bucket, whereas previous meth-

ods modeled skew by increasing the number of buckets. We also present a precise
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algorithm for evaluating the threshold aggregation operators that requires no index

and runs in O(N)+O(n log n) time and O(n) space where N is the number of points

in the database and n is the value of a CountRange query using the same query

space and time. Both the threshold aggregation algorithms and the skew-aware in-

dex presented in this dissertation are implemented and analyzed in 3-dimensional

space. We show that the approximation achieves good results while significantly

reducing the running times.

Section 6.1 describes the problems related to creating hyper-buckets (also re-

ferred to as just buckets) and a specific solution for creating 6-dimensional buckets

for 3-dimensional linearly moving points. In all cases, we can extend our method to

d-dimensions. Section 6.2 describes the method for inserting and deleting a point

from a bucket. Section 6.3 applies two different data structures to contain the buck-

ets suited for applications where either inserts and deletes or threshold aggregation

queries dominate.

6.1. Hyper-Buckets: Creating the Buckets

Definition 6.1 (Hex Representation). Define each 3-dimensional linearly mov-

ing point p by parametric linear equations in t as follows:

p =























px = vxt + x0

py = vyt + y0

pz = vzt + z0

(6.1)

where the corresponding hex representation of p is the tuple (vx, x0, vy, y0, vz, z0).

For simplicity we often denote the six-tuple as (x1, ..., x6).
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Consider a relation D(x1, .., x6) that contains the hex representation of linearly

moving points in 3 dimensions. Then D represents a 6-dimensional static space. Di-

vide the space into axis-aligned hyper-rectangles where the kth axis has dk divisions

on it.

Definition 6.2 (Hyper-bucket or Bucket). Define each bucket Bi by inequalities

of the form:

vx,L ≤ vx < vx,U

∧

x0,L ≤ x0 < x0,U

∧

vy,L ≤ vy < vy,U

∧

y0,L ≤ y0 < y0,U

∧

vz,L ≤ vz < vz,U

∧

z0,L ≤ z0 < z0,U

(6.2)

where we denote the lower bound as:

(vx,L, x0,L, vy,L, y0,L, vz,L, z0,L) (6.3)

and the upper bound as

(vx,U , x0,U , vy,U , y0,U , vz,U , z0,U). (6.4)

Each hyper-rectangle defines the spatial dimensions of a possible bucket, where

only buckets that contain points are included in the index. The maximum number

of possible buckets is given by m =
∏

k

dk.

Definition 6.3 (Histograms). Given a 6-dimensional bucket Bi containing bi

points, build the histograms hi,1,...,hi,6 for each axis using s subdivisions as follows.

To create histogram hi,j, divide bucket Bi into s parallel subdivisions along the jth
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axis, and record separately the number of points within Bi that fall within each

subdivision.

Example 6.1 (Building Histograms). Consider a set of 6-dimensional points

projected onto the vx, x0 plane as shown in Figure 6.1. Assume that the number of
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Figure 6.1. Points projected onto vx, x0 plane.

subdivisions is s = 10 along both vx and x0. Figures 6.2 and 6.3 show hi,1 and hi,2.

For example, the subdivision 0 ≤ vx < 1 contains six points and hence the first bar

of histogram hi,1 rises to level 6. The other values can be determined similarly.
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Figure 6.2. Vx histogram.
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Figure 6.3. X0 histogram.
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x0

vx

Figure 6.4. Accurate 2D distribution function.

x0

vx

Figure 6.5. Inaccurate 2D distribution function.

Histograms tell much about the distribution of the points in a bucket but they

introduce some ambiguity. For example, the histograms in Figures 6.2 and 6.3 match

both of the 2d-distributions in Figures 6.4 and 6.5.
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Definition 6.4 (Axis Trend Function). The axis trend function fi,j(xj) is some

polynomial function for bucket Bi and axis j such that the following hold:

(1) fi,j ≥ 0 over Bi.

(2) f ′
i,j, the derivative fi,j, does not change sign over the valid range.

The bucket trend function fi for bucket Bi is the following:

fi =
∏

j

fi,j (6.5)

Condition 1 ensures that the bucket trend function, built from the axis trend

functions, does not contain a negative probability region. Condition 2 requires that

the bucket density increase, decrease, or remain constant when considering any single

axis. This condition smoothes out the bumps in the point density of the buckets

and gives a polynomial that approximates the point density.

Lemma 6.1. Given a bucket Bi with bucket trend functions fi,j, let r1 and

r2 be identically sized regions in bucket Bi. If the density in Bi along each axis

monotonically increases from r1 to r2 the following holds:

∫

r2

fi dφ ≥
∫

r1

fi dφ (6.6)

Proof. Increasing densities from r1 to r2 translates into histograms that also in-

crease from r1 in the direction of r2 along each axis. The translation from histograms

to the axis trend functions gives the following conditions:

fi,j(x2,j) ≥ fi,j(x1,j) (6.7)
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where x1,j and x2,j are the jth coordinates of the points in r1 and r2 respectively,

and are located the same distance from the jth coordinates of the lower bounds of

r1 and r2 respectively. Since this constraint holds for each j and fi,j ≥ 0 we have:

fi(x2) ≥ fi(x1) (6.8)

Hence by the properties of integration we conclude

∫

r2

fi dφ ≥
∫

r1

fi dφ (6.9)

�

Definition 6.4 allows a whole class of polynomial functions, and Lemma 6.1

applies to each member of that class. However, in the following, we use a particular

polynomial function derived from the product of linear functions, which are obtained

by using the least squares method for each histogram. This derivation is illustrated

in Example 6.2.

Example 6.2 (Building Trend Functions). Split Figure 6.1 into 4 buckets as

shown in Figure 6.6 and assume s = 5. Correspondingly, split Figure 6.2. Then

each histogram becomes two histograms. For example, the left side from (0 to 5) of

histogram hi,1 is the histogram for bucket C along the vx axis. From the histograms

build the axis trend functions along each axis for each bucket using the least squares

method. From these build the bucket probability functions given by Equation (6.5).
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Figure 6.6. Points projected onto vx, x0 plane.

Clearly for buckets A and D, we have:

fA = 0 (6.10)

fD = 0. (6.11)

To find a linear equation of the form yi = axi + b where yi is the approximated

data, and xi is the point of subdivision, the least squares method gives two linear
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equations called the normal equations:

a
∑

x2
i + b

∑

xi =
∑

xiyi (6.12)

a
∑

xi + bN =
∑

yi. (6.13)

For bucket C and axis vx, the normal equations become:

55a + 15b = 16 (6.14)

15a + 5b = 10. (6.15)

Of course, the numbers 55 and 15 in the above equations will not change since we

always have histograms numbered such that xi = 1, ..., 5. Solving these equations

gives a = −7
5

and b = 31
5
. Hence, the axis trend function for bucket C, axis vx is

fC,vx
= −7

5
vx +

31

5
. (6.16)

Similarly for the x0 axis:

fC,x0 = −7

5
x0 +

32

5
. (6.17)

Since each function decreases from left to right, evaluate each function at the lower

end point (5) to ensure property (1) of Definition 6.4:

fC,vx
(5) = −4

5
(6.18)

fC,x0(5) = −3

5
. (6.19)
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Thus, we must add 4
5

to each axis trend function and fC is calculated using Equa-

tion (6.5) as:

fC =
1

25
(7vx + 35)(−7x0 + 36). (6.20)

Definition 6.5 (Normalized Trend Functions). Let n be the number of points in

the database, bi the number of points in bucket Bi, and fi be given by Equation (6.5).

The normalized trend function Fi for bucket Bi is:

Fi =
bifi

n

∫

Bi

fi dφ

(6.21)

and the percentage of points in bucket Bi is:

p =

∫

Bi

Fi dφ. (6.22)

Example 6.3 (Calculating Normalized Trend Functions). Continuing from Ex-

ample 6.2, integrating Equation (6.20) over the bucket gives:

5
∫

0

5
∫

0

fC dx0dvx =
1295

4
. (6.23)

Given that bi

n
= 1

2
, calculating Equation (6.21) for bucket BC gives:

FC =
1

2
× 4

1295
× 1

5
(7vx + 35)(−7x0 + 36)

=
2

6475
(7vx + 35)(−7x0 + 36) (6.24)
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A similar process on bucket BB gives:

FB =
4

251850
(13vx − 61)(13x0 − 63). (6.25)

Equations (6.24) and (6.25) are shown in Figure 6.7.
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Figure 6.7. Normalized trend functions in the vx, x0 plane.

Lemma 6.2. Let Bi be a bucket, n the number of points in the databases, and

p be as defined in Equation (6.22). Then np is the number of points in bucket Bi.
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Proof. By Equation (6.21) and (6.22) we have:

np = n

∫

Bi

Fi dφ

= n

∫

Bi

bi

n

fi
∫

Bi

fi dφ

dφ

= n
bi

n
·

∫

Bi

fi dφ

∫

Bi

fi dφ

= bi.

(6.26)

Clearly the above calculations take only O(1) time. �

6.2. Inserts and Deletes

We can maintain the index while deleting or inserting a point for any bucket Bi

by recalculating the trend function Fi for the bucket.

Lemma 6.3. Insertion and deletion of a moving point can be done in O(1) time.

Proof. When we insert or delete a point, we need to update the histograms

and the normalized trend function. Let the point to insert/delete be Pa represented

using the hex representation as (a0, a1, a2, a3, a4, a5), let dj, for 0 ≤ j ≤ 5 be the

bucket width in the jth, and let s be the number of subdivisions in each histogram.

The concatenation of id0, . . . , id5 gives the IDi of bucket i to insert (or delete) Pa

into where each idl and 0 ≤ l ≤ 5 is defined by:

idl =

⌊

al

dl

⌋

. (6.27)
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The calculation of IDi and retrieving bucket Bi takes O(1) time using a HashTable.

Let hwi,j be the histogram-division width for the jth calculated as hwi,j =
⌈

dj

s

⌉

.

Then p is projected onto each dimension to determine which division of the his-

togram to update. For the jth dimension the kth division of histogram hi,j is given

as follows:

k(j) =

⌊

aj − idj ∗ dj

hwk

⌋

(6.28)

Let hi,j,k be the histogram division to update for each histogram. Update hi,j,k and

the sums
∑

yi, and
∑

xiyi from Equations (6.12) and (6.13). N ,
∑

xi and
∑

x2
i

do not need updating since the number of histogram divisions s is fixed within the

database.

We can now recalculate each fi,j in constant time by solving the 2 × 3 matrix

corresponding to Equations (6.12) and (6.13) for each histogram. For each fi,j calcu-

late the endpoints to determine the required shift amount (Definition 6.4, property

1) and calculate fi from Equation (6.5). Now we calculate Fi using Equation (6.5).

Each of these steps depends only on the dimension of the database. Hence for any

fixed dimension we can rebuild the normalized trend function Fi in O(1) time. �

Example 6.4 (Updates). Suppose we wish to delete point (0.9, 0.9) from the

points shown in Figure 6.1. Calculating the ID gives Concatenate
(⌊

0.9−0
1

⌋

,
⌊

0.9−0
1

⌋)

=

0 which is bucket C. Projecting this result down onto the axes gives us the his-

tograms h0,vx
and h0,x0 on both axes: k(vx) =

⌊

0.9−0
1

⌋

= 0 and k(x0) =
⌊

0.9−0
1

⌋

= 0

Update the summation values indicated in Lemma 6.3 from Equations (6.12) and

(6.13) as:
∑

yi =
∑

yi − 1 = 9 and
∑

xiyi =
∑

xiyi − 1 ∗ 1 = 15. This calculation
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gives us the following linear equations from (6.12) and (6.13).

55a + 15b = 15 (6.29)

15a + 5b = 9 (6.30)

Solving these equations gives a = −6/5 and b = 27/5, and we obtain fC,v0 =

−6
5
vx + 27

5
. Using a similar process gives fC,x0 = −6

5
x0 + 28

5
. Checking the endpoints

shows that fC,v0(5) = −11.4 is the smallest number. Adding 11.4 as a constant to

fC,v0 and fC,x0 gives fC as:

fC =
6

25
(−vx + 14)(−6x0 + 85) (6.31)

Integrating Equation (6.31) over the bucket gives h =
5
∫

0

5
∫

0

FC dx0 dvx = 4830.

Hence, our recalculated normalized trend function for bucket C is:

FC =
2

4025
(−vx + 14)(−6x0 + 85) (6.32)

6.3. Index Data Structures

There is no need to create a bucket unless it contains at least one point. We

consider two candidate data structures for organizing the buckets: HashTables

and Trees.

For databases where inserts and deletes are the most common operation, the

HashTable approach will allow these operations to run in constant time. However,

the MaxCount operation will require an enumeration of all the buckets and thus
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at least a running time of O(B). As long as the number of buckets is reasonable,

this approach works well.

For databases where MaxCount is the most common operation, use an R-tree

structure (Guttman 1984, Beckmann et al. 1990) where the elements to be inserted

are the buckets. This approach speeds up the MaxCount query to O(log |B|+ R)

where R is the number of buckets needed to calculate the query. The insert and

delete costs for these R-trees are O(log |B|), because buckets do not overlap.

Since buckets do not change shape, the database is decomposable and allows each

type of aggregation to be calculated from simultaneous executions on subspaces of

the index space. We discuss the method and ramifications of this capability at the

end of Section 7.4.
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CHAPTER 7

Dynamic MaxCount

Section 7.1 reviews point domination in higher dimensions. Section 7.2 examines

finding the percentage of points in a bucket that are in the query space as a function

of time. Section 7.3 puts the two previous sections together to create the dynamic

MaxCount algorithm for d-dimensions.

7.1. Point Domination in 6-Dimensional Space

Let B be the set of 6-dimensional hyper-buckets in the input where each hyper-

bucket Bi has an associated normalized trend function Fi as in Definition 6.5. Let

the vertices of Bi be denoted vi,j where 1 ≤ j ≤ 64, because there are 26 corner

vertices to a 6-dimensional hyper-cube.

Definition 7.1 (Point Domination). Given two linearly moving points in three

dimensions

P (t) =























px = x1t + x2

py = x3t + x4

pz = x5t + x6

and Q(t) =























qx = vxt + x0

qy = vyt + y0

qz = vzt + z0

(7.1)

Q(t) dominates P (t) if and only if the following holds:

(px < qx) ∧ (py < qy) ∧ (pz < qz). (7.2)
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The previous definition takes 6-dimensional points defined in Definition 6.1 and

places them into three inequalities of the form x2 < −t(x1−vx)+x0. Each inequality

defines a region below a line with slope −t.

Definition 7.2 (x-view, y-view and z-view projections). Projecting the inequal-

ities from Definition 7.1 onto their respective dual planes allows a visualization in

three 2-dimensional planes. Define these three projections as the x−view, y−view

and z−view respectively. Because the time −t defines the slopes of each line, all

views contain lines with identical slopes. (See Figure 7.1)

Definition 7.3 (Query Space). Given two moving query points Q1(t) and Q2(t)

and lines lx1, lx2, ly1, ly2, lz1, lz2 crossing them in their respective hexes with slopes

−t, the intersection of the bands formed by the area between lx1 and lx2, ly1 and

ly2, and lz1 and lz2 in the 6-dimensional space forms a hyper-tunnel that defines the

query space as shown in Figure 7.1.

X−view Y−view Z−view

Q2x Q1x Q2y Q1y Q2z Q1z

lx2 lx1 ly2 ly1 lz2 lz1Position PositionPosition

Velocity VelocityVelocity

Figure 7.1. Views.
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We can now visualize the query in space and time as the query space sweeping

through a bucket as the slopes of the lines change with time. Using the above, it is

now easy to prove the following lemma.

Lemma 7.1. At any time t, the moving points whose hex-representation lies

below (or above) lx1, ly1 and lz1 in their respective views are exactly those points that

lie below (or above) Q1 in the original 3-dimensional plane.

Proof. Let Qx(t) = vxt + x0 where vx and x0 are constants and consider any x

component of a point Px(t) = x1t + x2 that lies below Q on the x-axis. Then

x1t + x2 < vxt + x0 (7.3)

x2 < −t(x1 − vx) + x0 (7.4)

Obviously, at any time t these are the points below the line x2 = −t(x1 − vx) + x0,

which has a slope of −t and goes through (vx, x0). This representation is the dual

of point Qx. By Definition 7.3, this is exactly the line lx1. We can prove similarly

that the points with duals above lx1 are above Q1 at any time t. The proof that

points whose hex-representations are above or below ly1, and lz1 are exactly those

points that lie above or below Q1 is similar to the proof for points above or below

lx1. By Definition 7.1, we conclude that the points dominated by Q1 in the dual

space are those points that are below lx1, ly1, and lz1 in the x-view, y−view, and

z-view, respectively. Similarly, we conclude that the points that dominate Q1 in the

dual space are those points that are above lx1, ly1, and lz1 in the x-view, y−view,

and z-view, respectively. �
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ID
X0 X1 X2 X3 X4 X5

1 5.345 7.543 5.345 8.158 5.345 5.488
2 6.354 9.023 6.354 5.488 6.354 5.159
3 7.159 8.885 7.159 6.685 7.159 7.346
4 7.645 9.117 7.645 5.159 7.645 8.885
5 8.153 7.346 8.153 6.335 8.153 7.543
6 8.156 6.335 8.156 7.346 8.156 9.023
7 9.125 5.159 9.125 9.117 9.125 9.117
8 9.118 6.685 9.118 8.885 9.118 6.335
9 9.688 5.488 9.688 9.023 9.688 8.158
10 9.874 8.158 9.874 7.543 9.874 6.685

Dimension 1 Dimension 2 Dimension 3

Figure 7.2. Example points.

Throughout the examples in this chapter, we use the points shown in Figures 7.2

and 7.3 – 7.5 to demonstrate the evaluation of a MaxCount query. We begin by

creating the index.

Example 7.1 (Creating the Index). Consider a relation that contains the 6-

dimensional space 10 units (0 . . . 10) in each dimension. If we break this up into

buckets that are 5 units long in each dimension, we have 26 buckets. Although

these divisions make a space with 64 buckets, all the points are contained in a single

bucket whose index is (2, 2, 2, 2, 2, 2). All the points listed in Figure 7.2 have the

same velocities for each dual plane. Notice the columns for x1, x3, and x5 all have the

same values in different orders. The projection of the points onto the 3 dual planes

shown in Figures 7.3 – 7.5 does not immediately show this organization. Projecting

the points onto each axis and creating histograms with 5 divisions is shown for the

Velocity and Position axes in Figures 7.6 and 7.7.
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Dimension 1

5

6

7

8

9

10

5 6 7 8 9 10

V1 (x0)

X1
 (x

1)

Figure 7.3. Points projected onto the X-view.

Dimension 2

5

6

7

8

9
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5 6 7 8 9 10

V2 (x2)

X2
 (x

3)

Figure 7.4. Points projected onto the Y -view.
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Dimension 3

5
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7
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9

10

5 6 7 8 9 10

V3 (x4)

X3
 (x

5)

Figure 7.5. Points projected onto the Z-view.

Velocity

0
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4

5
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Figure 7.6. Velocity histogram.
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Position

0

1

2

3

4

5

5 6 7 8 9

Figure 7.7. Position histogram.
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Each velocity dimension has the same histogram. Similarly each position dimen-

sion has the same histogram. To create these histograms each point is projected

onto the axis. For example point 1 projected onto the x1 axis is given as:

5.345, 7.543, 5.345, 8.158, 5.345, 5.488→ 5.345. (7.5)

Calculate the widths of the histograms as:

Histogram Width = (10− 5)/5 = 1 (7.6)

We determine the histogram for each point by looping through the points as follows:

division = ⌊((point− lowerbound)/Histogram Width)⌋ (7.7)

For example the lowest and highest points in velocity would be added to the division

calculated as ⌊(5.84− 5) /1⌋ = 0 and ⌊(9.468− 5)/1⌋ = 4.

The histograms translate into a set of points for each view given as:

V elocity = {(0, 1), (1, 1), (2, 2), (3, 2), (4, 4)} (7.8)

Position = {(0, 2), (1, 2), (2, 2), (3, 2), (4, 2)} (7.9)

Before applying the least squares method each division number must be translated

back into the bucket. Translation is done as follows:
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for i← 0 to number of divisions −1
point[i][0] ← i ∗ histogram width + lowerbound

point[i][1] ← histogram value[i]
end for

Translation of the points from (7.8) and (7.9) gives: The histograms for velocity

and position in each view are given as:

V elocity = {(5, 1), (6, 1), (7, 2), (8, 2), (9, 4)} (7.10)

Position = {(5, 2), (6, 2), (7, 2), (8, 2), (9, 2)}. (7.11)

Using the least squares method to fit each of these to a line yields the following for

each velocity and position dimension:

V elocity : y = 0.7x− 2.9 (7.12)

Position : y = 0x + 2. (7.13)

Evaluating Equations (7.12) and (7.13) at the end points to find the shift value for

the axis trend function to add to each equation gives:

V elocity : y(5) = 1, y(10) = 4.3 (7.14)

Position : y(5) = y(10) = 2. (7.15)
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In this case no constant needs to be added to our equation and the trend function

becomes:

fi = (0.7x0 − 2.9)(0x1 + 2)(0.7x2 − 2.9)(0x3 + 2)(0.7x4 − 2.9)(0x5 + 2) (7.16)

Calculating Fi from Equation (6.21) requires integrating fi over the bucket where

∫

Bi
≡

∫ 10

5
...

∫ 10

5
and where dφ ≡ dx0dx1dx2dx3dx4dx5 gives

∫

Bi

fidφ = 8

∫

Bi

(0.7x0 − 2.9)(0.7x2 − 2.9)(0.7x4 − 2.9)dφ

= 1622234.375. (7.17)

Since all the points reside in a single bucket, bi = n, the constant c is given by

c = 1/1622234.375 ≈ 6.164× 10−7. Then Fi is given by

Fi ≈ c (0.7x0 − 2.9)(0x1 + 2)(0.7x2 − 2.9)(0x3 + 2)(0.7x4 − 2.9)(0x5 + 2)

= 8c(0.7x0 − 2.9)(.7x2 − 2.9)(.7x4 − 2.9) (7.18)

So far we have calculated the normalized trend function Fi for just one bucket. This

calculation finishes the index creation process where the index contains a single

bucket defined by lowerbound = (5, 5, 5, 5, 5, 5) and upperbound = (10, 10, 10, 10, 10, 10).

7.2. Approximating the Number of Points in a Bucket

As a line through a query point sweeps across a bucket, the points in the bucket

that dominate the query point are approximated by the integral over the region
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above the line. In each of the three views the query space intersects the plane giving

the cases shown in Figure 7.8.

(a) Upper Left (b) Upper Right

(h) All (g) Both Upper
Increasing Slope Decreasing Slope

Lower Left Lower Right
(c) Except (d) Except

(e) Both Left (f) Both Right

Figure 7.8. Sweep algorithm cases.

Definition 7.4 (Percentage Function). Integrating over the region above the line

gives an approximation of the percentage of points in the query space. We define the

percentage function given as:

p =

∫

r1

Fi dφ (7.19)

where r1 is the region of the bucket in the query space. If two lines go through the

same bucket we have the smaller region r2 subtracted from the larger region r1 as
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follows.

△p =

∫

r1

Fi dφ−
∫

r2

Fi dφ. (7.20)

Here, regions r1 and r2 correspond to regions above Q1 and Q2 in Figure 7.1, re-

spectively. Finding the number of points in the bucket requires multiplying Equa-

tion (7.19) or (7.20) by n.

For each case shown in Figure 7.8, we describe the function that results from

integration in one view. To extend the result to any number of views, we take the

result from the last view and integrate it in the next view. If the region below the

line were desired, plower = bi

n
− p gives the percentage of points below the line.

For cases (a)-(h) below, let Q = (x1,q, x2,q, ..., x6,q). For the x-view, let the lower

left corner vertex be (x1,l, x2,l) and the upper right corner vertex be (x1,u, x2,u). In

addition each line denoted l is given by x2 = −t(x1 − xi,q) + xi+1,q and corresponds

to the lines shown in the corresponding case in Figure 7.8. Actual solutions for each

of the integrals are given in the Appendix A and used in the implementation.

Case (a): For this case l crosses the bucket at x1,l and x2,u. The integral over the

shaded region is given by the following:

pa =

x2,u−x2,q

−t
+x1,q

∫

x1,l

x2,u
∫

−t(x1−x1,q)+x2,q

Fi dx2dx1 (7.21)

Notice that the lower bound of the integral over dx2 contains x1. This dependence

within each view does not affect the integration in the remaining four dimensions.
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The solution to Equation (7.21) has the form:

at2 + bt + c +
d

t
+

e

t2
. (7.22)

Case (b): For this case l crosses the bucket at x1,u and x2,u. The integral over the

shaded region is given by:

pb =

x1,u
∫

−
(x2,u−x2,q)

t
+x1,q

x2,u
∫

−t(x1−x1,q)+x2,q

Fi dx2dx1. (7.23)

The solution has the form of Equation (7.22).

Case (c): For this case l crosses the bucket at x1,l and x2,l. The integral over the

shaded region above the line is given by:

pe =

x2,l−x2,q

−t
+x1,q

∫

x1,l

x2,u
∫

−t(x1−x1,q)+x2,q

Fi dx2dx1 +

x1,l
∫

x2,l−x2,q

−t
+x1,q

x2,u
∫

x2,l

Fi dx2dx1. (7.24)

The solution has the form of Equation (7.22).

Case (d): For this case l crosses the bucket at x1,u and x2,l. The integral over the

shaded region is given by:

pf =

x1,u
∫

x2,l−x2,q

−t
+x1,q

x2,u
∫

−t(x1−x1,q)+x2,q

Fi dx2dx1 +

x2,l−x2,q

−t
+x1,q

∫

x1,l

x2,u
∫

x2,l

Fi dx2dx1. (7.25)

The solution has the form of Equation (7.22).
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Case (e): For this case l crosses the bucket at x1,l and x1,u. The integral over the

shaded region is given by:

pc =

x2,u
∫

x2,l

x2−x2,q

−t
+x1,q

∫

x1,l

Fi dx1dx2. (7.26)

The solution has the form of

c +
d

t
+

e

t2
(7.27)

which is like Equation (7.22) with a = b = 0.

Case (f): Similar to case(e), l crosses the bucket at x1,l and x1,u. The integral over

the shaded region is given by:

pd =

x2,u
∫

x2,l

x1,u
∫

x2−x2,q

−t
+x1,q

Fi dx1dx2. (7.28)

The solution has the form of Equation (7.27).

Case (g): For this case l crosses the bucket at x1,l and x1,u. The integral over the

shaded region is given by:

pg =

x1,u
∫

x1,l

x2,u
∫

−t(x1−x1,q)+x2,q

Fi dx2dx1. (7.29)

The solution has the form

at2 + bt + c (7.30)

which is like Equation (7.22) with d = e = 0.
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Case (h): The line l crosses below all the corner vertices hence the integral of the

function is given as:

ph =

x1,u
∫

x1,l

x2,u
∫

x2,l

Fi dx2dx1. (7.31)

The solution has the form of Equation (7.30).

The above cases have solutions for each view in the form of Equation (7.22).

Hence the percentage function for a single bucket as a function of t is of the form:

p =

(

axt
2 + bxt + cx +

dx

t
+

ex

t2

) (

ayt
2 + byt + cy +

dy

t
+

ey

t2

)

(

azt
2 + bzt + cz +

dz

t
+

ez

t2

)

(7.32)

where t 6= 0 when dx, dy, dz, ex, ey, ez 6= 0. Finally, renaming variables gives the

general form:

p = a6t
6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t + c +

d1

t
+

d2

t2
+

d3

t3
+

d4

t4
+

d5

t5
+

d6

t6
(7.33)

where t 6= 0 when di 6= 0 for 1 ≤ i ≤ 6. Since Equation (7.33) is closed under

subtraction, △p from Equation (7.20) will also have the same form.

As the query space from Definition 7.3 sweeps through a bucket, it crosses the

bucket corner vertices. Each time a corner vertex crosses the query space boundary,

the case that applies may change in one or more of the views.

Definition 7.5 (Bucket and Index Time-Intervals). The span of time in which

no vertex from bucket Bi enters or leaves the query space defines a bucket time-

interval. We denote the time-interval as a half-open interval [l, u) where l is the
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lower bound and u is the upper bound. Each bucket time-interval has an associated

percentage function △p given by Equation (7.20). We define the index time-interval

similarly except that the span of time is defined when no vertex from any bucket in

the index enters or leaves the query space.

As we will see, index time-intervals are created from individual bucket intervals.

Throughout the rest of this dissertation we use time intervals when the context

clearly identifies which type we mean.

Definition 7.6 (Time-Partition Order). Let B be the set of buckets. Let Q1

and Q2 be two query points and (t[, t]) be the query time interval. We define the

Time-Partition Order to be the set of ordered time instances TP = t1, t2, ..., ti, ..., tk

such that t1 = t[ and tk = t], and each [ti, ti+1) is an index time-interval.

Example 7.2 (Calculating Bucket Time-Intervals). Continuing Example 7.1,

let Q be a query defined by:

q1 = (9.5, 8, 9.5, 8, 9.5, 8) (7.34)

q2 = (8.5, 5, 8.5, 5, 8.5, 5) (7.35)

T = (0.1, 10) (7.36)

where q1 and q2 form the query space over the query time interval T . To determine

time intervals when corner vertices do not change, find the slopes of lines through

both query points and each corner vertex of the bucket. Figure 7.9 shows lines

from the two query points to the corner vertices for the first dimension. Since



78

Dimension 1
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Figure 7.9. Lines from query points to corner vertices.

the query points are the same in each dimension each will appear the same. The

set of times when lines through q1 (shown as solid lines) cross corner vertices is

{0.4, 6}. The set of times when lines through q2 (shown as dotted lines) cross corner

vertices and are in the time interval is {1.42857}. The union of these two sets

along with the end points makes up the times used to create the time intervals:

{(.1, 0.4), (0.4, 1.42857), (1.42857, 6), (6, 10)}.
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Integration over the spatial dimensions of the eight possible cases presented

in Figure 7.8 gave a function of the form of Equation (7.33). Maximizing Equa-

tion (7.33) in the temporal dimension by first taking the derivative, we get:

△p′ = (6a6t
12 + 5a5t

11 + 4a4t
10 + 3a3t

9 + 2a2t
8 + a1t

7

−d1t
5 − 2d2t

4 − 3d3t
3 − 4d4t

2 − 5d5t− 6d6)/t
7 (7.37)

where t 6= 0. Solving△p′ = 0 requires finding the roots of this 12-degree polynomial,

which is not possible using an exact method. Hence we need a numerical method for

solving the polynomial.

The following factors influenced the choice of the numerical method:

(1) Speed of the algorithm is more important than accuracy because we don’t

expect the original function to change dramatically over an index time-

interval.

(2) The algorithm must converge toward a solution within the interval, that is

the algorithm must be stable.

(3) Given that we are maximizing Equation (7.33) over a short time interval,

we don’t expect Equation (7.37) to have more than one solution. This

assumption may seem naive, but it is reasonable given factor (1).

Factor (1) above is related to (3) in that it indicates that points close together

have similar values, but emphasizes that speed is the goal. Factor (2) above elim-

inates several algorithms from consideration, but must be required to keep from

choosing a solution that is not within the time interval evaluated.
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Of the three points to consider, (3) is probably the least intuitive. Consider the

following conjecture:

Conjecture 7.1. Given p for a set of buckets, if the Euclidean distance between

two maxima is small, then the difference between the maxima is small.

Consider the physical characteristics of the system. The value of p over the time

interval changes no more than bi for any bucket Bi. Clearly p either increases as it

encompasses more of the bucket or decreases at as it encompasses less of the bucket.

When p represents the distribution over several buckets, each bucket contributes

a decreasing or increasing amount over the time interval. Clearly p is bounded

below by 0 and above by
∑

i

bi. Hence, the rate at which the derivative p′ changes

is characterized by the physical system and reflects the differences in the buckets

as t changes. Since p does not change dramatically over t for any bucket, then

change in several buckets over t will likewise not be dramatic. Hence if the distance

between two maxima is small, the maxima have a small difference in magnitude.

This rational for the conjecture above is verified by the experiments.

Based on these factors, we use a common method for the first approximation:

we look at the graph of p′. Programmatically check c intervals of Equation (7.37) for

a change in sign. If there exists a sign change, use the bisection method to find the

root. If two points lie within ǫ of 0, we perform a check for each of these intervals

when no change of sign is found. If some roots exist, we check them for maximal

values along with the end points.
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Lemma 7.2. The approximate maximum within a time interval can be found in

O(1) time.

Proof. Each time interval has an associated probability function △p which is

calculated in O(1) time. Finding △p′ = 0 also takes O(1) time. By placing a

constant bound on the number of iterations in the bisection method, we bound the

time required in the numerical section of the algorithm by a constant. Plugging in

the solution found by the bisection method along with the end points also takes O(1)

time. Hence, the running time to find the maximum within a bucket is O(1). �

We chose to limit the number of iterations in the bisection method to 10, which

limits the running time to a small constant value. This value was chosen based

on empirical observation that index time-intervals remain small (about 0.01 to 4).

Hence, using the bisection method allows us to narrow our search down to an interval

at least as small as 1
256

units of time. If time is measured in hours, this interval

equates to only 14 seconds.

Example 7.3 (Building Time-Intervals and Finding MaxCount). Continuing

Example 7.2 we build the functions for time intervals

{(.1, 0.4), (0.4, 1.42857), (1.42857, 6), (6, 10)} (7.38)

by integrating using the different cases from Figure 7.8.

Time Interval: [0.1, 0.4]. Here case (c) holds for query point q2 over this time

interval. Hence the integral for query point q2 and t ∈ [.1, .4] in each dimension is
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given as:

pc = c

∫ 10

8.5

∫ 10

5

2(0.7x0 − 2.9)dx1dx0 +

∫ 8.5

5

∫ 10

−t(x0−8.5)+5

2(0.7x0 − 2.9)dx1dx0

= 117.5− 17.3546̄t (7.39)

Case (g) holds for query point q1 and thus the integral for query point q1 and

t ∈ (.1, .4) in each dimension is given as:

pg = c

∫ 10

5

∫ 10

−t(x0−9.5)+8

2(0.7x0 − 2.9)dx1dx0

= 47.0− 32.416̄t (7.40)

Hence the integral of the region is:

p = c (pc − pg)
3

= 2.106× 10−3t3 + 2.957× 10−2t2 + 0.138t + 0.216 (7.41)

Evaluating p at the start and end of the time interval we have p(0.1) ≈ 0.23 and

p(0.4) = 0.28. Figure 7.10 shows p in the time interval. Clearly p is increasing and

consequently we have a maximum at the end point t = 0.4. Since there are 10 points

we must multiply p(0.4) by 10 to get the approximation for the time interval as:

MaxCount0.1≤t≤0.4 ≈ 2.8. (7.42)

Since we can not have partial points, we can round this result to 3.
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0.1 0.2 0.3 0.4 0.5
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0.26
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Figure 7.10. Graph of p, 0.1 ≤ t ≤ 0.4.

Time Interval [0.4, 1.428]. Note that case (c) holds for query point q2 over this

time interval, hence pc is given in Equation (7.39). Case (b) holds for q1 over this

interval. Therefore,

pb =

∫ 10

−(10−8)
t

+9.5

∫ 10

−t(x0−9.5)+8

(0.7x0 − 2.9)(2)dx1dx0

= 0.9953t +
15

t
− 1.86

t2
+ 7.85. (7.43)

Hence, the integral over the region is

p = c (pc − pb)
3

≈ 8.902× 10−2

t2
− 0.355

t
− 0.417t + 6.827× 10−2t2 − 1.355× 10−2

t3

− 3.808× 10−3t3 +
1.483× 10−3

t4
− 9.665× 10−5

t5
+

4.009× 10−6

t6
+ 0.925.

(7.44)
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Checking the values gives p(0.4) ≈ 0.28 and p(1.428) ≈ 0.248. Neither of these

produce values larger than our current maximum. The graph of p in Figure 7.11

shows that there is no interior maximum.

0.4 0.6 0.8 1.0 1.2 1.4
5e+5

1e+6

1.5e+6

2e+6

x

y

Figure 7.11. Graph of p, 0.4 ≤ t ≤ 1.428.

Time Interval [1.42857, 6]. Note that case (b) holds for query point q1 over this

time interval, hence pb is given in Equation (7.43). Case (f) holds for q2 over this

interval. Therefore,

pf =

∫ 10

5

∫ 10

−(x1−5)
t

+8.5

(0.7x0 − 2.9)(2)dx0dx1

= 53.625 +
76.25

t
− 29.166

t2
. (7.45)
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Hence, the integral is given by:

p = c (pf − pb)
3

=
0.235

t
− 3.746× 10−3t +

0.217

t2
+ 8.395× 10−5t2 − 0.143

t3
− 6.088× 10−7t3

− 0.126

t4
+

8.442× 10−2

t5
− 1.254× 10−2

t6
+ 4.875× 10−2. (7.46)

As shown in Figure 7.12, we again have a decreasing function which has no interior

maximums. Evaluating p at the end points gives p(1.428) ≈ 0.248 and p(6) ≈ 0.073.

Therefore we keep our current maximum.

2 3 4 5 6

0.10

0.15

0.20

0.25

x

y

Figure 7.12. Graph of p, 1.428 ≤ t ≤ 6.
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Time Interval [6, 10] Case (f) holds for both query points. Equation (7.45) gives

the integral for q2. The integral for q1 is given as:

pf(q1) =

∫ 10

5

∫ 10

−(x1−8)
t

+9.5

(0.7x0 − 2.9)(2)dx0dx1

= 19.625− 8.167

t2
− 18.75

t
(7.47)

Therefore, the integral is given by:

p = c(pf(q2) − pf(q1))
3

≈ 2.42× 10−2 +
0.203

t
+

0.523

t2
+

0.278

t3
− 0.323

t4
+

7.748× 10−2

t5
− 5.709× 10−3

t6
.

(7.48)

As shown in Figure 7.13, we again have a decreasing function that has no interior

6 7 8 9 10
0.00

0.02

0.04

0.06

0.08

0.10

x

y

Figure 7.13. Graph of p, 6 ≤ t ≤ 10.

maximums. Evaluating p at the end points gives p(6) ≈ 0.0736 and p(10) ≈ 0.05.

Therefore, we keep our current maximum.
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Max Count and Time: From the above, it follows that MaxCount has an

approximate value of 3 at time t = 0.4.

7.3. Dynamic MaxCount Algorithm

MaxCount(H, Q1, Q2, t
[, t])

input: A set of buckets H built by the index structure presented,

query points Q1(t) and Q2(t) and a query time interval (t[, t]).
output: The estimated MaxCount value.

01. TimeIntervals← ∅ O(1)
02. for i← 0 to |H| − 1 O(B)

03. CrossT imes← CalculateCrossTimes(Q1, Q2, t
[, t], Hi) O(1)

04. for j ← 1 to |CrossT imes| − 1 O(1)
05. Union(TimeIntervals, T imeInterval(tj−1, tj) O(1)
06. end for
07. end for

08. TimeIntervals = BucketSort(TimeIntervals) O(B)
09. IndexT imeIntervals = Merge(TimeIntervals) O(B)
10. for each IndexT imeInterval ∈ IndexT imeIntervals O(B)
11. calculate(MaxCount, MaxTime, IndexT imeInterval) O(1)
12. end for

13. return (MaxCount, MaxTime)

The algorithm to compute MaxCount with each line labeled with its running

time is given above. Line 01 initiates a set of bucket time-interval objects to be

empty. Line 03 returns a list of ordered times when a line through Q1 or Q2 crosses

a bucket corner vertex. Line 05 turns this list into a set of TimeInterval objects and

adds them to the set of TimeIntervals. We list this “for each” loop as O(1) because

it consists of a constant number of calculations bounded by the number of vertices

in the bucket. Line 08 uses the linear time sorting algorithm BucketSort to sort

the bucket time intervals. Line 09 creates the time-partition order and index bucket
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time intervals from the bucket time intervals in O(B). An additional pass adds the

bucket time intervals to the appropriate index time-intervals in O(B). Lines 10-12

perform the MaxCount calculation discussed above.

In order to use the linear time BucketSort algorithm, we need the following

definition and lemmas.

Definition 7.7 (Time-Interval Ordering). We define the lexicographical ordering

≺ of two time intervals A and B as follows:

A.l < B.l ⇒ A ≺ B (7.49)

A.l = B.l ∧ A.u < B.u ⇒ A ≺ B (7.50)

A.l = B.l ∧ A.u = B.u ⇒ A = B (7.51)

The distribution of time interval objects created in Line 08 of the MaxCount

algorithm may not be uniform across the query time interval T = [t[, t]]. However,

we can still prove the following.

Lemma 7.3. If the distribution of buckets is uniform, then the distribution of

bucket time-interval objects can be uniformly distributed within the sorting buckets

of the bucket sort.

Proof. Consider the relationship between successive slopes measured as the an-

gles between lines through a query point Q with slopes si = −ti and si+1 = −ti+1.

Suppose △t = 1 with t0 = 0 and t1 = 1, then the angle between the two lines is

△s = π
4
. The solid lines in Figure 7.14 show that half of the bucket corner vertices
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Figure 7.14. Areas of successive slopes.

are swept by the line sweeping through Q between s0 = 0 and s1 = −1. Consider

a query time interval [0, 10]. Half of the corner vertices, and thus half of the time

intervals, are between time t = 0 and t = 1. Thus, we conclude that the time

interval objects created by sweeping will not be uniformly distributed throughout

the query time interval.

Let Q′ be the midpoint between Q1 and Q2. Let S = {t1, ...tk} where t1 = t[,

tk = t] and ti+1− ti = L for some positive constant L and 1 ≤ i ≤ k− 1. Let DB be

a bucket that contains the space in the 6-dimensional index. Model the normalized

bucket function for DB as a constant F = 1. Thus p, the bucket probability,

from Equation (7.32) becomes the hyper-volume of the space swept by the line

through Q′. By Lemma 7.2, we can find the area for a specific time interval in S in
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constant time. The percentage of sorting buckets, posbi, needed in any time interval

Ti = [ti, ti+1] ∈ S within the query time interval is given by:

posbi =
p(ti+1)− p(ti)

p(t])− p(t[)
(7.52)

Let N be the number of sorting buckets. Then, the number of sorting buckets,

nosbi, assigned to interval i is given by:

nosbi = N · posbi (7.53)

If nosbi < 1 we can combine it with nosbi+1. If the query time interval is very large,

then we may need to include multiple time intervals from S to get one sorting bucket.

Thus, we create more sorting buckets (with smaller time intervals) in areas where

the expected number of bucket time intervals is large. Conversely, we create fewer

sorting buckets (with larger time intervals) in areas where the expected number of

bucket time intervals is small. Hence we model each sorting bucket so that its time

interval length directly relates to the percentage of bucket time intervals that are

assigned to it. Thus, we conclude that we will uniformly distribute the time interval

objects across all sorting buckets. �

Lemma 7.4. Insertion of any bucket time-interval object TO into the proper

sorting bucket can be done in O(1) time.

Proof. The distribution of sorting buckets is determined by k time intervals in

Lemma 7.3. Call these sorting time interval objects where each object contains: the

lower bound l, the upper bound u, the number of sorting buckets assigned to this
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interval bs, the length of the time interval for the sorting bucket w and an array

Bp containing pointers to these sorting buckets. Let A be the array of sorting time

interval objects, and L be the length of each time interval where the time intervals

are as in Lemma 7.3. Then, finding the correct sorting bucket for TO requires two

calculations:

SortingT imeInterval = A

[ ⌊

TO.l

L

⌋ ]

(7.54)

SortingBucket = Bp

[ ⌊

TO.l − SortingT imeInterval.l

w

⌋ ]

. (7.55)

Each of these calculations requires constant time, hence TO can be inserted into the

proper sorting bucket in O(1) time. �

Using the above two lemmas, we can prove the following.

Theorem 7.2. The running time of the MaxCount algorithm is O(B) where

B is the number of buckets.

Proof. Let H be the set of buckets where each bucket Bi contains the normalized

trend function Fi. Let Q1 and Q2 be the query points and [t[, t]] be the query time

interval. (Lines 01-07): Calculating the time intervals takes O(B) time because

the cross times for each bucket can be calculated in constant time. (Line 08): By

Lemmas 7.3 and 7.4, we have an approximately even distribution of time interval

objects within the sorting buckets where we can insert an object in constant time.

This result fulfills the requirements of the BucketSort, Cormen et al. (2001),

which allows the intervals to be sorted in O(B) time. (Lines 09-12): Calculate the

MaxCount and time for each time interval in constant time using Lemma 7.2.
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These lines takes O(B) time because there are O(B) time intervals. Finding the

global MaxCount and time requires retaining the maximum time and count at

line 11. Returning the MaxCount and time takes O(1) time. Thus, the running

time is given by O(B) + O(B) + O(B) + O(1) = O(B). �

7.4. An Exact MaxCount Algorithm

ExactMaxCount(D, Q1, Q2, t
[, t])

input: D is the database of points. The query is made up of a
hyper-rectangle Q defined by points Q1 and Q2 and the time

interval T = [t[, t]]
output: The exact MaxCount and time at which it occurs.

01. Times← ∅ //of CrossTime objects O(1)
02. for each point pi ∈ D O(N)
03. if pi ∈ Q during T O(1)
04. EntryT ime← CalculateEntryT ime(pi, Q, T ) O(1)
05. ExitT ime← CalculateExitT ime(pi, Q, T ) O(1)
06. if EntryT ime ∈ Times O(1)
07. Times.get(EntryT ime).Count++ O(1)
08. else
09. Times.add(newCrossT ime(EntryT ime)) O(1)
10. end if
11. if ExitT ime ∈ Times O(1)
12. Times.get(ExitT ime).Count- - O(1)
13. else
14. Times.add(newCrossT ime(ExitT ime)) O(1)
15. end if
16. end for
17. Sort(Times) O(n log n)
18. traverse(Times, time, Max-Count) //tracking time O(N)

//and MaxCount
19. return (time,MaxCount) O(1)
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The above algorithm finds the exact MaxCount values. It is easy to see that

the running time is given by:

O(N) + O(n log n) (7.56)

where N is the number of points in the database and n represents the result size of

the query.

It is possible to slightly improve the above algorithm. First, divide the index

space into k subspaces and maintain separate partial databases for each. Assign

processes on individual systems to each database to calculate the MaxCount query

and return the time intervals to a central process. Merging the time interval lists

into a global time interval list saves time on the sorting part of the algorithm. The

running time for each of k partial databases would be close to O(n
k

log n
k
). This result

is an approximate value because we do not guarantee an even split between partial

databases. Placing buckets for each partial database in a Tree structure may be

reasonable and could cut down the average running time to O(log N + n log n/k).

Implementation and analysis for this particular approach is left as future work.
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CHAPTER 8

Threshold Aggregation Operators

The ThresholdRange algorithm shown below and described in Definition 5.2

relates to MaxCount in the way we calculate the aggregation. We maintain a

running count to find time intervals that exceed the threshold value M . If we set

the threshold value near the MaxCount value (M → MaxCount), Threshol-

dRange finds a small interval containing the MaxCount. We demonstrate this

in the results, Chapter 10.

ThresholdRange(H, Q1, Q2, t
[, t], M)

input: A set of buckets H build by the index structure presented,

query points Q1(t) and Q2(t), a query time interval [t[, t]],
and M is the threshold value

output: The estimated set of time intervals where R contains more
than M points.

01 - 08 are the same as the MaxCount algorithm.
09. TimeIntervals← ∅ O(1)
10. for each TimeInterval ∈ TimePartitionOrder O(B)
11. CMaxCount← calculate(MaxCount, MaxTime, T imeInterval) O(1)
12. if CMaxCount > M O(1)
13. TimeIntervals← TimeIntervals

⋃

TimeInterval O(1)
14. end if
15. end for
16. Merge(TimeIntervals) O(B)
17. return TimeIntervals
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ThresholdRange uses the same techniques up to Line 08, and then collects

different information from each TimeInterval starting in Line 10. This leads to the

following Theorem.

Theorem 8.3. The estimated ThresholdRange query runs in O(B) time.

Proof. The ThresholdRange algorithm differs from the MaxCount algo-

rithm only in lines 09-17. Lines 11-14 run in O(1) time. Line 10 executes lines

11-13 O(B) times. In line 16, Merge(TimeIntervals) is a linear walk of the time

intervals that joins adjacent time intervals Ta and Tb when Ta

⋃

Tb would form a

continuous time interval. The calculation is trivially O(1) time for joining the ad-

jacent intervals. Hence, we conclude by Theorem 7.2 that the ThresholdRange

runs in O(B) time. �

We give the following three operators based on ThresholdRange and con-

clude that none of the changes to the algorithm affect the running time of the

ThresholdRange algorithm.

ThresholdCount:

By adding a line between 14 and 15 in the ThresholdRange algorithm that counts

the merged time intervals, we can return the count of time intervals during the query

time interval where congestion occurs. This count of time intervals gives a measure

of variation in congestion. That is, if we have lots of time intervals, we expect that

we have a large number of pockets of congestion. Since ThresholdCount does

not give information relative to the entire time interval, it may need to be examined

in light of the total time above the threshold.
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ThresholdSum:

By summing the times instead of using the
⋃

operator in line 13 of the Thresh-

oldRange algorithm, we can return the total congestion time during the query

time interval. This total gives a measure of the severity of congestion that may be

compared to the length of query time.

ThresholdAverage:

By adding a line between lines 14 and 15 in the ThresholdRange algorithm that

finds average length of the merged time intervals, we can return the average length of

time each congestion will last. This average gives a different measure of the severity

of each congestion.

We could calculate other operators such as the standard deviation of the time

intervals or many other complicated statistics on the distribution of time intervals.

However the five operators we define mirror the standard aggregation operators

available in relational databases.



97

CHAPTER 9

CountRange

The CountRange algorithm is an adaptation of MaxCount in that it is

the Count portion of the MaxCount query. Using the equations for the cases

described in Figure 7.8, we calculate the CountRange as follows:

Q1

Q2

lQ2,t[

lQ2,t]

lQ1,t[

lQ1,t]

(x0,l, vx,l)

(x0,u, vx,u)

Figure
9.1. CountRange Q1 at
t] to Q2 at t[.

q1t2

Q1

Q2

lQ2,t[

lQ2,t]

lQ1,t[
(x0,l, vx,l)

(x0,u, vx,u)

Figure
9.2. CountRange Q1 at
t[ to Q2 at t].

For each bucket we determine if the bucket is completely in or completely out

of the query space. First we find the beginning and ending time intervals. For each

time interval, we get the associated function △p given in Equation (7.20) and its

components. The components △p given in Equation (7.19) define the area above a

line through Q1 and Q2 at times t[ and t]. Figures 9.1 and 9.2 show these four lines.
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Figure 9.1 shows the shaded area defined by:

△←−p = pQ2,t[ − pQ1,t] . (9.1)

Figure 9.2 shows the shaded area:

△−→p = pQ2,t] − pQ1,t[ . (9.2)

If △←−p or △−→p for bucket i is equal to the count of the bucket, then bucket i is

completely contained in the query. If △←−p and △−→p for bucket i are equal to 0, then

bucket i is not contained in the query. If neither of these is true, we approximate

the count for bucket i as the max(△←−p ,△−→p ). That is, we calculate the number of

points in bucket i that contribute to the CountRange as:

counti =























bi if △←−p = bi ∨△−→p = bi

0 if △←−p = △−→p = 0

max(△←−p ,△−→p ) Otherwise

(9.3)

This calculation requires that we keep the single dimension equations for Q1 and Q2

available and not discard them after finding △p (see Equation (7.20)).

Hence, we have the following algorithm for CountRange:
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CountRange(H, Q1, Q2, t
[, t])

input: A set of buckets H built by the index structure presented,

query points Q1(t) and Q2(t) and a query time interval (t[, t]).
output: the estimated CountRange.

1. Count← 0 O(1)
2. for each bucket Bi ∈ D O(B)
3. Calculate(△←−p ,△−→p ) //using Equations (9.1)-(9.2) O(1)
4. Calculate(counti) //using Equation (9.3) O(1)
5. Count← Count + counti O(1)
6. end for
7. return Count O(1)

Theorem 9.4. The CountRange query runs in O(B) time.

Proof. Consider two different data structures for our buckets: HashTables

and R-trees. In the case of indexing using an R-tree, the worst case requires

that we examine all buckets used in generating CountRange. It is possible that

this list could include all B buckets giving a worst case of O(B). In the case of

using a HashTable, we must examine all B buckets. By Lemma 6.2, and because

Equations (7.33) and (9.3) are calculated in constant time, each bucket can be

examined to determine the count that contributes to the CountRange query in

constant time. Therefore, the algorithm runs in O(B) time. �

We note that CountRange is a simplification of the MaxCount operator in

that we do not examine every time interval. Further we have a slightly different

form of △p from Equation (7.20) to find the count.
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CHAPTER 10

Experimental Results

10.1. Methods and Measures

We collected data in runs of several queries that were selected from a set of

randomly generated queries. The selection process weeded out most similar queries

and kept a set that represents narrow queries, wide queries, near corner or edge

queries, and outside queries. Throughout our experiments, we did not see significant

accuracy fluctuation due to any of these types of queries.

Each experimental run consists of running all of the queries at several different

decreasing bucket sizes on a single data set. We made experimental runs against

data sets ranging from 10,000 points to 1,500,000 points1.

In the following experimental analysis, we measure the percentage error of the

estimation algorithm relative to the exact-count algorithm as follows:

ErrorRelative =
|Exact Operator − Estimated Operator|

Exact Operator
(10.1)

Equation (10.1) provides a useful measure if the query returns a reasonable number

of points. Queries that return a small number of points indicate that we should use

the exact method.

1Threshold aggregation runs go only to 1 million points at which we already achieve acceptable
error.
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For ThresholdRange, we measure the percentage of intervals given by the

accurate algorithm not covered by the estimation algorithm using the operator UC

for uncovered. That is, UC(a, b) returns the sum of the lengths of intervals in a not

covered by intervals in b. We divide the result by the accurate ThresholdSum to

determine the ThresholdRange error:

error =
UC (Ext. ThresholdRange,Est. ThresholdRange)

Ext. ThresholdSum
(10.2)

We also measure the percentage of intervals given by the estimate algorithm not cov-

ered by the exact algorithm. We divide the result by the estimated ThresholdSum

to determine the ThresholdRange excess-error.

excess-error =
UC (Est. ThresholdRange\Ext. ThresholdRange)

Est. ThresholdSum

(10.3)

We performed all the data runs on a Athlon 2000 with 1 GB of RAM. During

each of the queries the program does not contact the server tier and, thus, minimizes

the impact of running a server on the same computer. The program pre-loads all

data into data structures so that even the exact algorithms do not contact the server

tier.

10.2. Data Generation

Data for the experiments was randomly generated around several cluster centers.

The ith point generated for the database is located near a randomly selected cluster

at a distance between 0 and d, where d is proportional to i. This method is similar to
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Figure 10.1. Sample data view.

the Ziggurat (Marsaglia & Tsang 2000) method of generating gaussian (or normal)

distributions used in the GSTD (Theodoridis et al. 1999) and G-TERD (Tzourama-

nis et al. 2002) spatiotemporal data generators (Nascimento et al. 2003). However,

our method does not generate strictly Gaussian distributions since the distributions

may stretch and compress along an axis. Our goal was to generate a cluster that

represents a source location and velocity that has most elements starting near a cen-

ter point and decreasing as one moves to a boundary for the cluster. This method

models source regions where the objects all head about the same direction. A sec-

ondary goal was to make certain that clusters were random in size and shape. The

program is also capable of approximating a Zipf distribution used in (Choi & Chung

2002, Revesz & Chen 2003, Tao, Sun & Papadias 2003). However, a single Zipf

distribution does not test the adaptability of our algorithm well. I.e. our algorithm

is capable of modeling a Zipf distribution and as such we could use a single bucket.

Figure 10.1 shows a sample of a data set with points projected onto the three views.

The clusters look even more random, because they can overlay one another. When

one looks at these, they nearly resemble the lights of a city from the air.
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Along with a single Zipf distribution, we also note that a randomly generated

uniform-distribution is not a good distribution to use for these types of experiments.

Uniform distributions do not test the ability of the algorithm to adapt. In fact from

early experiments in (Anderson & Revesz 2005) we have found that using such

a distribution gives great (though meaningless) results. The problem resolves to

a system capable (and willing to) model a uniform distribution finding a nearly

perfect uniform distribution to model. Hence these results are neither realistic, nor

meaningful.

10.3. Parameter Effects

The index space ranges from 0 to 100 in each dimension. The number of

points in the different data sets ranges from 10, 000 to 1, 500, 000. The following

parameters were used in creating the index and finding the MaxCount.

Size of Buckets: The size of the buckets determines the number of possible buckets

in the index. In the experiments, buckets divide the space up such that there are 5

to 20 divisions in each dimension2. These divisions equate to bucket sizes ranging

from 5 to 20 units wide in each dimension. Relative to our previous work (Anderson

2006), this algorithm puts much more space into each bucket creating bigger buckets.

Query Location: Locating the query near the lower or upper corners affects rel-

ative accuracy because the query returns very few points. Queries in this region

2Some MaxCount runs included up to 40 divisions increasing accuracy, but not enough to warrant
the extra running time.
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are not interesting because they rarely involve many points and represent a query

region that moves away from points in the database or barely moves at all. The

small number of points returned indicates use of the exact algorithms.

Query Types: In (Anderson 2006), we considered queries with several different

characteristics: dense, sparse, and Euclidean distance as it related to bucket size.

By modeling the skew in buckets, we minimize the effect of these characteristics

to the point that they did not impact the query error. Queries where the distance

between the query points was small appeared to do as well as wider queries providing

they returned a reasonable number of points. This result is a clear improvement over

previous work that assumed uniform density within a bucket.

Cluster Points: Index space saturation determines the number of buckets neces-

sary for the index. The number of cluster points does not appear to affect error

as much as the space saturation. Further, we do not consider a larger number of

cluster points reasonable since the index space approaches a uniform distribution

as the number of cluster points increases. Gaps introduce difficult areas to model

when they are not uniform. And once again we reiterate, uniform distributions are

not useful. In our experiments cluster points number between 10 and 50.

Histogram Divisions: Increasing histogram divisions to s > 5 had no affect on

the accuracy. This result is not unexpected because histograms are used to define

a trend function relative to trend functions on other axes. Increasing the histogram

divisions has a tendency to flatten the lines. However, normalization flattens the

trend function while maintaining the relationships between trends and hence this
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behavior is easily explained. Thus, increasing histogram divisions only increases the

running time without increasing accuracy.

Threshold Value: The threshold value determines the accuracy when set to low

values compared to the number of points in the database. As expected, these ex-

treme point values produce accurate estimations. High values also follow this trend.

Time Endpoints: When dealing with either small time end points or small buckets,

the method is susceptible to rounding error. In particular, Equation (7.33) contains

both t6 and 1
t6

terms. For very small values, on the order of 1 × 10−54 for 64-bit

doubles, these calculations are extremely sensitive and care must be given to guard

against rounding error. Those errors showed in two ways. First, by a direct warning

programmed into the solution, and second, by a series of fairly stable time values

for the MaxCount followed by unstable variations when increasing the number of

buckets. At some point, smaller bucket sizes increase the likelihood of errors in both

time and count values. Also smaller buckets contain fewer points, which impacts the

size of the constants in Equation (7.33). Hence, as the bucket size becomes smaller in

successive runs, the existence of instability in the time values after a series of stable

values predicts that an accurate MaxCount may be found in the previous larger

bucket size. Throughout our experiments, this condition was an excellent predictor

of an accurate MaxCount.

The experiments demonstrated that 6-dimensional space compounds the problem

when creating small buckets. Creating an index with unit buckets would result in

the possibility of having 1 × 1012 buckets. Clearly this number is unrealistic for
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common moving object applications where we may be dealing with million(s) of

objects. In practice the number of buckets needed to reach acceptable error levels

was between 78, 000 and 227, 000 buckets. These numbers reflect the ability to reach

error levels under 5% and were roughly related to the saturation of the space by

the points. It should be clear that a higher saturation of the space by points would

require a larger number of buckets. Figure 10.2 shows that we had a roughly linear

increase in the number of buckets for an exponential increase in the space. This

pleasant surprise indicates that for unsaturated data sets, the exponential explosion

of space is manageable.
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Figure 10.2. Ratio of buckets to points.

10.4. Running Time Observations

Figure 10.3 shows the average ratio of the exact MaxCount running time to

the estimated MaxCount running time as a function of the number of points in

the database. This result shows a nearly exponential growth when comparing the
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values between 10,000 and 1,000,000. The leveling off occurs because the number

of points returned by the query of 1 million points nearly equals the number of

points returned by the query of 1.5 million points. This result precisely matches our

running-time analysis of the exact and estimation algorithms.
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Figure 10.3. Ratio of exact running time to estimated running time.

A natural question is when to use the exact versus the estimated methods.

In runs with a small number of points that need to be processed, the exact and

estimation methods run about equally fast. However, when the result size reaches

values greater than 40, 000 (our experiments returned sets as large as 331,491), the

estimation algorithms run up to 35 times faster than the exact algorithms. Further,

we note that the error is less predictable at smaller results sizes. Hence for small

databases or in queries that return small result sets, efficiency and accuracy both

indicate using the exact method. However, for large data sets greater than or equal

to 1 million points, the estimation method out-performs by far the exact method.
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10.5. Operator Observations

As expected, we noticed that each operator runs in about the same time as

MaxCount. Only error values seemed to be different when studying different

types of aggregation (e.g., when studying overlap error in ThresholdRange versus

count error in MaxCount). Never-the-less, we have similarities between the results.

Almost all the figures in this section look like a view of mountains from a valley.

That is what we expected to see and the lower and flatter the terrain the better.

Buckets increase from back to front and point set sizes increase from left to right.

10.5.1. MaxCount

Figure 10.4 shows that increasing the number of buckets to the indicated values

dramatically decreases the MaxCount error. As the number of points increases

we also see a decrease in the error. Note that for larger buckets (e.g. smaller values

on the “Buckets per Dimension axis”), the error decreases at a slightly faster rate.

The exact MaxCount provided the values against which our estimation algo-

rithm was tested for accuracy. Since the method does not rely on buckets, and has

zero error, we note only that on queries with small result sizes, this method performs

as well, or better than the estimation algorithm.

10.5.2. ThresholdRange

Figures 10.5 and 10.6 give the ThresholdRange error and ThresholdRange

excess error respectively for T = 10. ThresholdRange error gives the percentage

of the exact intervals not covered by the estimation value, and ThresholdRange
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Figure 10.4. MaxCount error.
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Figure 10.5. ThresholdRange error.

excess error gives the percentage of the estimation not covering the exact. These

figures show that our method acts conservatively in covering more than is needed.
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Figure 10.6. ThresholdRange error.

However, at larger point-set sizes, we still achieve under 5% error. Figure 10.5 shows

0% error caused by the point count staying above 10% in data sets containing more

than 30,000 points. Figure 10.6 shows that we covered at least 10% more time in the

query time interval than needed until we reach larger point sets. Still, we showed

improvement with more buckets.

At T = 1000, we see 0% error until we reach point sets of 500,000 and greater.

Figure 10.7 shows excellent results with buckets above 10. Also, Figure 10.8 shows

that the excess error drops to near 0% as well.

Figures 10.9 and 10.10 show what happens when we find an interval near the

MaxCount value. The two figures show the consequences of the estimation in-

tervals being offset from the exact intervals by small amounts. The error decreases

with more buckets.

The rest of our results are shown in Figures C.1 to C.6 in Appendix C.
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Figure 10.7. ThresholdRange error, T=1000.
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Figure 10.8. ThresholdRange excess error, T=1000.

10.5.3. ThresholdCount

This operator is the only operator that does not have relative error measurements.

Instead we report the average number of intervals the estimation method differs

from the exact method. As you can see, we differ by two from the correct number.
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Figure 10.9. ThresholdRange error, T=100000.
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Figure 10.10. ThresholdRange excess error, T=100000.

Figure 10.11 shows the average error at T = 10 where the errors are small.

Figure 10.12 (T = 1000) looks much worse, but in reality we are still below 2

intervals off. We also note that the estimation may split or combine an interval
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incorrectly when the intervals are very close together without greatly affecting the

error of other operators. Given this possibility, the results are excellent.
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Figure 10.11. ThresholdCount error, T=10.
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Figure 10.12. ThresholdCount error, T=100.

The rest of the results are shown in Figures C.7-C.10 in Appendix C.
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10.5.4. ThresholdSum

ThresholdSum gives the total time above the threshold T . As one can see in

Figure 10.13, at higher bucket counts we have excellent error rates at T = 10. We

didn’t always expect great results at this threshold level across all data sets, but

ThresholdSum gives this result consistantly all the way across.

��	��
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Figure 10.13. ThresholdSum error, T=10.

We do note that when the threshold approaches MaxCount, we see extremely

good accuracy as shown in Figure 10.14.

The rest of the results are shown in Figures C.11-C.14 in Appendix C.

10.5.5. ThresholdAverage

ThresholdAverage gives the average length of each time interval. Figure 10.15

shows the now familiar mountains descending below 5% error at 20 buckets for

T = 10. The Figure also shows that even though a few of the data sets tended to
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Figure 10.14. ThresholdSum error, T=100000.

have good results at 5 and 10 buckets, these results are not guaranteed in general.

In Figure 10.16, the error reaches a plateau below 5% with only small bumps in the

data. The rest of the threshold values are shown in Figures C.15-C.18 of Appendix C.

9:;:9<;;=9=:;=:9=<;=
:; >; 9; :;; <;; 9;; :;;; ?@ABCDEFGGHG

IJKLMN OPQQQ
Figure 10.15. ThresholdAverage error, T=10.
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Figure 10.16. ThresholdAverage error, T=1000.

10.5.6. CountRange

Other CountRange algorithms have achieved error values between 2% and 3%.

Using our method we conjecture that we could reduce the error because our method

of approximation, although much more complicated, theoretically adapts to skewed

distributions better than other methods. Figure 10.17 shows that we achieved errors

under 2% for 20 buckets across all the data sets, and in some cases, under 1%.

Count range also performs about the same speed as the threshold operators due

to its similar implementation.

10.6. Conclusions and Future Work

We implemented and compared two new MaxCount algorithms. The esti-

mated MaxCount was shown to be fast and accurate while still allowing fast

constant time updates. No other algorithm has these features to date. We showed
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Figure 10.17. CountRange error.

that ThresholdRange, ThresholdCount, ThresholdSum, ThresholdAv-

erage, and CountRange are related to MaxCount and can be evaluated using

similar techniques and that we achieve error values under 5% in these operations.

We gave an empirical threshold for choosing between the exact and estimated al-

gorithms. We discussed the issues related to higher dimensions and note that all

sweeping algorithms have this problem. We also note that using our technique it is

possible to decompose the problem and run it in a multiprocessor or grid environ-

ment where the database is divided into smaller databases.

Future work may include decreasing the running time by finding other techniques

because there does not appear to be a clear method for decreasing the running time

of sweeping methods. One could also consider implementing and comparing these

techniques in a grid computing environment.
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APPENDIX A

Integral Details for Cases

For each case given in Section 7.2 we give the form for each case with no justi-

fication although the setup of each integral should be clear. Mathematica provided

the evaluation of the integrals used in the implementation. In this section we give

the details of each integral evaluation. Because of the size we present one per page.
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Case A:

−(x2u−x2q)/t+x1q
∫

x1L

x2u
∫

−t(x1−x1q)+x2q

(b1 + a1x1)(b2 + a2x2) dx2 dx1 =

t2
(

a2 b1 x1L3

6
+ a1 a2 x1L4

8
− a2 b1 x1L2 x1q

2
− a1 a2 x1L3 x1q

3
+

a2 b1 x1L x1q2

2
+ a1 a2 x1L2 x1q2

4
− a2 b1 x1q3

6
− a1 a2 x1q4

24

)

+

b1 b2 x1L x2q + a1 b2 x1L2 x2q
2

− b1 b2 x1q x2q − a1 b2 x1q2 x2q
2

+
a2 b1 x1L x2q2

2
+ a1 a2 x1L2 x2q2

4
− a2 b1 x1q x2q2

2
− a1 a2 x1q2 x2q2

4
+

t

(

−(b1 b2 x1L2)
2

− a1 b2 x1L3

3
+ b1 b2 x1L x1q + a1 b2 x1L2 x1q

2
− b1 b2 x1q2

2

−a1 b2 x1q3

6
− a2 b1 x1L2 x2q

2
− a1 a2 x1L3 x2q

3
+ a2 b1 x1L x1q x2q+

a1 a2 x1L2 x1q x2q
2

− a2 b1 x1q2 x2q
2

− a1 a2 x1q3 x2q
6

)

−
b1 b2 x1L x2u− a1 b2 x1L2 x2u

2
+ b1 b2 x1q x2u + a1 b2 x1q2 x2u

2
−

a2 b1 x1L x2u2

2
− a1 a2 x1L2 x2u2

4
+ a2 b1 x1q x2u2

2
+ a1 a2 x1q2 x2u2

4
+

1
t

(

−(b1 b2 x2q2)
2

− a1 b2 x1q x2q2

2
− a2 b1 x2q3

6
− a1 a2 x1q x2q3

6
+

b1 b2 x2q x2u + a1 b2 x1q x2q x2u− b1 b2 x2u2

2
− a1 b2 x1q x2u2

2
+

a2 b1 x2q x2u2

2
+ a1 a2 x1q x2q x2u2

2
− a2 b1 x2u3

3
− a1 a2 x1q x2u3

3

)

+

1
t2

(

−(a1 b2 x2q3)
6

− a1 a2 x2q4

24
+ a1 b2 x2q2 x2u

2
− a1 b2 x2q x2u2

2
+

a1 a2 x2q2 x2u2

4
+ a1 b2 x2u3

6
− a1 a2 x2q x2u3

3
+ a1 a2 x2u4

8

)
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Case B:

x2,u
∫

−t(x1−x1,q)+x2,q

−(x2,u−x2,q)/t+x1q,
∫

x1,L

(a1x1 + b1)(a2x2 + b2)dx2dx1 =

t2
(

a2 b1 x1q3

6
+ a1 a2 x1q4

24
− a2 b1 x1q2 x1u

2
+ a2 b1 x1q x1u2

2
− +

a1 a2 x1q2 x1u2

4
− a2 b1 x1u3

6
+ a1 a2 x1q x1u3

3
− a1 a2 x1u4

8

)

+

t
(

b1 b2 x1q2

2
+ a1 b2 x1q3

6
− b1 b2 x1q x1u+

b1 b2 x1u2

2
− a1 b2 x1q x1u2

2
+

a1 b2 x1u3

3
+ a2 b1 x1q2 x2q

2
+ a1 a2 x1q3 x2q

6
− a2 b1 x1q x1ux2q+

a2 b1 x1u2 x2q
2

− a1 a2 x1q x1u2 x2q
2

+ a1 a2 x1u3 x2q
3

)

+

b1 b2 x1q x2q + a1 b2 x1q2 x2q
2

− b1 b2 x1ux2q − a1 b2 x1u2 x2q
2

+
a2 b1 x1q x2q2

2
+ a1 a2 x1q2 x2q2

4
− a2 b1 x1u x2q2

2
− a1 a2 x1u2 x2q2

4
+

− b1 b2 x1q x2u− a1 b2 x1q2 x2u
2

+ b1 b2 x1ux2u + a1 b2 x1u2 x2u
2

−
a2 b1 x1q x2u2

2
− a1 a2 x1q2 x2u2

4
+ a2 b1 x1u x2u2

2
+ a1 a2 x1u2 x2u2

4
+

1
t

(

b1 b2 x2q (x2q − x2u) + a1 b2 x1q x2q (x2q − x2u) + a2 b1 x2q2 (x2q−x2u)
2

+

a1 a2 x1q x2q2 (x2q−x2u)
2

− b1 b2 (x2q−x2u)2

2
− a1 b2 x1q (x2q−x2u)2

2
−

a2 b1 x2q (x2q−x2u)2

2
− a1 a2 x1q x2q (x2q−x2u)2

2
+ a2 b1 (x2q−x2u)3

6
+

a1 a2 x1q (x2q−x2u)3

6
− b1 b2 (x2q − x2u) x2u− +

a1 b2 x1q (x2q − x2u) x2u− a2 b1 (x2q−x2u) x2u2

2
− a1 a2 x1q (x2q−x2u) x2u2

2

)

1
t2

(

a1 b2 x2q (x2q−x2u)2

2
+ a1 a2 x2q2 (x2q−x2u)2

4
− a1 b2 (x2q−x2u)3

3
−

a1 a2 x2q (x2q−x2u)3

3
+ a1 a2 (x2q−x2u)4

8
−

a1 b2 (x2q−x2u)2 x2u
2

− a1 a2 (x2q−x2u)2 x2u2

4

)
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Case C:

x2u
∫

x2L

−(x2−x2q)/t+x1q
∫

x1L

(a1x1 + b1)(a2x2 + b2)dx1dx2 =

b1 b2 x1L x2L + a1 b2 x1L2 x2L
2

− b1 b2 x1 qx2L− a1 b2 x1q2 x2L
2

+
a2 b1 x1L x2L2

2
+ a1 a2 x1L2 x2L2

4
− a2 b1 x1qx2L2

2
− a1 a2 x1q2 x2L2

4
−

b1 b2 x1L x2u− a1 b2 x1L2 x2u
2

+ b1 b2 x1q x2u + a1 b2x1q2 x2u
2

−
a2 b1 x1L x2u2

2
− a1 a2 x1L2 x2u2

4
+ a2 b1 x1q x2u2

2
+ a1 a2 x1q2 x2u2

4
+

1
t

(

b1 b2 x2L2

2
+ a1 b2 x1q x2L2

2
+ a2 b1 x2L3

3
+ a1 a2 x1q x2L3

3

−b1 b2 x2L x2q − a1 b2 x1q x2L x2q

−a2 b1 x2L2 x2q
2

− a1 a2 x1q x2L2 x2q
2

+

b1 b2 x2q x2u + a1 b2 x1q x2q x2u− b1 b2 x2u2

2
− a1 b2 x1q x2u2

2
+

a2 b1 x2q x2u2

2
+ a1 a2 x1q x2q x2u2

2
− a2 b1 x2u3

3
− a1 a2 x1q x2u3

3

)

+

1
t2

(

−(a1 b2 x2L3)
6

− a1 a2 x2L4

8
+ a1 b2 x2L2 x2q

2
+ a1 a2 x2L3 x2q

3
−

a1 b2 x2L x2q2

2
− a1 a2 x2L2 x2q2

4
+ a1 b2 x2q2 x2u

2
− a1 b2 x2q x2u2

2
+

a1 a2 x2q2 x2u2

4
+ a1 b2 x2u3

6
− a1 a2 x2qx2u3

3
+ a1 a2 x2u4

8

)



122

Case D:

x2u
∫

x2L

x1u
∫

−(x2−x2q)/t+x1q

(a1x1 + b1)(a2x2 + b2)dx1dx2 =

b1 b2 x1q x2L + a1 b2 x1q2 x2L
2

− b1 b2 x1u x2L− a1 b2 x1u2 x2L
2

+
a2 b1 x1q x2L2

2
+ a1 a2 x1q2 x2L2

4
− a2 b1 x1u x2L2

2
− a1 a2 x1u2 x2L2

4
−

b1 b2 x1q x2u− a1 b2 x1q2 x2u
2

+ b1 b2 x1u x2u + a1 b2 x1u2 x2u
2

−
a2 b1 x1q x2u2

2
− a1 a2 x1q2 x2u2

4
+ a2 b1 x1u x2u2

2
+ a1 a2 x1u2 x2u2

4
+

1
t

(

−(b1 b2 x2L2)
2

− a1 b2 x1q x2L2

2
− a2 b1 x2L3

3
− a1 a2 x1q x2L3

3
+

b1 b2 x2L x2q + a1 b2 x1q x2L x2q + a2 b1 x2L2 x2q
2

+ a1 a2 x1q x2L2 x2q
2

−b1 b2 x2q x2u− a1 b2 x1q x2q x2u + b1 b2 x2u2

2
+ a1 b2 x1q x2u2

2
−

a2 b1 x2q x2u2

2
− a1 a2 x1q x2q x2u2

2
+ a2 b1 x2u3

3
+ a1 a2 x1q x2u3

3

)

+

1
t2

(

a1 b2 x2L3

6
+ a1 a2 x2L4

8
− a1 b2 x2L2 x2q

2
− a1 a2 x2L3 x2q

3
+

a1 b2 x2L x2q2

2
+ a1 a2 x2L2 x2q2

4
− a1 b2 x2q2 x2u

2
+ a1 b2 x2q x2u2

2
−

a1 a2 x2q2 x2u2

4
− a1 b2 x2u3

6
+ a1 a2 x2q x2u3

3
− a1 a2 x2u4

8

)
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Case E:
−(x2L−x2q)/t+x1q

∫

x1L

x2u
∫

−t(x1−x1q)+x2q

(a1x1 + b1)(a2x2 + b2)dx2dx1 =

t2
(

a2 b1 x1L3

6
+ a1 a2 x1L4

8
− a2 b1 x1L2 x1q

2
− a1 a2 x1L3 x1q

3
+

a2 b1 x1L x1q2

2
+ a1 a2 x1L2 x1q2

4
− a2 b1 x1q3

6
− a1 a2 x1q4

24

)

+

t

(

−(b1 b2 x1L2)
2

− a1 b2 x1L3

3
+ b1 b2 x1L x1q + a1 b2 x1L2 x1q

2
−

b1 b2 x1q2

2
− a1 b2 x1q3

6
− a2 b1 x1L2 x2q

2
− a1 a2 x1L3 x2q

3
+

a2 b1 x1L x1q x2q + a1 a2 x1L2 x1q x2q
2

− a2 b1 x1q2 x2q
2

− a1 a2 x1q3 x2q
6

)

−b1 b2 x1L x2u− a1 b2 x1L2 x2u
2

+ b1 b2 x1q x2u + a1 b2 x1q2 x2u
2

−
a2 b1 x1L x2u2

2
− a1 a2 x1L2 x2u2

4
+ a2 b1 x1q x2u2

2
+ a1 a2 x1q2 x2u2

4
−

b1 x1q
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)

+

b1 b2 x1L x2q + a1 b2 x1L2 x2q
2

− b1 b2 x1q x2q − a1 b2 x1q2 x2q
2

+
a2 b1 x1L x2q2

2
+ a1 a2 x1L2 x2q2

4
− a2 b1 x1q x2q2

2
− a1 a2 x1q2 x2q2

4
−

a1 x1q2
�
−(b2 x2L)−a2 x2L2

2
+b2 x2u+a2 x2u2

2

�
2

+ b1 x1u (− (b2 x2L)

+ −a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)

a1 x1u2
�
−(b2 x2L)−a2 x2L2

2
+b2 x2u+a2 x2u2

2

�
2

+

1
t

(− (b1 b2 x2q (−x2L + x2q))− a1 b2 x1q x2q (−x2L + x2q)−
a2 b1 x2q2 (−x2L+x2q)

2
− a1 a2 x1q x2q2 (−x2L+x2q)

2
+ b1 b2 (−x2L+x2q)2

2
+

a1 b2 x1q (−x2L+x2q)2

2
+ a2 b1 x2q (−x2L+x2q)2

2
+ a1 a2 x1q x2q (−x2L+x2q)2

2
−

a2 b1 (−x2L+x2q)3

6
− a1 a2 x1q (−x2L+x2q)3

6
+ b1 b2 (−x2L + x2q) x2u+

a1 b2 x1q (−x2L + x2q) x2u+
a2 b1 (−x2L+x2q) x2u2

2
+ a1 a2 x1q (−x2L+x2q) x2u2

2
−

b1 (−x2L + x2q)
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)

−
a1 x1q (−x2L + x2q)

(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

))

+

1
t2

(

−(a1 b2 x2q (−x2L+x2q)2)
2

− a1 a2 x2q2 (−x2L+x2q)2

4
+ a1 b2 (−x2L+x2q)3

3
+

a1 a2 x2q (−x2L+x2q)3

3
− a1 a2 (−x2L+x2q)4

8
+ a1 b2 (−x2L+x2q)2 x2u

2
+

a1 a2 (−x2L+x2q)2 x2u2

4
− a1 (−x2L+x2q)2

�
−(b2 x2L)−a2 x2L2

2
+b2 x2u+a2 x2u2

2

�
2

)
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Case F:
x1u
∫

−(x2L−x2q)/t+x1q

x2u
∫

−t(x1−x1q)+x2q

(a1x1 + b1)(a2x2 + b2)dx2dx1 =

t2
(

a2 b1 x1q3

6
+ a1 a2 x1q4

24
− a2 b1 x1q2 x1u

2
+ a2 b1 x1q x1u2

2
−

a1 a2 x1q2 x1u2

4
− a2 b1 x1u3

6
+ a1 a2 x1q x1u3

3
− a1 a2 x1u4

8

)

+

t
(

b1 b2 x1q2

2
+ a1 b2 x1q3

6
− b1 b2 x1q x1u + b1 b2 x1u2

2
−

a1 b2 x1q x1u2

2
+ a1 b2 x1u3

3
+ a2 b1 x1q2 x2q

2
+ a1 a2 x1q3 x2q

6

−a2 b1 x1q x1u x2q + a2 b1 x1u2 x2q
2

− a1 a2 x1q x1u2 x2q
2

+ a1 a2 x1u3 x2q
3

)

+b1 b2 x1q x2q + a1 b2 x1q2 x2q
2

− b1 b2 x1u x2q − a1 b2 x1u2 x2q
2

+
a2 b1 x1q x2q2

2
+ a1 a2 x1q2 x2q2

4
− a2 b1 x1u x2q2

2
− a1 a2 x1u2 x2q2

4
−

b1 b2 x1q x2u− a1 b2 x1q2 x2u
2

+ b1 b2 x1u x2u + a1 b2 x1u2 x2u
2

−
a2 b1 x1q x2u2

2
− a1 a2 x1q2 x2u2

4
+ a2 b1 x1u x2u2

2
+ a1 a2 x1u2 x2u2

4
−

b1 x1L
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)

−
a1 x1L2

�
−(b2 x2L)−a2 x2L2

2
+b2 x2u+a2 x2u2

2

�
2

+

b1 x1q
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)

+

a1 x1q2
�
−(b2 x2L)−a2 x2L2

2
+b2 x2u+a2 x2u2

2

�
2

+
1
t

(b1 b2 x2q (−x2L + x2q) + a1 b2 x1q x2q (−x2L + x2q) +
a2 b1 x2q2 (−x2L+x2q)

2
+ a1 a2 x1q x2q2 (−x2L+x2q)

2
− b1 b2 (−x2L+x2q)2

2
−

a1 b2 x1q (−x2L+x2q)2

2
− a2 b1 x2q (−x2L+x2q)2

2
− a1 a2 x1q x2q (−x2L+x2q)2

2
+

a2 b1 (−x2L+x2q)3

6
+ a1 a2 x1q (−x2L+x2q)3

6
− b1 b2 (−x2L + x2q) x2u−

a1 b2 x1q (−x2L + x2q) x2u− a2 b1 (−x2L+x2q) x2u2

2
−

a1 a2 x1q (−x2L+x2q) x2u2

2
+

+ b1 (−x2L + x2q)
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)

+

a1 x1q (−x2L + x2q)
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

))

1
t2

(

a1 b2 x2q (−x2L+x2q)2

2
+ a1 a2 x2q2 (−x2L+x2q)2

4
− a1 b2 (−x2L+x2q)3

3
−

a1 a2 x2q (−x2L+x2q)3

3
+ a1 a2 (−x2L+x2q)4

8
− a1 b2 (−x2L+x2q)2 x2u

2
−

a1 a2 (−x2L+x2q)2 x2u2

4
+

a1 (−x2L+x2q)2
�
−(b2 x2L)−a2 x2L2

2
+b2 x2u+a2 x2u2

2

�
2

)
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Case G:

x2U
∫

x2L

x1U
∫

x2−x2q

−t
+x1q

(a1x1 + b1)(a2x2 + b2) dx1dx2 =

t2
(

a2 b1 x1L3

6
+ a1 a2 x1L4

8
− a2 b1 x1L2 x1q

2
− a1 a2 x1L3 x1q

3
+

a2 b1 x1L x1q2

2
+ a1 a2 x1L2 x1q2

4
− a2 b1 x1q2 x1u

2
+ a2 b1 x1q x1u2

2
−

a1 a2 x1q2 x1u2

4
− a2 b1 x1u3

6
+ a1 a2 x1q x1u3

3
− a1 a2 x1u4

8

)

+

t

(

−(b1 b2 x1L2)
2

− a1 b2 x1L3

3
+ b1 b2 x1L x1q + a1 b2 x1L2 x1q

2
−

b1 b2 x1q x1u + b1 b2 x1u2

2
− a1 b2 x1q x1u2

2
+ a1 b2 x1u3

3
−

a2 b1 x1L2 x2q
2

− a1 a2 x1L3 x2q
3

+ a2 b1 x1L x1q x2q + a1 a2 x1L2 x1q x2q
2

−
a2 b1 x1q x1u x2q + a2 b1 x1u2 x2q

2
− a1 a2 x1q x1u2 x2q

2
+ a1 a2 x1u3 x2q

3

)

−b1 b2 x1L x2u− a1 b2 x1L2 x2u
2

+ b1 b2 x1u x2u + a1 b2 x1u2 x2u
2

−
a2 b1 x1L x2u2

2
− a1 a2 x1L2 x2u2

4
+ a2 b1 x1u x2u2

2
+ a1 a2 x1u2 x2u2

4
+

b1 b2 x1L x2q + a1 b2 x1L2 x2q
2

− b1 b2 x1u x2q − a1 b2 x1u2 x2q
2

+
a2 b1 x1L x2q2

2
+ a1 a2 x1L2 x2q2

4
− a2 b1 x1u x2q2

2
− a1 a2 x1u2 x2q2

4

Case H:

x1U
∫

x1L

x2U
∫

x2L

(a1x1 + b1)(a2x2 + b2) dx2 dx1 =

(

− (b1 x1L)− a1 x1L2

2
+ b1 x1u + a1 x1u2

2

)

×
(

− (b2 x2L)− a2 x2L2

2
+ b2 x2u + a2 x2u2

2

)
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APPENDIX B

Implementation

We implemented both estimation and exact algorithms for each aggregation

operator. We designed the application as a 2-tier application in C# as shown in

Figure B.1.

Graphical User Interface

Estimation Algorithms

3D Hash Index Exact Algorithms

Microsoft SQL Server Express 2005

Client Tier

Server Tier

Figure B.1. Implementation architecture.

Microsoft SQL Server Express makes up the server tier and contains the point

data in the form:

ID X1 X2 X3 X4 X5 X6 Count

ID provides a key to the points table since we can’t guarantee that every point will

be unique. Count allows clusters of points to appear in one place and move together.

In all our experiments Count = 1.
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Microsoft SQL server express did not provide indexing to any algorithms. In-

stead, we built the index on top of the database as shown in Figure B.1. The index

exposes a method called getCells() that may be overridden in a child object to

test additional indices for future work. This method provides the selection of cells

based on a query. The other methods including Insert, Delete and Update

would also need to be overridden in the inheritance structure.

The exact algorithms are simple algorithms used to check the answers of the

estimation algorithms. Each estimation algorithm is implemented as a method call

of the ThresholdEstimates object. Each query must build a TimeSegments

list that is used in the evaluation. To optimize this process, aggregation queries are

processed through the ThresholdEstimates object containing the TimeSeg-

ments that can be reused if the queries are similar. That is, the queries must have

the same query points of the previous query, and at least a subset of the previous

query’s time interval. This query optimization significantly reduced our experimen-

tation time. Similarly, the exact algorithms share a sorted list of points that enter

and exit the query.

The graphical user interface provides three tabs shown in Figures B.2-B.5. The

buttons across the top in order 1) save changes made to the database, 2) create or

recreate the 3D index and 3) dump the index to the results pane under the queries

tab. The “Point Set and Index Information” (Figure B.2) allows the user to specify:

a) the parameters of the index and b) which “Point Set” to load and create the index

from. When generating the index, the status bar at the bottom shows running time

information. Here you can see hat the program created the index in 0.39 seconds.
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Figure B.2. Database and index parameters pane.

The query section, shown in Figure B.3, requires the user to specify a hyper-

rectangle defined by “Point 1” and “Point 2”, a time interval and threshold value.

These points make up the parameters used in the twelve possible queries. The last

two buttons at the right run a series of pre-defined queries using all the different

aggregation operations against the current index.

The test pane (Figure B.4) provides an inside look into what problems we ran

into and test cases for them. Each solution to the different integral cases provides

almost limitless opportunity for errors. The tests for each integral case includes a

laboriously hand-calculated gold-standard against which we tested the various pieces

of code. Other checks examine different outputs for sane values.

We generated data for experiments in the application and stored it in the SQL

database using methods triggered by the buttons shown in Figure B.5. The special
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Figure B.3. Application query pane.

Data set Creator is for testing purposes only. Here the user may specify a connection

string to the database 1.

The file menu (Figure B.6) includes commands to:

• Create an index for a particular data set,

• Save changes to the data set,

• Save results to a Comma Separated Values (CSV) file,

• Import CSV data, and

• Start the random data set generator form.

Output is given in CSV format in the results pane shown in Figure B.3. The

format is given as: “Query Type” followed by name, value pairs. For example, the

exact solution to a MaxCount query is given as:

1If you plan on using the code you will need to change the connection string here and in the code
for loading data.
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Figure B.4. Application testing pane.

MaxCount EXACT,Time,0.197428,Count,36,Skipped,9894,Used,106,rt,00:00:00.093747
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Figure B.5. Creating new random data sets.

Figure B.6. File menu commands.
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APPENDIX C

Additional Results

This Appendix shows results not discussed in the paper. We have a section for each

type of operator discussed.

C.1. ThresholdRange Results

Figures C.1-C.6 Show the results for both ThresholdRange Error and Threshol-

dRange excess error defined in Equations (10.2) and (10.3).

��������������������
�� �� �� ��� ��� ��� ��� ���� ������������

������ ��   
Figure C.1. ThresholdRange error, T=20.
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Figure C.2. ThresholdRange excess error, T=20.
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Figure C.3. ThresholdRange error, T=100.



134

ÕÖ×ÖÕØ××ÙÕÙÖ×ÙÖÕÙØ×Ù
Ö× Ú× Õ× Ö×× Ø×× Õ×× ÛÕ× Ö××× ÜÝÞßàáâãääåä

æçèéêë ìíîîî
Figure C.4. ThresholdRange excess error, T=100.
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Figure C.5. ThresholdRange error, T=10000.
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Figure C.6. ThresholdRange excess error, T=10000.
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C.2. ThresholdCount Results

Figures C.7-C.10 give the results for ThresholdCount where T = 20, 100, 10000, 100000.

All errors are relative as given in Equation (10.1).

!"#"!$##"
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Figure C.7. ThresholdCount error, T=20.
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Figure C.8. ThresholdCount error, T=100.
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Figure C.9. ThresholdCount error, T=10000.
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Figure C.10. ThresholdCount error, T=100000.
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C.3. ThresholdSum Results

Figures C.11-C.14 give the results for ThresholdSum where T = 20, 100, 1000, 10000.

All errors are relative as given in Equation (10.1).
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Figure C.11. ThresholdSum error, T=20.
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Figure C.12. ThresholdSum error, T=100.
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Figure C.13. ThresholdSum error, T=1000.
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Figure C.14. ThresholdSum error, T=10000.



140

C.4. ThresholdAverage Results

Figures C.15-C.18 give the results for ThresholdSum where T = 20, 100, 10000, 100000.

All errors are relative as given in Equation (10.1).
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Figure C.15. ThresholdAverage error, T=20.
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Figure C.16. ThresholdAverage error, T=100.
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Figure C.17. ThresholdAverage error, T=10000.

78987:99;7;89;87;:9;
799 <79 8999 =>?@ABCDEEFE

GHIJKL MNOOO
Figure C.18. ThresholdAverage error, T=100000.
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