
TEMPORAL AND VIDEO CONSTRAINT

DATABASES

by

Rui Chen

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Peter Z. Revesz

Lincoln, Nebraska

December, 2000

TEMPORAL AND VIDEO CONSTRAINT DATABASES

Rui Chen, Ph.D.

University of Nebraska, 2000

Adviser: Peter Z. Revesz

This dissertation proposes a general, flexible and reusable software architecture

for constraint database systems. Our architecture contains several independent and

coherent modules dealing with approximation, update, data representation, query

evaluation, visualization and export conversion. We give a high-level description

of these modules and their components, which can be modified and reused several

different ways in building other systems. We implement a constraint database sys-

tem based on our proposed architecture, TAQS, which is built on a spatiotemporal

constraint database with linear constraints.

We propose an O(n) time piecewise linear approximation algorithm to approx-

imate the temporal data into a compact constraint database representation. We

also approximate the spatial data by using TIN transformation, and represent it in

constraint databases. Experiments show that the piecewise linear approximation

provides a significant data reduction, and high coefficient correlation between the

original data and its approximation.

We describe the queries based on the approximation, including simple algebraic

queries, similarity queries and GIS-based queries. We evaluate the performance

of the queries by using precision and recall parameters. Since the approximate

database is much smaller than the original, the query evaluation becomes much

faster while keeping very high precision and recall.

We also describe the update of the approximate temporal data and spatial

data. The data is visualized by color bands display which yields static images

and isometric color animation which yields a sequence of video clips for a series of

spatiotemporal data.

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my advisor, Professor Peter Z.

Revesz, for introducing me to this exciting research area. He consistently guided me

and gave me a great source of inspiration. I would also like to thank the members

of my supervisory committee for their time and commitment. These committee

members are: Professor Hong Jiang, Professor Spyros Magliveras and Professor

Ram Narayanan.

I would like to thank my colleague Min Ouyang for his help in my research

work. I would also like to take this opportunity to thank my friends who made me

enjoy this period with so much fun.

I dedicate this dissertation to my parents for their continuous support and en-

couragement and for their unflinching faith in my abilities. Without their unselfish

love and affection, I would not have finished this dissertation.

Contents

Abstract

1 Introduction 1

1.1 Outline of the Dissertation . 4

2 Review of Basic Concepts 6

2.1 Relational Databases . 8

2.2 Constraint Databases . 10

2.3 Time Series Data . 11

2.4 Geographic Information Systems . 14

2.5 Video Databases . 16

3 The Architecture of Constraint Database Systems 19

3.1 Overview of the Constraint Database Architecture 20

i

3.2 Descriptions of the Modules . 23

3.2.1 Data Representation Module 23

3.2.2 Query Evaluation Module 25

3.2.3 Visualization Module . 27

3.2.4 Approximation Module . 27

3.2.5 Update Module . 28

3.2.6 Export Conversion Module 28

4 Temporal Data Approximation 30

4.1 The Piecewise Linear Approximation 30

4.2 The Storage Representation of Piecewise Linear Function 41

4.3 Experimental Results . 43

5 Spatial Data Approximation 46

5.1 The TIN Representation of Spatial Data 47

5.2 Transform TIN to Constraint Databases 50

6 Approximate Queries 54

6.1 Basic Queries . 54

ii

6.2 Similarity Queries . 57

6.3 GIS-based Queries . 59

6.4 Approximate Query Evaluation . 61

6.4.1 Simple Queries . 63

6.4.2 Composite Queries . 65

6.4.3 Query Analysis . 66

7 Update Data Approximations 70

7.1 Update Temporal Data Approximations 70

7.2 Update Spatial Data Approximations 78

8 Visualization 82

8.1 Color Bands Display . 82

8.1.1 Display Algorithm . 85

8.1.2 GIS-based Applications . 87

8.2 Isometric Color Animation . 91

9 Conclusions 96

9.1 Future Work . 97

iii

Bibliography 98

iv

List of Figures

2.1 The Map of a Place . 12

3.1 Constraint Database Architecture 21

4.1 The Upper and Lower Lines . 34

4.2 Maximum Error Ψ Varies from 10 to 320 45

5.1 The TIN Graph of Weather Stations 49

5.2 The TIN Graph for 8, 021 Weather Stations 50

6.1 The Query Output Categories . 63

6.2 For Query Rhigh ≥ R′

high . 68

6.3 For Query Rlow ≥ R′

low . 68

6.4 For Query Rhigh ≥ R′

high and Rlow ≥ R′

low 69

6.5 For Query Rhigh ≥ R′

high or Rlow ≥ R′

low 69

v

7.1 Inserting Points into Piecewise Linear Function 72

7.2 Insert a Temporal Point . 75

7.3 Proof Condition for Point M . 77

7.4 The PLA of T with Ψ = 2 . 78

7.5 Inserting Points in Piecewise Linear Function of T 80

7.6 Insert a Spatial Data Point . 81

8.1 A Polygon . 83

8.2 The Color Polygon . 85

8.3 The Nebraska Elevation Map . 89

8.4 The Nebraska Mean Annual Air Temperature Map 90

8.5 The Nebraska Potential Evapotranspiration Map 90

8.6 The Nebraska Mean Annual Precipitation Map 91

8.7 The Nebraska Frost-Free Period Map 92

8.8 The Nebraska Annual Water Balance Map 92

8.9 The Snapshot of U.S. Precipitation in January, 1997 93

8.10 The Snapshot of U.S. Precipitation in April, 1997 94

vi

8.11 The Snapshot of U.S. Precipitation in July, 1997 94

8.12 The Snapshot of U.S. Precipitation in October, 1997 95

vii

List of Tables

2.1 The Course Table . 9

2.2 The Constraint Relation for A Place 11

3.1 The Temperature Relation . 25

3.2 The Conversion Result . 29

4.1 The Temperature Relation . 31

4.2 The Constraint Relation Temperature 38

4.3 The End Point of Each Piece . 42

4.4 The Start Point for Each Weather Station 43

4.5 The Slope and the End Time of Each Piece 43

4.6 Experimental Results of Piecewise Linear Approximation 44

5.1 The Locations of Weather Stations 48

viii

5.2 The TIN Structure for Weather Stations 48

5.3 The Representation of Spatial Data 53

6.1 Find Temperatures at t = 1.5 . 55

6.2 The Temperature2 Relation . 55

6.3 Intersection of Temperature and Temperature2 56

6.4 The Precipitation Relation . 57

6.5 Join of Temperature and Precipitation 57

6.6 Find the Minimum Temperature . 58

6.7 Number of Pieces in Datasets . 62

6.8 Rhigh ≥ R′

high . 64

6.9 Rlow ≥ R′

low . 65

6.10 Rhigh ≥ R′

high and Rlow ≥ R′

low . 66

6.11 Rhigh ≥ R′

high or Rlow ≥ R′

low . 67

7.1 The Piecewise Linear Function of T with Ψ = 2 78

7.2 Inserting Points in Piecewise Linear Function of T 79

ix

Chapter 1

Introduction

Constraint databases, introduced in [16], are useful in geographic information sys-

tems, computer-aided design and other spatiotemporal applications. Constraint

databases also provide a compact approximate representation of temporal data,

which would require too much storage space in relational databases.

Because of their advantages, there is an increasing number of implemented con-

straint database systems such as CCUBE [3]. The architecture of these constraint

database systems is very similar. However, they all contain several special features

which never occur in relational and object-oriented database system design. These

features may include modules for constraint representation, data approximation

and special data visualization.

The goal of this dissertation is to help design a temporal and video constraint

database, which can deal with temporal data and even spatiotemporal data. It can

also evaluate queries and output the query results as static images or a sequence

1

2

of video clips.

We propose a general, flexible and reusable software architecture for constraint

database systems. Our architecture contains several independent and coherent

modules dealing with approximation, update, data representation, query evalua-

tion, visualization and export conversion. We give a high-level description of these

modules and their components, which can be modified and reused several different

ways in building other systems. We implement a prototype system, TAQS (short

for Three-dimensional Animation and Query System), which has several special de-

sign features over other general database systems. TAQS is a constraint database

system that implements a spatiotemporal database with linear constraints and vi-

sualizes query results with color bands display and isometric color animation. The

animation can be viewed as a sequence of video clips.

We mainly consider the time series data since it occurs in many applications.

For example, a time series could be a sequence of data points to represent tem-

perature or precipitation for a given location as it changes over time. Since a fine

granularity of time may be needed, the traditional representation of time series

data as a set of data points requires too much computer storage space and allows

only inefficient data retrieval and querying.

We also study the approximation of spatial data. We propose a method to

transform the spatial data into a constraint database representation. We use the

Triangulated Irregular Networks (TIN) to transform a set of discrete spatial data

3

points to be represented as a continuous surface.

The operations to approximate the temporal data or spatial data into con-

straint databases are performed at the time of the data entry; that is, the data is

stored as a constraint database [16, 25, 38], where the constraints are parametric

functions of time or space that interpolate the data. This approach is advantageous

because it is possible to build powerful database systems (for example, CCUBE [3],

DEDALE [14] and MLPQ [34]) that can be queried by standard relational database

query languages. This enables a potentially much wider range of users to use the

database.

Applications of constraint database systems were, until now, severely limited to

a few well-understood areas of constraint representation. One such example is GIS,

where convex polygonal areas were represented as conjunctions of linear inequality,

i.e., half-plane intersection, constraints. Our work on interpolation functions as a

natural source of constraint data opens up a range of uses of constraint databases

beside these narrow focus applications.

It is very important to present the data to a user in a form that is easily

understandable. Many current constraint database systems have a poor graphical

user interface. MLPQ/GIS [17] probably has the most advanced user interface

that allows a number of iconic queries, including the option to ask the system to

show an animation of a 2-D object (a moving polygon). We describe an advanced

GIS-oriented user interface that can animate various spatiotemporal data. Such an

4

animation has a potential to reveal many interesting features to a user that would

be hard or impossible to notice otherwise.

1.1 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 reviews the basic con-

cepts related to our work, including the relational databases, constraint databases,

time series data, geographic information systems, and video databases.

Chapter 3 proposes a general constraint database architecture, describes each

module in much detail and introduces the TAQS system implemented based on

this architecture.

Chapter 4 provides the piecewise linear approximation algorithm to transform

a time series into a constraint database. It also shows the experimental results of

the approximation.

Chapter 5 introduces the approximation for the spatial data. Here it uses TIN

to transform the discrete spatial points into a continuous surface and represent the

spatial data in constraint databases.

Chapter 6 describes the queries on the approximate constraint relations. It

also introduces the queries on GIS applications, and similarity queries. Finally,

it shows that the evaluation on the approximate constraint relations can yield a

rather accurate query output.

5

Chapter 7 discusses the update operations on the approximate temporal data

and spatial data.

Chapter 8 describes two visualization methods: color bands display and iso-

metric color animation. The first method is to display the static image of the

query output. The second method is to show the spatiotemporal query output

with animations.

Finally, Chapter 9 conclude the dissertation and list some directions for future

work.

Chapter 2

Review of Basic Concepts

This chapter reviews some basic concepts which are related to our work. Along

with the development of the database techniques, the database systems are evolved

in several striking steps.

The primitive database management systems were file management systems

that realized some database functions by executing the defined subroutines for

the data. The underlying data model, Network and Hierarchical Model, provides

users with a network view of databases, including record types and one-to-many

relationships among the record types. The network model allows a record type to

be involved in more than one relationship, while the hierarchical data model allows

a record type to be involved in only one relationship as a child.

The next type of database was the relational data model, which provides more

flexible and powerful organization of data to generate very large databases. The re-

lational query languages, for instance, SQL (Structure Query Language) are declar-

6

7

ative query languages; that is, users just tell the system what they want to get from

the database, and the remaining thing is finished by the system automatically. So,

it is very easy to learn and use.

There were also several proposals for database models. Most of them were not

implemented for commercial use. One of the very important proposals was the

semantic data model, whose primary use is in database design phase.

Another database model is extended- and object-relational model, which ex-

tends the relational model by incorporating some object-oriented features. The

extensions are involved in data representation, object identity, operations, pro-

gramming interface, and so on.

Nested relational model is another extension of the relational data model. It al-

lows the values of attributes to be relations, hence it can build up a tree-structured

object space. In some cases, this model is more natural to represent the relation-

ships of objects.

In the late 80’s, object-oriented (O2) databases came into being. The relation-

ships among objects are represented by the definitions of those objects themselves.

In some sense using this kind of representation is much easier to describe our real

world.

Along with the requirement of the use of multimedia information, databases

started to support imaging and multimedia data. By extending current database

8

systems, they have some ability to provide services to users with multimedia infor-

mation. Since multimedia data, especially video data, has some special character-

istics compared with other kinds of data types, more tasks associated with it need

to be done.

Now, constraint databases attract the attention of more and more researchers in

this research area. Constraint databases can be applied to geographic information

systems, computer-aided design and other spatiotemporal applications.

The following are structured as follows. Section 2.1 gives a brief review of the

relational databases. Section 2.2 describes the constraint databases. Section 2.3

introduces the time series data. Section 2.4 gives an introduction of geographic

information systems. Finally, in Section 2.5 briefly describes several video database

models and systems.

2.1 Relational Databases

Relational databases are mainly used as commercial data-processing systems. A

relational database consists of a collection of tables, each of which is assigned a

unique name as the table name. Each table has a structure of an array, in which

each row is a set of related values, called a record. A row in a table represents their

relationship. The following is an example of the table in a relational database.

Example 2.1.1 Suppose there are some courses in a department stored in a re-

9

lational table. A course has several attributes, which are callno, course name and

credit. The table is shown in Table 2.1.

callno course name credit

813 Database Systems 3
930 Computer Architecture 3
977 Cryptography 3

Table 2.1: The Course Table

Table 2.1 stores three courses, which are Database Systems, Computer Archi-

tecture and Cryptography. Their call numbers are 813, 930 and 977, respectively,

and all of them are 3 credits.

There are several query languages to retrieve the data from a relational

database, such as relational algebra, SQL, Datalog and so on. A relational al-

gebra query consists of a set of operations that take one or two relations as input

and produce a new relation as their results. The fundamental operations are select,

project, union, product, and so on. Another query language, SQL, has established

itself as the standard relational-database language. The basic Structure of an SQL

query consists of three clauses: select, from and where. The select clause is used

to list the attributes which the users are interested in. The from clause is used

to tell the system which tables the data is retrieved from. The where clause is

used to specify the query condition to limit the query result. SQL is a procedural

language. However, Datalog is a declarative query language, which is based on the

logic-programming language Prolog. A Datalog program consists of a set of rules.

10

Each rule is defined by several conjunctive expressions. The head of a rule is the

output relation, while the body is the input relations and conditions. If the body

of a rule is true by instantiating the variables with concrete values, the head of the

rule is true with those corresponding values.

Example 2.1.2 Given the Table Course in Example 2.1.1, find the course name

with the callno 813. The following are queries using relational algebra, SQL and

Datalog query languages, respectively.

Relational algebra query:

Πcourse name(σcallno=813(course))

SQL query:

Select course name

from course

where callno = 813;

Datalog query:

course 813(course name) : − course(callno, course name, credit), callno = 813.

2.2 Constraint Databases

Besides the relational databases, there is another type of database systems, con-

straint databases, which stimulate more and more database researchers to devote

11

themselves to such a field. Constraint databases are built on the constraint data

model which can represent an infinite data set with a finite representation. In the

constraint data model, each attribute is associated with an attribute variable and

the value of the attributes in a relation is specified implicitly using constraints.

A constraint database is a finite set of constraint relations, each of which is

a finite set of constraint tuples, where each tuple is a conjunction of atomic con-

straints using the same set of attribute variables. The following is an example of a

relation in a constraint database.

Example 2.2.1 Suppose there is a road, a pond and a park in some place whose

locations are shown in Figure 2.1. Their constraint representation is shown in

Table 2.2.

id x y

road x y 5x − 11y = −18.
pond x y 2x − 5y ≤ −22, 3x + y ≤ 35, 5x − 4y ≥ −4.
park x y x ≥ 7, x ≤ 11, y ≥ 1, y ≤ 4.

Table 2.2: The Constraint Relation for A Place

2.3 Time Series Data

A time series [24] is a set of time-stamped data entries. A time series allows a

natural association of data collected over intervals of time. For example, summaries

of stock market trading or banking transactions are typically collected daily, and

12

10

 8

 6

 4

 2

12

x

road

10 12 148

y

6

park

pond

0 2 4

Figure 2.1: The Map of a Place

are naturally modeled with a time series. A time series can be regular or irregular,

depending on whether or not the time series has an associated calendar.

A regular time series has an associated calendar. In a regular time series, data

arrives predictably at predefined intervals. For example, daily summaries of stock

market data form regular time series, and such time series might include the set of

trade volumes and opening, high, low, and closing prices for a stock.

An irregular time series does not have an associated calendar. Often, irregular

time series are data-driven, where unpredictable bursts of data arrive at unspec-

ified points in time or most time-stamps cannot be characterized by a repeating

pattern. For example, account deposits and withdrawals from a bank automated

13

teller machine (ATM) form an irregular time series. An irregular time series may

have long periods with no data or short periods with bursts of data.

For time series data, there are some methods to reduce the storage space. For

example, we can use a polynomial function to interpolate these data within some

specified error tolerance. In some cases, it can achieve great data reduction. How-

ever, there are also some disadvantages. For instance, when the data is retrieved

from the polynomial function, it needs more complex computation.

In the area of cryptographic research, the linear complexity[20] of a given se-

quence is defined by the length of the shortest linear feedback shift register [21]

which generates the sequence followed by some arbitrary sequence. It means that

is the lowest polynomial function to generate the given sequence by iterations. The

polynomial function of a sequence with the linear complexity k would have the

form:

xi =
i−1
∏

j=i−k

(cjxj).

Example 2.3.1 Given a sequence of binary numbers S = 01010000010110010011

in the field F2 , denoted by {xi | 0 ≤ i ≤ 19} . Find the linear complexity of this

sequence.

The linear complexity of this sequence is 10, and the polynomial function is:

xi = xi−10 + xi−9 + xi−8 + xi−7 + xi−6 + xi−5 + xi−2, 10 ≤ i ≤ 19.

14

By using the above polynomial function, we can generate the remaining se-

quence [x10 .. x19]. For instance, we can get x14 by using the function:

x14 = x4 + x5 + x6 + x7 + x8 + x9 + x12

= 0 + 0 + 0 + 0 + 0 + 1 + 1

= 0 (mod 2).

Note that if there is a very long, even infinite sequence which can be generated

by a polynomial function, using the polynomial function can yield a great data re-

duction. But for the practical measurements, such as temperature or precipitation,

it is not possible to have such kind of sequence. And this method is not efficient

in retrieving arbitrary elements of the sequence, not easy to update the data, and

there is no interpolation for the given data.

2.4 Geographic Information Systems

Geographic information systems (GIS) [36, 35] technology can be used for scientific

investigations, resource management, and development planning. For example, a

GIS might allow emergency planners to easily calculate emergency response times

in the event of a natural disaster, or a GIS might be used to find wetlands that

need protection from pollution.

In the strictest sense, a GIS is a computer system capable of assembling, storing,

15

manipulating, and displaying geographically referenced information , i.e. data

identified according to their locations. Practitioners also regard the total GIS as

including operating personnel and the data that go into the system.

A GIS can be used to emphasize the spatial relationships among the objects

being mapped. While a computer-aided mapping system may represent a road

simply as a line, a GIS may also recognize that road as the border between wetland

and urban development, or as the link between two streets.

With a GIS you can “point” at a location, object, or area on the screen and

retrieve recorded information about it from off-screen files. Using scanned aerial

photographs as a visual guide, you can ask a GIS about the geology or hydrology

of the area or even about how close a swamp is to the end of a street. This kind of

analytic function allows you to draw conclusions about the swamp’s environmental

sensitivity.

Traditional maps are abstractions of the real world, a sampling of important

elements portrayed on a sheet of paper with symbols to represent physical objects.

People who use maps must interpret these symbols. Topographic maps show the

shape of land surface with contour lines. The actual shape of the land can be

seen only in the mind’s eye. Graphic display techniques in GIS’s make relation-

ships among map elements visible, heightening one’s ability to extract and analyze

information.

16

2.5 Video Databases

The use of multimedia is an irreversible trend in computing since it enhances the

overall quality and quantity of information. Therefore, more and more information

systems and applications are providing the support for multimedia information.

Among various multimedia data, such as text, static images, audio, 2D or 3D pic-

tures, and video data, video is the most important media for visual representation,

making dramatic improvements to the whole human-computer interaction.

A video database is a video information management system, the integration of

representation, storage, retrieval, processing and transmission of video data. Since

a video database is also a special type of database, it is very similar, in some aspects,

to other databases. For example, both video databases and relational databases

need to deal with queries and indexing of stored data in the databases for speeding

up the information retrieval. However, the representation and querying for video

data are quite different from those of other databases.

The following are some characteristics [26, 18] of video database systems, a few

of which may have a great influence on the design and implementation of video

database systems.

Large sizes: This property of video objects requires that video database sys-

tems could have the ability to store and retrieve large amount of data. Also, the

communication cost for the transmission need to be considered seriously.

17

Real-time nature: This property needs high-speed retrieval of video data and

low communication cost for transmission.

Raw nature of video data: Contents of video data are binary in nature. There-

fore, video database systems should derive and store some extra necessary infor-

mation associated with the video for the sake of retrieval from the databases.

Spatial data types and queries: Some objects in videos have spatial rela-

tionships with respect to one another. Often users want to query this kind of

information to make some analysis.

Interactive querying, relevance feedback and refining: Since it is very hard

to be highly accurate in retrieving video information from video database systems,

the output may have several alternatives related to the desired result. Users can

choose one as the best. If there is no such desired result, users could send some

feedback and then refine the query.

Automatic feature extraction and indexing: Conventional databases them-

selves have the explicit description of the stored data, while in video databases

there is no such description. When there are huge amount of video data to be

input into databases, the automatic extraction and indexing techniques are highly

desirable.

There are several video database models and implemented video database sys-

tems. For example, there are video database models such as the Extension of

18

Relational Database for Video Data Model [18], Parametric Rectangle Constraint

Data Model [4], Video Object Data Model [13], Object Composition and Playback

Models [12] and Constraint Video Data Model [9]; and video database systems such

as QBIC [11], PReSTO [4], STORM [23] and OVID [13] systems.

Chapter 3

The Architecture of Constraint
Database Systems

In this chapter we propose a general, flexible and reusable software architecture for

constraint database systems. The presentation below is based on our work in [32].

The software architecture includes several relatively independent and coherent

modules dealing with approximation, update, data representation, query evalua-

tion, visualization and export conversion. We describe these modules in general and

illustrate them with our recently implemented TAQS constraint database system.

Constraint databases, introduced in [16], are useful in geographic information

systems, computer-aided design and other spatiotemporal applications. Constraint

databases also provide a compact approximate representation of temporal data

which would require too much storage space in relational databases.

Because of their advantages, there is an increasing number of implemented con-

straint database systems such as CCUBE [3]. The architecture of these constraint

19

20

database systems is very similar. On the other hand, they all contain several spe-

cial features which never occur in relational and object-oriented database system

design. These features may include modules for constraint representation, data

approximation and special data visualization.

TAQS is a constraint database system that implements a spatiotemporal

database with linear constraints and visualizes query results by three-dimensional

animation, including volume animation and isometric color animation.

We outline the proposed software architecture in Section 3.1. We describe the

designed modules in Section 3.2.

3.1 Overview of the Constraint Database Archi-

tecture

We propose the software architecture for constraint database systems shown in

Figure 3.1. As can be seen, the architecture consists of six main modules. These

modules and their roles in the architecture can be described as follows.

Data Representation: The data representation module is responsible for the in-

ternal representation of constraint databases and communicates with the external

constraint database storage structures. If it cannot find some needed constraint

relation in the constraint database store, then it calls the approximation module

that searches its relational database store and provides a converted constraint re-

21

Module

Evaluation Logical

Module

Query

Level

Approximation
Export

Conversion

Module

Physical

Visualization

Module

Relational

Databases

Query

Graphical User Interface (GUI)

Update

Level

View

LevelVisualizationUpdate

Module

Constraint

Databases

Module

Representation

Figure 3.1: Constraint Database Architecture

lation. The data representation module provides output to the query evaluation

module.

Query Evaluation: The query evaluation module is used to evaluate the queries

provided by the user via a graphical user interface (GUI). There are several kinds

of constraint query languages, such as relational algebra, SQL, Datalog and their

extensions. In addition, there are special commands available as either a part of

the query languages or special iconic operators that are useful for data visualization

22

or exporting.

The output of this module is another constraint relation, which may be added

to the database, therefore it may be passed to the data representation module.

Alternatively, it may be a relation that is passed to the visualization module, if the

query involves query visualization operators. Finally, it could also pass the data

to the export conversion module, if the query asks for exporting to a relational

database.

Visualization: The visualization module shows on the GUI the data that the user

asks to see. The visualization module should provide a large number of available

options. One of the interesting options that is special to spatiotemporal applica-

tions is animation of three dimensional spatiotemporal data. The input of this

module is from the query evaluation module and the output is to the GUI.

Approximation: This is an optional module that can be used to convert from

relational databases to constraint databases. Typically, the conversion involves a

significant data reduction and approximation of the original relational data. The

input is from relational database storage, and the output is to the data represen-

tation module.

Update: This module is responsible for the update of the constraint relations as

requested by the user. There are several update languages which the user may

use to express updates or use iconic operators. There also may be several ways to

23

implement the update requests.

Export Conversion: This module provides conversion from constraint databases

to relational databases. Note that this option may not be always available, because

constraint databases are sometimes equivalent to infinite relational databases.

We discussed each of the above modules in a general way. In the following

section, we expand on our discussion and illustrate each module using the TAQS

constraint database system as an example. In the following chapters, we describe

the approximation, query, update and visualization in more detail.

3.2 Descriptions of the Modules

This section describes all of the six modules in our proposed constraint database

architecture.

3.2.1 Data Representation Module

We start with the description of this module because the data model is at the heart

of any database system. In the constraint data model, each constraint database

consists of a set of constraint tables, and each constraint table consists of a set of

constraint tuples [16].

There are many types of constraint databases depending on the type of con-

straint domains and constraints used. For example, we may use real numbers as

24

the domain and polynomial inequality constraints [38], set order constraints [25],

or Boolean equality constraints [28]. For some other types of constraints see the

survey [27].

The TAQS system, like the CCUBE [3], the DEDALE [14] and the MLPQ [34,

17] systems, uses as the internal representation a set of rational linear constraints.

In fact, we reused within the TAQS system some of the data representation modules

of the MLPQ system, which was implemented earlier at the University of Nebraska-

Lincoln. We will describe the rational linear constraint database representation

with an example.

Example 3.2.1 Suppose that we are representing the temperature at several

weather stations. The weather changes piecewise linearly at each weather station.

For example, as can be seen from the table below, the temperature at weather

station 1 is 2t+75 Fahrenheit degrees at any time before one hour (counting from

some given zero hour), then 9t+68 between one and two hours, and finally 2t+82

after two hours. The representation for this is shown in Table 3.1.

Note that in the table we use only linear equality constraints, and inequality

constraints. In general, we allow in the TAQS system linear inequality constraints

of the form:

a1x1 + . . . + anxn θ b

where each ai and b is a rational constant and each xi is a variable, and θ is one

25

SN Temp t

sn temp t sn = 1, temp = 2t + 75, t ≥ 0, t ≤ 1.
sn temp t sn = 1, temp = 9t + 68, t > 1, t ≤ 2.
sn temp t sn = 1, temp = 2t + 82, t > 2, t ≤ 4.
sn temp t sn = 2, temp = 3.75t + 70, t ≥ 0, t ≤ 4.
sn temp t sn = 3, temp = 6t + 80, t ≥ 0, t ≤ 1.
sn temp t sn = 3, temp = −2.67t + 88.67, t > 1, t ≤ 4.
sn temp t sn = 4, temp = −2.25t + 85, t ≥ 0, t ≤ 4.

Table 3.1: The Temperature Relation

of the comparison operators <, >,≤,≥, =.

The meaning of a constraint database is the set of regular relational tuples that

can be obtained by substituting constants of the allowed domain (in this case the

rational numbers) into the variables of the constraints in each constraint tuple. If

all the constraints are true, then the tuple after substitution is also true. Hence,

for example, the tuple (1, 77, 1) is true, because if we substitute into the first

constraint tuple the value 1 for s and t and 77 for temp, then the constraint

sn = 1, temp = 2t + 75, and t ≤ 1 are all satisfied.

3.2.2 Query Evaluation Module

The query evaluation module can be broken up into several smaller modules. These

include a number of modules. First, the query representation module, which ac-

cepts the user’s request from the GUI for a query. Second, the security module,

which checks that the user is accessing only relations that he/she is allowed to

use. Third, the evaluation module. The last one may have as its component in

26

a multi-user, distributed environment a transactions module, which ensures that

each operation of each user is executed as a whole, not only in parts.

Constraint databases can be queried by a number of popular query languages,

such as relational algebra, SQL and Datalog, and their extensions [37, 2]. Here we

discuss Datalog queries on constraint databases, because they are a powerful query

language and illustrate well the idea of constraint query evaluation. We also omit

discussion of transaction control.

Datalog is a declarative query language which is based on the logic-

programming language Prolog. A Datalog program consists of a set of rules. Each

rule is defined by several conjunctive expressions. The head of a rule is the output

relation, while the body is the input relations and conditions. If the body of a rule

is true by instantiating the variables with concrete values, the head of the rule is

true with those corresponding values. Datalog query language can easily execute

the functions of the algebraic query operators, such as select, project, union, set

difference, Cartesian product, rename, natural join, division and assignment.

Our TAQS system provides all these operators as well as some aggregate oper-

ators, such as minimum (Min) and maximum (Max) of a linear objective function.

For the implementation of these last two operators, we used a linear programming

software package. TAQS calls the linear programming package and outputs a mini-

mum or maximum value for each linear constraint tuple. On the other hand, other

kinds of queries could also be accepted if a transformation subroutine for query

27

expressions is implemented.

3.2.3 Visualization Module

The visualization module can be broken up into smaller modules that provide dif-

ferent types of visualization. TAQS system provides several types of visualizations

including color bands display and isometric color animation.

The isometric color animation is like a video provided on the GUI. Constraint

databases are particularly well-adapted to provide animations because they repre-

sent an infinite sequence of data, hence they allow any granularity for the animation

without requiring a huge data storage.

3.2.4 Approximation Module

The approximation module can be used to convert data from relational to constraint

databases. We are not interested here in trivial conversions where one relational

tuple is converted into one constraint tuple. Instead, we are interested in conver-

sions that take full advantage of constraints to represent data approximately but

very compactly. In such approximations, dozens or may be hundreds of relational

tuples could be represented by a single constraint tuple.

We propose a piecewise linear approximation method to approximate a time

series into piecewise linear function in Chapter 4. Then the resulting piecewise

linear function can be represented in a constraint database as a constraint relation.

28

We also propose a method to approximate a set of spatial data points and represent

them by constraint databases in Chapter 5.

3.2.5 Update Module

The update module is responsible for modifying the database as the user requests.

Usually the query languages are augmented with special language constructs to

express updates. The most important types of update operations are insertions

and deletions of tuples in relational databases.

As for updating a piecewise linear function transformed from a time series, we

need some special techniques to deal with that. We also consider the update on

spatial data. Chapter 7 gives a detailed description of how to update approximated

temporal data and spatial data.

3.2.6 Export Conversion Module

The export conversion module deals with the conversion from constraint databases

to relational databases. Constraints in general cannot be converted to a relational

database representation because that would require an infinite number of tuples.

However, if there are finite set of time instances which are of interest, then we

can generate from the constraint database a relational database that contains the

values for the needed time instances. This conversion is provided in the TAQS

system and is illustrated in an example below.

29

Example 3.2.2 Suppose that we are given the constraint database relation

Temperature shown in Table 3.1 and we are interested in the temperatures at

times 1 and 1.5. Then we can convert the constraint database to the relational

database shown in Table 3.2.

SN Temp t

1 77.0 1.0
1 81.5 1.5
2 73.7 1.0
2 75.6 1.5
3 86.0 1.0
3 84.7 1.5
4 82.7 1.0
4 81.6 1.5

Table 3.2: The Conversion Result

Note that we may not obtain the above table from the corresponding relational

database because that may not give the temperature for the time t = 1.5. By using

the interpolation implicitly in the piecewise linear approximation that actually

yields the constraint database in Table 3.1, we could access an approximate value

of the temperature at any time instance between 1 and 4 including 1.5. The

constraint database representation is better in this case because we do not know

ahead what time instances the users may be interested in.

Chapter 4

Temporal Data Approximation

This chapter gives a piecewise linear approximation for temporal data. The pre-

sentation below is based on our work in [6, 5].

Section 4.1 introduces the piecewise linear approximation. Section 4.2 discuss

how to store a piecewise linear function. Finally, Section 4.3 shows some experi-

mental results of the piecewise linear approximation for a given data set.

4.1 The Piecewise Linear Approximation

There are many types of approximations and interpolations that could be used. Let

us consider approximations for time series data. A time series S is a sequence of

data points (t1, y1), · · · , (tn, yn) where the ts are monotone increasing time values.

Note that in a time series the ts need not always increase uniformly with the same

increment.

30

31

Example 4.1.1 The recording of temperature at a weather station is a time series.

For example, for weather station 1 a time series may be (0, 75), (1, 77), (2, 86),

(3, 87) and (4, 90). This can be represented by the first five tuples of relation

Temperature as shown in Table 4.1. For other weather stations (2, 3, and 4) we

can represent similarly their corresponding time series by adding more tuples to

the Temperature relation.

SN Temp t

1 75 0
1 77 1
1 86 2
1 87 3
1 90 4
2 70 0
2 72 1
2 75 2
2 80 3
2 85 4
3 80 0
3 86 1
3 81 2
3 80 3
3 78 4
4 85 0
4 83 1
4 81 2
4 78 3
4 76 4

Table 4.1: The Temperature Relation

We can see that the Temperature relation can get quite large. In the TAQS

system we can compress this relation by using a Piecewise Linear Approximation

32

(PLA). A piecewise linear function is a continuous function that is the union of a

set of linear functions whose domains are disjoint. For example, the union of the

linear function 2t + 75 when t ≤ 1, the function 9t + 68 when 1 < t ≤ 2, and the

function 2t + 82 when t > 2 is a piecewise linear function.

Given a time series S as above and an error tolerance constant Ψ, the piecewise

linear approximation problem is the problem of finding a piecewise linear function

f such that:

|f(ti) − yi| ≤ Ψ for each (ti, yi) ∈ S. (4.1)

In general, the smaller Ψ is the more pieces the piecewise linear function will

contain. Below we present a piecewise linear approximation algorithm that runs in

O(n) worst case time. First let us define some terms to be used in explaining the

algorithm.

Definition 4.1.1 On the time interval [tb, te], let us define Yb,e(t) to be the linear

function:

Yb,e(t) =
ye − yb

te − tb
(t − tb) + yb (4.2)

Note: The linear function Yb,e(t) can be drawn as a line segment with end-

points (tb, yb) and (te, ye).

Definition 4.1.2 Given two points (tb, yb) and (te, ye) where (b < e), and the

33

maximum approximation error threshold is Ψ, then the lower line for these two

points is the line which passes through the points (tb, yb) and (te, ye −Ψ), denoted

as:

Lb,e(t) =
(ye − Ψ) − yb

te − tb
(t − tb) + yb (4.3)

and the upper line for these two points is the line which passes through the

points (tb, yb) and (te, ye + Ψ), denoted as:

Ub,e(t) =
(ye + Ψ) − yb

te − tb
(t − tb) + yb (4.4)

Note: The lower line Lb,e(t) can be drawn as a line that has one endpoint

(tb, yb) and passes through (te, ye − Ψ). Similarly, the upper line Ub,e(t) can be

drawn as a line that has the same endpoint (tb, yb) and passes through (te, ye +Ψ).

Our piecewise linear approximation algorithm is shown below. The algorithm

initializes the values of b and e to be 1 and 2. Note that the line segment with

endpoints (t1, y1), (t2, y2) is the smallest possible first piece of the piecewise linear

function.

In the if clause of the while loop, the algorithm creates a new piece Yb,e(t) if

the sequence (tb, yb), . . . , (te, ye) can be approximated but the one longer sequence

(tb, yb), . . . , (te+1, ye+1) cannot be approximated as required by Formula (4.1).

34

b,b+1

U

U

L

L

U

b

b,b+1Ψ

b+1

L b,b+3

b,b+3

b,b+2

b,b+2

b+3

b+2

Figure 4.1: The Upper and Lower Lines

In the else clause of the while loop, the algorithm extends the current sequence

by one point and if necessary tightens both the current lower and the current upper

lines. The working of the else clause is illustrated in Figure 4.1. There we see three

pairs of lower and upper lines. Suppose that we enter three times successively the

while loop and each time execute the else clause. Then the lower line L will after

the first iteration Lb,b+1 , in the second Lb,b+2 , and in the third Lb,b+2 . Similarly,

the upper line U will be after the first iteration Ub,b+1 , in the second Ub,b+2 , and

in the third Ub,b+3 . Note that we get the highest slope lower bound line and the

smallest slope upper line as the final result for L and U , respectively.

———————————————————————————————————

PIECEWISE LINEAR APPROXIMATION ALGORITHM:

Input: A time series S = (t1, y1), . . . , (tn, yn) and n.

35

Ψ the maximum error threshold in the approximation.

Output: A piecewise linear function approximation of S .

Local Vars: The b and e are integer variables such that the sequence

(tb, yb), . . . , (te, ye) can be approximated by one piece.

L and U stand for the current lower and upper lines.

b := 1 and e := b + 1

L := Lb,e and U := Ub,e

while e < n do

if ye+1 < L(te+1) or ye+1 > U(te+1) then

Create a piece Yb,e defined by Formula (4.2)

b := e and e := b + 1.

L := Lb,e and U := Ub,e .

else

if Lb,e+1(te+1) > Lb,e(te+1) then

L := Lb,e+1

end-if

if Ub,e+1(te+1) < Ub,e(te+1) then

U := Ub,e+1

36

end-if

e := e + 1

end-if

end-while

Create a piece Yb,e defined by Formula (4.2)

———————————————————————————————————

Example 4.1.2 Consider the time series S = (0, 75), (1, 77), (2, 86), (3, 87),

(4, 90) from Example 4.1.1. This time series has five elements hence n = 5. If we

call the piecewise linear approximation algorithm with S and n and Ψ = 3, then

it will work as follows.

Initialization: The algorithm makes b = 1, e = 2, the lower line L = L1,2 = y =

−t + 75, and the upper line U = U1,2 = y = 5t + 75.

First iteration: Since e = 2 < n = 5, the algorithm enters the while loop. Since

ye+1 = y3 = 86 > U(te+1) = U(t3) = U(2) = 85, the algorithm also enters the then

clause. There it creates a piece Y1,2 = 2t + 75, then updates b = 2, e = 3, the

lower line L = L2,3 = 6t + 71 and U = U2,3 = 12t + 65.

Second iteration: Since e = 3 < n = 5, the algorithm enters again the while loop.

Since ye+1 = y4 = 87 < L(te+1) = L(t4) = L(3) = 89, the algorithm enters the

37

then clause. There it creates a piece Y2,3 = 9t + 68, then updates b = 3, e = 4,

the lower line L = L3,4 = −2t + 90 and U = U3,4 = 4t + 78.

Third iteration: Since e = 4 < n = 5, the algorithm enters again the while loop.

Since ye+1 = y5 = 90 < L(te+1) = L(t5) = L(4) = 82 is false and ye+1 = y5 = 90 >

U(te+1) = U(t5) = U(4) = 94 is also false, the algorithm now enters the else clause.

There since L3,5(te+1) = 0.5te+1 + 85 = 87 > L3,4(te+1) = 82, the lower line is

updated L = 0.5t+85. Also, since U3,5(te+1) = 3.5te+1+79 = 93 < U3,4(te+1) = 94,

the upper line is updated U = 3.5t + 79. It also updates e = 5.

Last line: Finally, since e = 5 < n = 5 is false, the algorithm exists the while loop

and in the last line of the program creates the piece Y3,5 = 2t + 82.

Note that the sequence of pieces is 2t + 75 (from 0 to 1), 9t + 68 (from 1 to

2), and 2t + 82 (from 2 to 4).

The other constraint tuples can be obtained by calling the piecewise linear ap-

proximation algorithm once for each of the other time series data corresponding to

the other weather stations. The resulting constraint relation is shown in Table 4.2.

Now we prove the correctness of the algorithm in the next theorem.

Theorem 4.1.1 The piecewise linear approximation algorithm is correct for any

error tolerance value Ψ and time series S .

Proof: We have to show that for any S and Ψ the algorithm finds a piecewise

38

SN Temp t

sn temp t sn = 1, temp = 2t + 75, t ≥ 0, t ≤ 1.
sn temp t sn = 1, temp = 9t + 68, t > 1, t ≤ 2.
sn temp t sn = 1, temp = 2t + 82, t > 2, t ≤ 4.
sn temp t sn = 2, temp = 3.75t + 70, t ≥ 0, t ≤ 4.
sn temp t sn = 3, temp = 6t + 80, t ≥ 0, t ≤ 1.
sn temp t sn = 3, temp = −2.67t + 88.67, t > 1, t ≤ 4.
sn temp t sn = 4, temp = −2.25t + 85, t ≥ 0, t ≤ 4.

Table 4.2: The Constraint Relation Temperature

linear function f that satisfies Formula 4.1. To show that, it is enough to prove

the following invariant condition for each entry of the while loop, by induction on

the number of entries:

Invariant Condition (1): The line segment Yb,e(t) on the time iterval [tb, te]

satisfies Formula 4.1.

For the first entry of the while loop, the initialization implies the line segment

Y1,2 . Clearly, that satisfies Formula 4.1 because it gives zero error for both t1 and

t2 .

Now we assume that invariant condition (1) holds before some entry of the

while loop, and then we show that it will also hold before the next entry or exit

from the while loop.

There are two basic cases. The first case is when we enter the if clause of the

while loop. In that case we add the current Yb,e(t) to the piecewise linear function,

and that is correct. Then we reset the values of b and e to be two consequtive

39

points. Therefore, similarly to the initialization, these also will satisfy Formula 4.1.

For the else clause in the while loop, we prove the following condition that holds

before entering the else clause.

Invariant Condition (2): If f(t) is a line that passes through (tb, yb) and

is between L and U (i.e., has a higher slope than L but a smaller slope than U

has), then |f(ti) − yi| ≤ Ψ for each b ≤ i ≤ e.

We fix the value of b and prove the condition by induction on e − b. (This

corresponds to repeatedly executing the else clause.)

If e = b + 1, then condition (2) obviously holds.

Now assume that the condition holds for some k = e − b. Then we prove it

for k + 1. Clearly k can increase only if e has increased by one since we fixed the

value of b.

If we increased e since the last entry of the else, then we must have also updated

L and U . Let the previous values be L′ and U ′ and the new values be simply L

and U . Since the slope of L is greater than or equal to that of L′ , and the slope

of U is less than or equal to that of U ′ , there can be only a smaller or equal region

between L and U than between L′ and U ′ .

Let f(t) be any line that passes through (tb, yb) and is between L and U .

Then by the above, f(t) also is between L′ and U ′ . Therefore, by the induction

hypothesis |f(ti) − yi| ≤ Ψ holds for b ≤ i ≤ e. Also, by the definition of L and

40

U , we have that f(te) − ye| ≤ Ψ. This proves that invariant condition (2) must

hold.

Finally, note that invariant condition (2) implies invariant condition (1). That

is because if we are in the else clause, then we can choose for f(t) the linear function

Yb,e(t).

Finally, if we exit the while loop, then we get the last piece, which also must

satisfy Formula 4.1 because none of our arguments above depended on the value

of n. Hence if we had more values we could continue by entering again the while

loop, that is, invariant condition (1) still must hold.

Next we analyze the computational complexity of our approximation algorithm.

Theorem 4.1.2 The computational complexity of the piecewise linear approxi-

mation algorithm is O(n) time in the worst case where n is the number of points

in the time series to be approximated.

Proof: There is only loop, the while loop in the piecewise linear approximation

algorithm. The while loop is executed only at most n − 2 times, because initially

the value of e is two, then it is incremented by one in each iteration until e = n.

We also have to show that each iteration of the while loop takes only a constant

time. Within the while loop the top level if statement has two clauses. The then

clause takes a constant time, because there we only do a fixed number of comparison

41

and assignment operations and add one piece to the piecewise linear function, which

will be the output of the algorithm. By keeping the pieces in a linked list and a

pointer to the end of the last list, we can do the addition in constant time. In the

else clause we again do only fixed number of comparison and assignment operations.

Therefore, the worst case computational complexity of this algorithm is O(n)

time.

Remark: There are other advantages of the piecewise linear approximation algo-

rithm beside data compression. First, we do interpolation as well as conversion of

data. For example, this allows us to ask what was the temperture at time instances

other than the original time instances when the original time series measurements

were taken. Second, because the data is much smaller, querying and visualizations

could be also done faster using the compressed data.

4.2 The Storage Representation of Piecewise

Linear Function

There are several methods to store a piecewise linear function.

Method 1: One simple method is to store the endpoints of the pieces in a piecewise

linear function. In some sense, this kind of representation is equivalent to storing

some selected data points from the original time series only.

Example 4.2.1 Given the constraint relation Temperature shown in Table 4.2.

42

Using the above method will only store the data in Table 4.3.

SN Temp t

1 75 0
1 77 1
1 86 2
1 90 4
2 70 0
2 85 4
3 80 0
3 86 1
3 78 4
4 85 0
4 76 4

Table 4.3: The End Point of Each Piece

Suppose that the original time series contains n points and the algorithm re-

turns a piecewise linear approximation with m pieces. Then the approximation can

be represented by those points that begin or end a piece, that is, only m+1 points.

Hence the piecewise linear approximation yields a degree of data compression that

depends on the ratio n
m

which is the average number of original time series points

spanned by each piece.

Method 2: Another kind of storage representation is to store the first start point,

then for each piece it just stores its slope and ending time. When retrieving the

data, from the first point and slope we can get the first piece and the endpoint of

this piece which is also the startpoint of the next piece. Then we can get the next

piece, and so on for other pieces. Compared with the first representation method,

this one is a little discouraging since if we want to get some intermediate piece we

43

need to scan the pieces from the first one.

Example 4.2.2 Given the constraint relation Temperature shown in Table 4.2.

Using the second method will store the data in Table 4.4 and Table 4.5.

SN Temp t

1 75 0
2 70 0
3 80 0
4 85 0

Table 4.4: The Start Point for Each Weather Station

SN slope t

1 2 1
1 9 2
1 2 4
2 3.75 4
3 6 1
3 -2.67 4
4 -2.25 4

Table 4.5: The Slope and the End Time of Each Piece

4.3 Experimental Results

We used the temporal data set U.S. monthly precipitation for 96 years which con-

tains 96×6, 726 temporal data points, between the year 1990 and 1997 from 6, 726

weather stations throughout the continental United States [22]. The precipitation

values ranged between 0 and 4, 957 with an average value of 295.91 and a standard

deviation of 269.95.

44

We tested the transformation accuracy of our algorithm with different values

of Ψ between 10 and 320. After the piecewise linear approximation function was

found, we checked the differences between the value of the interpolation function

and the original values. We ran separately for each weather station the transfor-

mation algorithm and made the correlation tests.

Table 4.6 shows the average number of generated pieces of the piecewise linear

function among 96 weather stations and the transformation accuracy for differ-

ent values of maximum error Ψ. The unit of Ψ is hundredths of inches for the

precipitation.

Maximum Error Ψ 10 20 40 80 160 320
Average # of Pieces 89.03 84.29 76.09 63.22 45.72 25.30
Correlation Coefficient 0.9999 0.9999 0.9993 0.9956 0.9748 0.8775

Table 4.6: Experimental Results of Piecewise Linear Approximation

The results of the correlation coefficients show that the transformation is highly

accurate when the Ψ is lower than the average value of the data. The number of

pieces in the piecewise linear functions decreases as Ψ increases.

The maximum number of generated linear pieces for n data points is n − 1.

The relationships between the percent of the number of linear pieces over n − 1

and the correlation coefficient are shown in Figure 4.2 when Ψ varies from 10 to

320.

Also, we can see that the piecewise linear function transformation has very

45

high correlation with few number of linear pieces. We believe that this holds for

any reasonable data set. Form the point view of the storage space, this property

shows that the piecewise linear approximation provides a certain ability of data

compression.

Figure 4.2: Maximum Error Ψ Varies from 10 to 320

Chapter 5

Spatial Data Approximation

This chapter deals with the approximation of the spatial data, and then represents

it in constraint databases. Spatial data records the spatial information of the

objects we are interested in. In our research, we consider two-dimensional spatial

points, whose corresponding information could be any property related to that

point, such as temperature, precipitation, elevation, and so on.

There are two kinds of spatial data models, namely the vector data model and

the raster data model, that are used in Geographic Information Systems (GISs) [10,

35, 1]. Raster-based GISs are often used when continuous data are available, while

vector-based are more suited than raster GISs when there are only discrete sampled

data, such as temperature, precipitation and so on. For vector data model, triangles

are the spatial framework, which is named Triangulated Irregular Networks (TIN).

Chomicki and Revesz [8, 29] and Grumbach et al. [15] describe algorithms to

transform TIN data structure to constraint representation.

46

47

The plan of this chapter is as follows. In Section 5.1 we introduce the represen-

tation of the spatial data by using triangulated irregular networks. In Section 5.2

we present a transformation algorithm to transform a TIN to a constraint database

based on the work [8, 29] and [15].

5.1 The TIN Representation of Spatial Data

This section shows the transformation of a set of spatial data into the TIN structure.

A TIN makes it possible for a set of discrete data points to be represented as a

continuous surface. The most popular software ARC/INFO supplies a very good

function to generate the TIN structure by transforming some given sample points.

We use the ARC/INFO TIN generation module to create the TIN structure for

a given set of points in the three dimensional space. TIN is a vector data structure

based on two basic elements: sample points with their coordinates and a series of

edges by joining these points to form triangles.

Example 5.1.1 Given four weather stations 1 to 4 located in (10, 20), (20, 40),

(50, 25) and (30, 10) respectively as shown in Table 5.1, where SN stands for

station number and X and Y the coordinates of the station locations.

We set the initial z value for each point as 0, then use the TIN transformation.

The generated TIN for the weather stations is shown in Table 5.2.

Note that the third column in the section EDGES is a special parameter to

48

SN X Y

1 10 20
2 20 40
3 50 25
4 30 10

Table 5.1: The Locations of Weather Stations

NODES
1 10 20 0
2 20 40 0
3 50 25 0
4 30 10 0

EDGES
1 1 2 0
2 2 3 0
3 3 4 0
4 1 4 0
5 2 4 1

TRIANGLES
1 1 4 5
2 2 3 5

END

Table 5.2: The TIN Structure for Weather Stations

denote whether the edge is an internal edge or a boundary edge. The graph to

represent this TIN structure is shown in Figure 5.1.

So, we can get the node list Node(id, x, y), the edge list Edge(id, p1, p2, ifb),

and the triangle list Triangle(id, e1, e2, e3), where x and y stand for the position

of spatial points in a planar surface, ifb is 0 means this edge is a boundary edge

or an internal edge otherwise, p1, p2 are the ids of the nodes corresponding to the

edge, and e1, e2, e3 are the ids of the edges corresponding to the triangle.

49

20 30 40 50100
x

2

3
4

5

1

y

10

20

30

40

Figure 5.1: The TIN Graph of Weather Stations

Experiment: We did some empirical analysis for the transformation. We use

United States weather stations [22] as the spatial data set in our experiment. The

original data set includes more than 20, 000 weather stations.

First, we use the weather stations as the spatial points to generate the TIN

structure. In the TIN transformation, the maximum and minimum X and Y values

are computed and a bounding triangle is formed which contains all of the vertices to

be triangulated. So, the TIN algorithm only generates convex triangles no matter

how the real shape should be. In our implementation, we made some modifications

for the TIN output by using a control variable valid edge length to control the

edge length in the TIN graph. If one of the edges in a triangle is greater than

valid edge length, then this triangle is not displayed. By doing so, we can get

better TIN graph as shown in Figure 5.2, which is composed of 8, 021 points and

50

16, 023 triangles generated by TIN.

Figure 5.2: The TIN Graph for 8, 021 Weather Stations

5.2 Transform TIN to Constraint Databases

The triangles in a TIN structure can be represented in constraint databases. Each

triangle is represented by three equality constraints which compose a tuple in a

constraint database.

First we define some basic terms to be used in the TIN transformation algo-

rithm.

Definition 5.2.1 Give two spatial points Pi(xi, yi) and Pj(xj , yj), let us define

Yi,j(x, θ) to be the linear constraint:

Yi,j(x, θ) :=

{

y θ
yj−yi

xj−xi
(x − xi) + yi, if xi 6= xj ;

x θ xi, if xi = xj .
(5.1)

51

where θ can be ≥, ≤ or = symbols. We also denote the value of Yi,j(x, =) is

the value of y if xi 6= xj or x if xi = xj .

Lemma 5.2.1 Given three points Pi(xi, yi), Pj(xj , yj) and Pk(xk, yk). The linear

constraint Yi,j(x, θ) contains the Pk if the following condition holds:

yk θ Yi,j(xk, =) if xi 6= xj ;
xk θ Yi,j(xk, =) if xi = xj .

(5.2)

Proof: First let us prove it holds when xi 6= xj . There are three cases: (1) θ is

≥; (2) θ is ≤; (3) θ is =.

Case 1: The linear constraint is Yi,j(x, ≥), that is, y ≥
yj−yi

xj−xi
(x − xi) + yi .

The condition shows that yk ≥ Yi,j(xk, =); that is, yk ≥
yj−yi

xj−xi
(xk − xi) + yi . So,

the half surface defined by Yi,j(x, ≥) contains the point Pk .

Case 2: This is similar to Case 1.

Case 3: The linear constraint define a line and the point Pk is on the line, so

the linear constraint contains it.

Next, we prove the Lemma holds when xi = xj . There are also three cases

according to θ .

Case 1: The linear constraint is Yi,j(x, ≥), that is, x ≥ xi . The condition

shows that xk ≥ Yi,j(xk, =); that is, xk ≥ xi . So, the half surface defined by

Yi,j(x, ≥) contains the point Pk .

52

Case 2: This is similar to Case 1.

Case 3: The linear constraint define a line and the point Pk is on the line, so

the linear constraint contains it.

Therefore, the Lemma holds.

In the following, we give an algorithm to transform the TIN to a constraint

database.

———————————————————————————————————

TIN TRANSFORMATION ALGORITHM:

Input: A TIN structure with the node list Node(id, x, y),

the edge list Edge(id, p1, p2, ifb),

and the triangle list Triangle(id, e1, e2, e3).

Output: A constraint representation of the TIN triangles.

for each triangle in TIN loop

Get the three edges of this triangle

for each edge in the triangle loop

Get the two nodes of this edge

for each node in the edge loop

get the x and y of this node

end-for

53

Get the linear constraint Yi,j(x, θ) defined in Formula 5.1 with

these two nodes as Pi and Pj .

Use the other node in this triangle as Pk and assign θ to contain Pk

by Lemma 5.2.1.

end-for

Create a tuple in the result by using these three linear constraints

end-for

———————————————————————————————————

The above algorithm translates each TIN triangle into a constraint tuple, which

represents the triangle in the constraint database.

Example 5.2.1 For the TIN generated in Example 5.1.1, the constraint represen-

tation is shown in Table 5.3.

ID X Y

1 x y 2x − y ≥ 0, x + 2y ≥ 50, 3x + y ≤ 100.
2 x y x + 2y ≤ 100, 3x − 4y ≤ 50, 3x + y ≥ 100.

Table 5.3: The Representation of Spatial Data

Chapter 6

Approximate Queries

This chapter discusses the basic approximate queries in Section 6.1 based on our

work in [6], similarity queries in Section 6.2, queries on GIS applications in Sec-

tion 6.3 based on our work in [7] and the approximate query evaluation in Sec-

tion 6.4 based on our work in [33]. We illustrate the concepts using the Datalog

query language.

6.1 Basic Queries

In this section, we use the relation Temperature(SN, Temp, t) in Table 3.1 as one

of the input relation.

Select: The select operator returns the tuples which satisfy the select condition.

Project: This operator is used to reorder the columns of a relation or to eliminate

some columns of a relation. It creates a new relation which contains the specified

54

55

columns of the original relation.

Example 6.1.1 For relation Temperature the query

Query(SN, Temp) : − Temperature(SN, Temp, 1.5).

finds for each weather station the temperature at time t = 1.5. The output relation

is shown in Table 6.1.

SN Temp

sn temp sn = 1, temp = 81.5.
sn temp sn = 2, temp = 75.625.
sn temp sn = 3, temp = 84.667.
sn temp sn = 4, temp = 81.625.

Table 6.1: Find Temperatures at t = 1.5

Intersection: This operation returns the intersection points of two relations to

the user. The two relations should have the same attribute names and types.

SN Temp t

sn temp t sn = 1, temp = 3t + 70, t ≥ 0, t ≤ 1.
sn temp t sn = 1, temp = 8t + 65, t > 1, t ≤ 4.
sn temp t sn = 2, temp = 3.75t + 75, t ≥ 0, t ≤ 4.
sn temp t sn = 3, temp = 5t + 80, t ≥ 0, t ≤ 3.
sn temp t sn = 3, temp = −3t + 104, t > 3, t ≤ 4.
sn temp t sn = 4, temp = −2.25t + 80, t ≥ 0, t ≤ 4.

Table 6.2: The Temperature2 Relation

Example 6.1.2 Given the relations Temperature and Temperature2, shown in

Table 6.2, the query

Query(SN, Temp, t) : − Temperature(SN, Temp, t),

56

Temperature2(SN, Temp, t).

returns the relation in Table 6.3 that contains those tuples that occur in both input

relations:

SN Temp t

sn temp t sn = 1, temp = 87.66, t = 2.83.
sn temp t sn = 3, temp = 80, t = 0.
sn temp t sn = 3, temp = 85.65, t = 1.13.

Table 6.3: Intersection of Temperature and Temperature2

Join: This operator executes the natural join operation for two relations A and

B which have some attributes in common. It will match these same attributes,

then returns the tuples whose projection onto the attributes of A belong to A and

whose projection onto the attributes of B belong to B .

Example 6.1.3 The natural join of Temperature and relation Precipitation,

shown in Table 6.4, can be found by the query:

Query(SN, Temp, Prep, t) : − Temperature(SN, Temp, t),

P recipitation(SN, Prep, t).

which gives the output relation shown in Table 6.5.

Min/Max: The Min and Max operators return the minimum and maximum

values, respectively, for any linear function, called the objective function. The

objective function can be as simple as a single variable.

57

SN Prep t

sn prep t sn = 1, prep = 50t + 1050, t ≥ 0, t ≤ 4.
sn prep t sn = 2, prep = 35t + 980, t ≥ 0, t ≤ 4.
sn prep t sn = 3, prep = −20t + 1040, t ≥ 0, t ≤ 4.

Table 6.4: The Precipitation Relation

SN Temp Prep t

sn temp prep t sn = 1, temp = 2t + 75, prep = 50t + 1050,
t ≥ 0, t ≤ 1.

sn temp prep t sn = 1, temp = 9t + 68, prep = 50t + 1050,
t > 1, t ≤ 2.

sn temp prep t sn = 1, temp = 2t + 82, prep = 50t + 1050,
t > 2, t ≤ 4.

sn temp prep t sn = 2, temp = 3.75t + 70, prep = 35t + 980,
t ≥ 0, t ≤ 4.

sn temp prep t sn = 3, temp = 6t + 80, prep = −20t + 1040,
t ≥ 0, t ≤ 1.

sn temp prep t sn = 3, temp = −2.67t + 88.67, prep = −20t + 1040,
t > 1, t ≤ 4.

Table 6.5: Join of Temperature and Precipitation

Example 6.1.4 The query

Query(SN, min(Temp)) : − Temperature(SN, Temp, t)

finds for each weather station the minimum temperature. The result of the query

is shown in Table 6.6.

6.2 Similarity Queries

It is possible to make similarity queries in constraint databases. In practice, people

may want to know which map in a set of maps is similar to a given map. This can

58

SN Temp

sn temp sn = 1, temp = 75.
sn temp sn = 2, temp = 70.
sn temp sn = 3, temp = 78.
sn temp sn = 4, temp = 76.

Table 6.6: Find the Minimum Temperature

be done by using similarity queries.

The definition of the similarity depends on the actual situation. There is no

universal formula to define the similarity. Our system allows a user to change the

evaluation rule for the similarity measure.

Example 6.2.1 Suppose there are the relation RPrec(State, Area, Prec, t) for pre-

cipitation. The user wants to find in which year the average precipitation of the

U.S. is the closest to that in the year 1997.

To query this information, the user may define the similarity measure rule for

precipitation. The similarity of two instances A and B with n states and each state

with area ai and precipitation values A.zi and B.zi , respectively, for 1 ≤ i ≤ n

may be defined as follows:

sim(A, B) =
n

∑

i=1

ai | A.zi − B.zi |

Based on the specified similarity rule, the constraint database system can cal-

culate the similarity value for each time instance, then select the year when its

similarity value is closest to that in the year 1997.

59

6.3 GIS-based Queries

Representation: A geo-temporal, or more generally, a spatiotemporal data set

(x, y, z, t) has for each location (x, y) some value (z) that varies with time (t). Such

a spatiotemporal data set can be obtained by observations, for example weather

stations where x and y could be longitude and latitude and z could be temperature

at time instance t.

Such a point set could be stored in a relational database as a single relation

with four attributes and real number attribute values, but this representation would

be inconvenient for querying. For example, if the weather station recorded the

temperature every 72 hours for a location, then it is not easy to tell what is the

best estimate for the temperature at say 100 hours at that location.

Therefore, we transform a spatial data set to a constraint database rep-

resentation in Chapter 5. Suppose that we have input constraint relations

Elevation(x, y, e) and Slope(x, y, s) and Aspect(x, y, a) that express for each lo-

cation (x, y) by piecewise linear functions the elevation, the slope and the aspect,

respectively.

Queries: Suppose that for a given region there are several linear equations ob-

tained empirically to estimate various other spatiotemporal variables, for example

the Mean Annual Air Temperature (m). Then we could find an estimate of m for

60

each location as follows:

MAAT (x, y, m) : −

Elevation(x, y, e), Aspect(x, y, a), Slope(x, y, s),

m = 74.3 − 0.000005x− 0.000011y − 0.00524e − 0.000203a − 0.0432s.

where the second line is the estimate of m in oC at each location (x, y) in terms of

the elevation (z), aspect (a) and slope (s). This generates a new defined relation

MAAT that also has the third argument a function of time.

We can also define new relations based on the input relations and the previously

generated relations. For example, we can find p at each location by the following

Datalog query:

PE(x, y, p) : −

Elevation(x, y, z), Aspect(x, y, a), Slope(x, y, s), MAAT (x, y, m),

p = 670.21 − 0.0000395x− 0.0000927y − 0.103228z + 0.000876a

−0.571s + 5.3m.

where the second line is the estimator for p in terms of z, a, s and m. Similarly,

we can estimate the mean annual precipitation p by defining a relation MAP .

As a final example, the annual water balance b can be estimated as the differ-

ence between MAP and PE. This can be expressed as a Datalog query:

AWB(x, y, b) : −

61

MAP (x, y, p), PE(x, y, p),

b = p − p.

6.4 Approximate Query Evaluation

In this section we made some experiments based on approximate queries to check if

the piecewise linear approximation is appropriate for the queries. We used the tem-

poral dataset containing 10 years’ daily high temperature and daily low tempera-

ture datasets between the year 1987 and 1996 from the weather station in the state

of Nebraska (station number: 252820). We use different error tolerance Ψ values to

restrict the accuracy of the approximation. The original weather data comes from

the website of the National Climatic Data Center at http://www.ncdc.noaa.gov.

Since the daily high temperature and daily low temperature are changing too much

for each day, we use the running average within 7 days to smooth the occasional

changes.

Table 6.4 gives the number of pieces of the piecewise linear approximation of

the high temperature dataset and low temperature dataset with different error

tolerance values. — means that we do not use the approximation in that row.

Here the unit of Ψ for the temperature is degrees Fahrenheit.

Rhigh(day, high temp) is the high temperature relation and Rlow(day, low temp)

is the low temperature relation. During the comparison, Rhigh and Rlow

are renamed as R′

high and R′

low respectively. Also, we get the relation

62

Ψ #Pieces in # Pieces in
(oF) High Temperature Low Temperature

— 3,653 3,653
0.5 2,199 1,735
1.0 1,426 1,084
1.5 1,017 774
2.0 790 594
2.5 625 502

Table 6.7: Number of Pieces in Datasets

R(day, high temp, low temp) by joining the relation Rhigh and Rlow .

The following are some experimental tests for simple and composite Datalog

queries based on these three relations. We use the MLPQ [17, 31, 30, 34] system

to evaluate the queries. For an approximate query output, it can be divided into

four categories [19] shown in Figure 6.1:

1. Relevant retrieved: This part belongs to the actual output and is retrieved.

2. Relevant not retrieved: This part belongs to the actual output but is not

retrieved.

3. Non-relevant retrieved: This part does not belong to the actual output but

is retrieved.

4. Non-relevant not retrieved: This part does not belong to the actual output

and is not retrieved.

As the division of those four categories, the relevant retrieved and the non-

63

Non-relevant
Not Retrieved
Non-relevant

Non Retrieved
Relevant

Retrieved

Relevant
Retrieved

Figure 6.1: The Query Output Categories

relevant not retrieved for the approximate queries are equivalent to the actual

query output; but the relevant not retrieved is missed in approximate queries, and

the non-relevant retrieved is extraneous output in approximate queries.

We compare the accurate query results with our approximate query results by

using precision and recall parameters, which are defined by:

Precision =
Relevant Retrieved

Total Retrieved

Recall =
Relevant Retrieved

Possible Revelent

6.4.1 Simple Queries

Example 6.4.1 We try to find all pairs of days such that for each the high tem-

perature in one day is greater than or equal to that in the other. The Datalog

query in MLPQ is as follows.

Pair(day1, day2) : − Rhigh(day1, high temp1),

64

Rhigh(day2, high temp2),

high temp1 ≥ high temp2.

The test results are as Table 6.4.1.

Ψ # MLPQ # Converted
(oF) Constraints Solutions Precision Recall

— 6, 676, 854 6, 676, 854 100.00% 100.00%
0.5 2, 421, 002 6, 859, 132 99.69% 99.52%
1.0 1, 017, 929 7, 049, 422 99.24% 99.03%
1.5 517, 763 7, 239, 712 98.79% 98.56%
2.0 312, 486 7, 428, 668 98.36% 98.12%
2.5 195, 636 7, 614, 284 97.95% 97.71%

Table 6.8: Rhigh ≥ R′

high

Example 6.4.2 We try to find all pairs of days such that for each the low temper-

ature in one day is greater than or equal to that in the other. The Datalog query

in MLPQ is as follows.

Pair(day1, day2) : − Rlow(day1, low temp1),

Rlow(day2, low temp2),

low temp1 ≥ low temp2.

The test results are as Table 6.9.

65

Ψ # MLPQ # Converted
(oF) Constraints Solutions Precision Recall

— 6, 678, 121 6, 678, 121 100.00% 100.00%
0.5 1, 506, 890 6, 874, 458 99.58% 99.37%
1.0 588, 189 7, 082, 147 99.10% 98.85%
1.5 299, 962 7, 291, 840 98.65% 98.40%
2.0 176, 720 7, 498, 194 98.14% 97.88%
2.5 126, 257 7, 701, 877 97.69% 97.42%

Table 6.9: Rlow ≥ R′

low

6.4.2 Composite Queries

Example 6.4.3 We try to find all pairs of days such that for each the high tem-

perature in one day is greater than or equal to that in the other and the low

temperature in one day is also greater than or equal to that in the other. The

Datalog query in MLPQ is as follows.

Pair(day1, day2) : − R(day1, high temp1, low temp1),

R(day2, high temp2, low temp2),

high temp1 ≥ high temp2,

low temp1 ≥ low temp2.

The test results are as Table 6.10.

Example 6.4.4 We try to find all pairs of days such that for each the high temper-

ature in one day is greater than or equal to that in the other or the low temperature

in one day is also greater than or equal to that in the other. The Datalog query in

66

Ψ # MLPQ # Converted
(oF) Constraints Solutions Precision Recall

— 6, 123, 916 6, 123, 916 100.00% 100.00%
0.5 3, 648, 265 6, 314, 605 99.61% 99.42%
1.0 1, 840, 304 6, 516, 973 99.11% 98.88%
1.5 1, 054, 473 6, 723, 440 98.65% 98.44%
2.0 641, 163 6, 929, 223 98.18% 98.01%
2.5 453, 096 7, 136, 790 97.80% 97.76%

Table 6.10: Rhigh ≥ R′

high and Rlow ≥ R′

low

MLPQ is as follows.

Pair(day1, day2) : − R(day1, high temp1, low temp1),

R(day2, high temp2, low temp2),

high temp1 ≥ high temp2.

Pair(day1, day2) : − R(day1, high temp1, low temp1),

R(day2, high temp2, low temp2),

low temp1 ≥ low temp2.

The test results are as Table 6.11.

6.4.3 Query Analysis

From the experimental results of the above queries, we know that we can achieve

a great data reduction while keeping a very high precision and recall in queries by

using piecewise linear approximation. We think this result holds for any reasonable

time series datasets. As shown in Example 6.4.4, if we use Ψ = 2.5 to transform

67

Ψ # MLPQ # Converted
(oF) Constraints Solutions Precision Recall

— 7, 231, 059 7, 231, 059 100.00% 100.00%
0.5 4, 319, 038 7, 418, 987 99.66% 99.47%
1.0 2, 179, 384 7, 614, 382 99.23% 99.01%
1.5 1, 242, 753 7, 808, 235 98.82% 98.55%
2.0 757, 325 7, 997, 888 98.37% 98.05%
2.5 532, 039 8, 179, 840 97.92% 97.49%

Table 6.11: Rhigh ≥ R′

high or Rlow ≥ R′

low

the daily high temperatures and daily low temperatures, the composite query of

finding the pairs of days has retrieved 532, 039 constraint tuples, which can be

converted into 8, 179, 840 regular tuples. Therefore, it compressed data with the

compression ratio of (8179840 − 532039)/8179840 = 93.5%. The precision and

recall are 97.92% and 97.49% respectively in this case.

Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5 show the relationship between

precision, recall and the data compression for the above four queries respectively.

68

Figure 6.2: For Query Rhigh ≥ R′

high

Figure 6.3: For Query Rlow ≥ R′

low

69

Figure 6.4: For Query Rhigh ≥ R′

high and Rlow ≥ R′

low

Figure 6.5: For Query Rhigh ≥ R′

high or Rlow ≥ R′

low

Chapter 7

Update Data Approximations

This chapter describes the update on the data approximations. Section 7.1 de-

scribes the update on the approximations of the temporal data, which is based

on our work [32]. Section 7.2 describes the update on the approximations of the

spatial data.

7.1 Update Temporal Data Approximations

In this section we consider what happens if some relational database that represents

a time series is approximated by a constraint database and the user requests an

insertion or deletion of a point in the time series. Note that the user can request

insertions and deletions of time series points (i.e., tuples of the relational database)

and not the constraint database, because the constraint database representation is

hidden from the user.

If the user requests a deletion of a time series data point, then the request can

70

71

be ignored because the approximation function still satisfies the error tolerance for

the remaining points.

The insertion of points is much more complex. In this case, we have to update

the piecewise linear function. Consider Figure 7.1. There the original piecewise

linear function is shown as a solid black line in (1). In (2) the point P1 is to be

inserted, but the piecewise linear function is not changed since P1 is in the error

tolerance Ψ. In (3) the point P2 is to be inserted, and the piecewise linear function

is updated by splitting the middle piece into two pieces. In (4) the point P3 is to be

inserted, and the piecewise linear function is updated by splitting the third piece

into two pieces.

The temporal insertion algorithm for a single data point (tα, yα) is shown below.

Remark: We have mentioned that a piecewise linear approximation can be rep-

resented as a set of endpoints of the pieces before. Now, we add a Boolean tag

o to each point. The tag will be true if it is a point that is an original point,

otherwise it is a point which was inserted and the tag will be false. This allows us

to reconstruct from any updated piecewise linear function f , the original piecewise

linear function, denoted fo , as the sequence of points with the true tags. Finally,

we assume that for no point (tα, yα) to be inserted is there already a point with

time tα .

———————————————————————————————————

72

(1)

(3)

P

3

2

1

P

(2)

(4)

Ψ

P

Ψ

Ψ

Ψ

Figure 7.1: Inserting Points into Piecewise Linear Function

TEMPORAL INSERTION ALGORITHM:

Input: A piecewise linear function f represented as a sequence of points

(t1, y1, o1), . . . , (tn, yn, on).

Ψ the maximum error threshold in the approximation.

(tα, yα) the point to be inserted.

Output: An updated piecewise linear function.

if tα < t1 then

73

Add (tα, yα, false) as the first point in f .

else if tα > tn then

Add (tα, yα, false) as the last point in f .

else if fo(tα) − Ψ > yα then

Add (tα, 1

2
((fo(tα) + Ψ) + yα), false) between points with times ti < tα

and ti+1 > tα .

else if fo(tα) + Ψ < yα then

Add (tα, 1

2
((fo(tα) − Ψ) + yα), false) between points with times ti < tα

and ti+1 > tα .

end-if

———————————————————————————————————

We can show the following theorem.

Theorem 7.1.1 Suppose that a time series S is approximated by a piecewise

linear function fo with n “pieces” and Ψ error tolerance. Then any set I of m

insertions such that each insertion point is at most some constant δ ≥ Ψ distance

from fo can be done by the temporal insertion algorithm such that the updated

piecewise linear function f has at most n + m “pieces” and the following holds.

|f(ti) − yi| ≤
Ψ + δ

2
for each (ti, yi) ∈ S ∪ I.

74

Proof: From the algorithm above, there are four cases to insert one point (tα, yα),

which are (1): tα < t1 , (2): tα > tn , (3): t1 < tα < tn and fo(tα) − Ψ > yα , and

(4): t1 < tα < tn and fo(tα) + Ψ < yα .

First we prove that the updated piecewise linear function f has at most n+m

pieces after m insertions. In either of the four cases, the algorithm adds one point

to f . In other cases, the algorithm does not add any point to f . Therefore, for

a sequence of m insertions, at most m points are added to f . Further, no points

are ever deleted by the insertion algorithm. Hence, f has at most n + m points.

Next, we prove that |f(ti) − yi| ≤
Ψ+δ

2
for each (ti, yi) ∈ S ∪ I . We prove this

by induction. Let us assume that after a sequence of insertions the condition is true

and now we are inserting some new point (tα, yα). We prove that the condition

also holds after the insertion of (tα, yα).

Case (1): The insertion algorithm in effect adds a new piece with endpoints (tα, yα)

and (t1, y1) to f . The condition is clearly true in this case, because the point

(tα, yα) is contained in the new piece.

Case (2): This is similar to case (1).

Case (3): In this case, the old piece between ti, yi and (ti+1, yi+1) is deleted and

replaced with two new pieces, one with endpoints A(ti, yi) and C(tα, 1

2
((fo(tα) +

Ψ)+yα), and the other with endpoints C(tα, 1

2
((fo(tα)+Ψ)+yα) and B(ti+1, yi+1).

Note that by the induction hypothesis, all points in S before A or after B still

75

satisfy the condition. Hence we only have to prove that the condition is still true

for the points of f that are between A and B . First let us consider the points on

the piece AC .

C

G

A

F

D

B

Ψ

Ψ

of

E

Figure 7.2: Insert a Temporal Point

Consider the original piecewise linear function between A and B . Let D and

E be points on the line fo(t) − Ψ, and F and G be points on the line fo(t) + Ψ

as shown in Figure 7.2. The coordinates of these four points can be calculated to

be D(ti, fo(ti)−Ψ), E(tα, fo(tα)−Ψ), F (ti, fo(ti)+Ψ) and G(tα, fo(tα)+Ψ). For

the point to be inserted (tα, yα), we calculate the following:

|f(tα) − yα|
= 1

2
((fo(tα) + Ψ) + yα) − yα by y coordinate of C

= 1

2
((fo(tα) + Ψ) − yα)

= 1

2
(Ψ + (fo(tα) − yα))

≤ Ψ+δ
2

.

(7.1)

76

The last inequality follows form the condition that each point inserted is at

most δ distance from the original piecewise linear function. Hence (tα, yα) satisfies

the condition.

Note that there cannot be any other I point H before (tα, yα) that is between

A and C and has more than Ψ distance from fo . If we had, then we would have

to use either AH or HB instead of AB when we are inserting (tα, yα).

Now we can assume that all S and I points before (tα, yα) and between A

and C are at most Ψ distance from fo . Therefore, these all fall into the trapezoid

region DEGF . We show that any point within DEGF satisfies the condition.

At first we show the condition for the corner vertices. For D and F the

condition is true by the induction hypothesis; that is, they are both at most Ψ+δ
2

distance from A. Note that yα is at most δ and both E and G are at most Ψ

distance from fo . Since the y coordinate of C is at the midpoint of yα and the y

coordinate of G, both G and E are at most Ψ+δ
2

distance from C .

Let A′ be the point exactly Ψ+δ
2

below F , and let C ′ be the point exactly Ψ+δ
2

below G. Suppose that M = (t, y) is any point within DEGF . Let M1 be the

point directly above M and intersecting the line segment FG and M2 be the point

directly below M and intersecting the line segment A′C ′ as shown in Figure 7.3.

Clearly, the distance between M and AC is less than the distance between M1

and M2 , which is exactly Ψ+δ
2

. Hence M must satisfy the condition. Therefore,

77

D

C

G

A

F

E

B’

A’

of

B

Ψ

Ψ

Figure 7.3: Proof Condition for Point M

all points within DEGF satisfy the condition.

The above took care for points between A and C . We can prove similarly that

all points in S and in I before (tα, yα) and between C and B also satisfy the

condition.

Case (4): It is similar to Case (3).

For example, if δ = 3Ψ, then the error tolerance for the updated piecewise

linear approximation will be 2Ψ for all original and newly inserted data points.

78

Example 7.1.1 Let a time series T be the sequence of points: (1, 1), (3, 3),

(10, 6), (13, 9), (15, 7), (18, 4), (22, 4), (23, 6), (28, 9) and (29, 12), the piecewise

linear function with the error tolerance Ψ = 2 is shown in Table 7.1 and Figure 7.4.

Y t

y t 3y − 2t = 1, t ≥ 1, t ≤ 13.
y t y + t = 22, t > 13, t ≤ 18.
y t y = 4, t > 18, t ≤ 22.
y t 7y − 8t = −148, t > 22, t ≤ 29.

Table 7.1: The Piecewise Linear Function of T with Ψ = 2

121064

Ψ = 2

y

2 14 26 28 308 2218 2416 20
t

6

4

2

0

8

12

10

Figure 7.4: The PLA of T with Ψ = 2

Then insert four points P1(16, 5), P2(26, 5), P3(5, 12), and P4(8, 2). The

resulting piecewise linear function is shown in Table 7.2 and Figure 7.5.

7.2 Update Spatial Data Approximations

Section 7.1 describes the update on temporal data approximations.

79

Y t

y t 2y − 2.9t = −0.9, t ≥ 1, t ≤ 5.
y t 3y + 2t = 30.4, t > 5, t ≤ 8.
y t 5y − 4.2t = −9.6, t > 8, t ≤ 13.
y t y + t = 22, t > 13, t ≤ 18.
y t y = 4, t > 18, t ≤ 22.
y t 2y − 1.9t = −33.8, t > 22, t ≤ 26.
y t y − 1.4t = −28.6, t > 26, t ≤ 29.

Table 7.2: Inserting Points in Piecewise Linear Function of T

For deleting a spatial data point, one kind of method is just to ignore the

request for the internal spatial point, and delete the triangles with this point as

the node if it is a boundary point.

Another method is to find the influenced triangles with the point to be deleted,

then get the nodes of these triangles and generate new TIN for these remaining

influenced nodes. We then recalculate the temporal approximation for each new

generate triangles and delete the old triangles and their related temporal approxi-

mations.

For inserting a spatial data point, if it is not in any triangles, then we just find

the nearest edge and construct a new triangle with this point. In the following we

discuss the insertion of a spatial data point in a general case. We assume that the

inserted point is fallen in some current triangle.

The following is an insertion algorithm for inserting a spatial data point

Pα(xα, yα) into the spatial approximations.

80

P3

Ψ=2

P4

P1 P2

20

12

10

8

6

4

2

6 24 26 28 304 22208 10 12 1614 18

14

y

t

Figure 7.5: Inserting Points in Piecewise Linear Function of T

———————————————————————————————————

SPATIAL INSERTION ALGORITHM:

Input: A spatial representation with a triangle relation T

(xα, yα) the point to be inserted.

Output: An updated spatial representation.

Find the triangle Tβ where the point (xα, yα) is contained by using intersection.

Calculate the nodes Pi , Pj and Pk of Tβ .

Delete Tβ , and insert Ti,j,α , Tj,k,α and Ti,k,α into T .

———————————————————————————————————

Figure 7.6 illustrate the spatial insertion algorithm, which split the triangle

81

into three smaller triangles.

P

P

Tβ
Pα

P

i

j

k

Figure 7.6: Insert a Spatial Data Point

Chapter 8

Visualization

This chapter discusses the visualization techniques, including color bands display

and isometric color animation. Section 8.1 is based on our work in [31, 30], Sec-

tion 8.2 is based on our work in [7, 29].

8.1 Color Bands Display

In this section, we first give an example of color bands display. Then we provide a

algorithm to display a constraint relation with color bands. Finally, we introduce

several GIS-based applications as examples.

In the linear constraint data model, each database consists of a finite set of

constraint relations which indicate spatial, temporal or spatiotemporal information.

And each constraint tuple is a conjunction of linear constraints. For example, we

define a polygon as follows.

82

83

Polygon(x, y) : − Polygon(x, y) : −
x ≥ 0, −x ≥ 0,
y ≥ 0, y ≥ 0,
5x + 1.34y ≤ 50, −5x + 1.34y ≤ 50,
x + y ≤ 13.66, −x + y ≤ 13.66,
1.34x + 5y ≤ 50. −1.34x + 5y ≤ 50.

P olygon(x, y) : − Polygon(x, y) : −
−x ≥ 0, x ≥ 0,
−y ≥ 0, −y ≥ 0,
−5x − 1.34y ≤ 50, 5x − 1.34y ≤ 50,
−x − y ≤ 13.66, x − y ≤ 13.66,
−1.34x − 5y ≤ 50. 1.34x − 5y ≤ 50.

The above constraint tuples represent a polygon which is shown in Figure 8.1.

Figure 8.1: A Polygon

Now, by modifying the constraint representation, we can get the colored output

of this polygon. Suppose that we have a relation equation between the elevations

and x, y coordinates, and we want to display the polygon that shows different ele-

vation intervals with different colors. In TAQS system with the function to display

color bands, it just needs the user to add a variable parameter z which indicates

84

the elevation and insert an elevation equation with respect to the x and y values

for each constraint tuple. The new constraint representation for the corresponding

color polygon is shown as follows.

New Polygon(x, y, z) : − New Polygon(x, y, z) : −
x ≥ 0, −x ≥ 0,
y ≥ 0, y ≥ 0,
5x + 1.34y ≤ 50, −5x + 1.34y ≤ 50,
x + y ≤ 13.66, −x + y ≤ 13.66,
1.34x + 5y ≤ 50, −1.34x + 5y ≤ 50,
x + y + z = 10. −x + y + z = 10.

New Polygon(x, y, z) : − New Polygon(x, y, z) : −
−x ≥ 0, x ≥ 0,
−y ≥ 0, −y ≥ 0,
−5x − 1.34y ≤ 50, 5x − 1.34y ≤ 50,
−x − y ≤ 13.66, x − y ≤ 13.66,
−1.34x − 5y ≤ 50, 1.34x − 5y ≤ 50,
−x − y + z = 10. x − y + z = 10.

Then, after the user sets the colors for different elevation intervals, the system

will automatically generate the color representation of the polygon and display the

polygon whose elevations are represented by the different color patterns after the

user clicks the ColorRelation button. The color figure of the polygon is shown in

Figure 8.2.

There are many benefits to display the objects with multiple specified colors

to denote distinct value intervals for a certain attribute. It can let us know more

details about the query results and analyze them more easily. We can make the

most important part displayed by a striking color and other parts displayed by

general colors. It is obvious to know where the most important part is and how

85

Figure 8.2: The Color Polygon

much it involves.

8.1.1 Display Algorithm

In this section we show how to make the new representation of the constraint tuples

to be displayed with the designated colors.

The spatial data is represented in constraint relations, which have the following

form:

R(id, x, y) : − set of linear inequality constraints over x and y variables.

And the non-spatial data is stored in regular relations of the form

R(id, a1, a2, ..., an).

Now, if there is a new attribute (say z) which can be expressed by an equation

86

with the variables x, y , and itself z , add this equation into the constraint relations.

The new relation R∗ has the form:

R∗(id, x, y, z) : − set of linear inequality constraints over x, y variables,

one equality constraint with the form c1x + c2y + c3 = z.

Suppose a user wants to display the result with n different colors according to

the corresponding z intervals. The following algorithm will convert the constraint

relation tuple to n (may be less than n) new constraint relation tuples with their

corresponding colors.

———————————————————————————————————

COLOR BANDS DISPLAY ALGORITHM:

Input: A constraint relation R with the form of R∗ .

n number of z intervals [z11, z12], · · · , [zn1, zn2].

n corresponding colors color1, · · · , colorn .

Output: A new constraint relation R′ .

for each constraint tuple in R do

Find the equality constraint with the form c1x + c2y + c3 = z .

for each z interval [zi1, zi2] do

Create a new tuple T which is the same as R except changing

87

the equality constraint to two inequalities constraints:

c1x + c2y + c3 ≥ zi1 and c1x + c2y + c3 ≤ zi2 .

Delete the variable z from T .

Set the color of this tuple to be colori .

Decide if T is satisfiable. If it is, add T to R′ .

end-for

end-for

———————————————————————————————————

Then, the system will display the results with the corresponding specified colors

for the different variable parameter intervals. The computational complexity of this

algorithm is O(nm) time in the worst case, where n is the number of intervals of

the variable parameter values, m is the number of constraint tuples. In practice

there almost always exist some new created relation tuples which are not satisfiable,

so less than n × m new relation tuples to be created in the general case.

8.1.2 GIS-based Applications

GIS-based applications can use color bands display to improve the data visualiza-

tion. For a geographic map, we can use different colors to display the temperature

distribution, evapotranspiration distribution, precipitation distribution, and so on.

The Nebraska State Map: First, we transform the TIN structure of the Ne-

88

braska state map into a constraint relation MAP (x, y, z, a, s), where x and y are

the longitude and latitude of the sampled points on the map. For each tuple in

MAP relation, it represents a triangle of the map. z is represented by an equality

constraint of x and y . a is aspect of the triangle, and s is the slope of the triangle.

The MAP relation is shown as follows.

MAP (x, y, z, a, s) : −

ai1x + bi1y < ci1,

ai2x + bi2y < ci2,

ai3x + bi3y < ci3,

ai4x + bi4y + z = ci4,

a = ci5,

s = ci6.

where 1 ≤ i ≤ n, and n is the number of triangles which compose the whole

geographic map.

Now if we want to show the elevation distribution, just specify the elevation

intervals and their colors. The Nebraska color map for the elevation is shown in

Figure 8.3.

The Mean Annual Air Temperature of the State of Nebraska: By adding

the new attribute, Mean Annual Air Temperature (MAAT), and its model equation,

89

Figure 8.3: The Nebraska Elevation Map

the MAAT (unit is oC) distribution graph can be drawn according to the specified

colors. The Datalog query is shown below.

MAAT (x, y, maat) : −

0.000005 x + 0.000011 y + 0.00524 z + 0.000203 a + 0.0432 s + maat

= 74.3,

MAP (x, y, z, a, s).

where the first rule in the definition is the model equation between MAAT and

other geographic attributes. The result of this quey is shown in Figure 8.4.

The Potential Evapotranspiration of the State of Nebraska: Similarly, we

can use the model equation of the potential evapotranspiration (PET) (unit is mm)

to draw the potential evapotranspiration map as shown in Figure 8.5.

90

Figure 8.4: The Nebraska Mean Annual Air Temperature Map

Figure 8.5: The Nebraska Potential Evapotranspiration Map

91

Figure 8.6: The Nebraska Mean Annual Precipitation Map

Other Distribution Maps for the State of Nebraska: We also have mean

annual precipitation model equation (PREC) (unit is mm) and frost-free period

model equation (FFP) (unit is day) (base 32 oF), and Annual Water Balance

(AWB) (unit is mm) model equation. By using these model equations, we can plot

their distribution map shown in Figure 8.6, Figure 8.7 and Figure 8.8, respectively.

8.2 Isometric Color Animation

By using temporal and spatial approximation, a set of spatiotemporal data can

be represented as two constraint relations, one is for the spatial information and

the other is for the temporal information of each spatial point. The spatial points

are translated to triangles in 2-dimensional space, and their temporal information

related to each point is translated into a piecewise linear function.

92

Figure 8.7: The Nebraska Frost-Free Period Map

Figure 8.8: The Nebraska Annual Water Balance Map

93

To get a snapshot of the animation, substitute the variable t in each piecewise

linear functions with the specified time value to get the property values at that

time. Then draw the triangles with the colors whose ranges cover their property

values, respectively.

Figure 8.9, Figure 8.10, Figure 8.11 and Figure 8.12 show four snapshots of

the isometric color animation for the U.S. precipitation in January, April, July and

October in the year 1997, respectively. The high precipitation areas are displayed

by blue (darker gray) shade colors and the low precipitation areas by red (lighter

gray) shade colors.

Figure 8.9: The Snapshot of U.S. Precipitation in January, 1997

94

Figure 8.10: The Snapshot of U.S. Precipitation in April, 1997

Figure 8.11: The Snapshot of U.S. Precipitation in July, 1997

95

Figure 8.12: The Snapshot of U.S. Precipitation in October, 1997

Chapter 9

Conclusions

In this chapter we conclude the dissertation, and list some directions for future

work in Section 9.1.

We propose a software architecture of constraint database systems, and describe

the TAQS system in detail as an illustration of the implementation based on this

architecture.

The experiments show that the transformation of temporal data into piecewise

linear functions is highly accurate, and they can be easily represented and queried

in constraint databases. We also approximate spatial data and represent it in a

constraint database.

We also consider the approximate queries, query evaluation, and update. And

we provide color bands display and isometric color animation to visualize the query

results .

96

97

9.1 Future Work

For future work, one thing we are trying to do is to find more efficient piecewise

linear approximation algorithms; that is, to find optimal algorithms with lower

complexity, or to find approximate algorithms which are more closer to optimal

solutions. Another research direction is to find better approximate evaluation al-

gorithms that have tighter upper and lower bounds.

For spatiotemporal data, we currently just concentrate on the two-dimensional

space. However, in the real world many problems are three-dimensional. Thus,

displaying the spatial objects in three dimensional space is very necessary. Another

issue is the controllability of the spatial objects. People would have the power to

control the movement of the objects as they desired during the animation. And the

animation system should have some certain predictability for the future according

to the past and present information. Moreover, how to get the accurate TIN

structure from the sampled points need also to be studied further.

Bibliography

[1] N. Adam and A. Gangopadhyay. Database Issues in Geographic Information
Systems. Kluwer Academic Publishers, 1997.

[2] A. Aho and J. Ullman. Universality of Data Retrieval Languages. In Proc.
the 6th Symposium on Principles of Programming Languages, Texas, pages
110–120, January 1979.

[3] A. Brodsky, V. Segal, J. Chen, and P. Exarkhopoulo. The CCUBE Constraint
Object-Oriented Database System. In Proc. ACM SIGMOD, pages 577–579,
1999.

[4] M. Cai, D. Keshwani, and P. Revesz. Parametric Rectangles: A Model for
Querying and Animating Spatiotemporal Databases. In Proc. the 7th Inter-
national Conference on Extending Database Technology, LNCS 1777, pages
430–444. Springer, 2000.

[5] R. Chen, M. Ouyang, and P. Revesz. A Time Series Data Model. In 2001
Annual Meeting, Association of American Geographers, New York, NY, 2001.

[6] R. Chen, M. Ouyang, and P. Revesz. Approximating Data in Constraint
Databases. In Proc. the 4th International Symposium on Abstraction, Refor-
mulation and Approximation, Horseshoe Bay, Texas, volume 1864 of Lecture
Notes in Artificial Intelligence, pages 124–143. Springer-Verlag, July 2000.

[7] R. Chen and P. Revesz. Geo-Temporal Data Transformations and Visualiza-
tion. In Proc. the 1st International Conference on Geographic Information
Science, pages 240–242, Savannah, GA, October 2000.

[8] J. Chomicki and P. Revesz. Constraint-based interoperability of spatiotempo-
ral databases. Geoinformatica, 3:3:211–243, 1999.

[9] C. Decleir, M. Hacid, and J. Kouloumdjian. A Database Approach for Model-
ing and Querying Video Data. In the 15th International Conference on Data

98

99

Engineering, Sydney, Australia, pages 6–13. IEEE Computer Society, March
1999.

[10] B. Dent. Cartography Thematic Map Design. McGraw-Hill, 1999.

[11] M. Flickner, H. Sawhney, and et al. Query by Image and Video Content: The
QBIC System. In IEEE Computer, pages 23–32, September 1995.

[12] B. Furht. Multimedia Systems and Technologies. Kluwer Academic, 1996.

[13] W. Grosky, R. Jain, and R. Mehrotra. The Handbook of Multimedia Informa-
tion Management. Prentice Hall, 1997.

[14] S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE System for Complex
Spatial Queries. In Proc. the ACM SIGMOD International Conference on
Management of Data, pages 213–224, Seattle, WA, 1998.

[15] S. Grumbach, P. Rigaux, and L. Segoufin. Manipulating Interpolated Data is
Easier than You Thought. In Proc. International Conference on Very Large
Databases, 2000.

[16] P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Journal
of Computer and System Sciences, 51:26–52, 1995.

[17] P. Kanjamala, P. Revesz, and Y. Wang. MLPQ/GIS: A GIS Using Linear
Constraint Databases. In C. S. R. Prabhu, editor, Proc. the 9th COMAD In-
ternational Conference on Management of Data, pages 389–393. Tata McGraw
Hill, 1998.

[18] S. Khoshafian and B. Baker. Multimedia and Imaging Databases. Morgan
Kaufmann, 1996.

[19] G. Kowalski. Information Retrieval Systems – Theory and Implementation.
Kluwer Academic Publishers, 1997.

[20] S. Magliveras and N. Memon. The Linear Complexity Profile of Cryptosystem
PGM. In Congressus Numerantium, Winnipeg, Canada, volume 72, pages 51–
60, January 1990.

[21] J. Massey. Shift-register Synthesis and BCH Decoding. In IEEE Transactions
on Information Theory, volume 15, pages 122–127, January 1969.

[22] National Climatic Data Center (NCDC). Monthly Precipitation Data for
U.S. Cooperative & NWS Sites. http://www.ncdc.noaa.gov/pub/data/coop-
precip/.

100

[23] K. Nwosu, B. Thuraisingham, and B. Berra. Multimedia Database Systems.
Kluwer Academic, 1996.

[24] Oracle. Oracle8i Time Series User’s Guide. Oracle Corporation.

[25] J. Paredaens. Spatial Databases, the Final Frontier. In G. Gottlob and M.Y.
Vardi, editors, Proc. the 5th International Conference on Database Theory,
LNCS 893, pages 14–32. Springer-Verlag, 1995.

[26] B. Prabhakaran. Multimedia Database Management Systems. Kluwer Aca-
demic, 1997.

[27] P. Revesz. Constraint Databases: A Survey. In L. Libkin and B. Thalheim,
editors, Semantics in Databases, LNCS 1358. Springer-Verlag, 1998.

[28] P. Revesz. The Evaluation and the Computational Complexity of Datalog
Queries of Boolean Constraint Databases. International Journal of Algebra
and Computation, 8(5):472–498, October 1998.

[29] P. Revesz. Introduction to Constraint Databases. Springer-Verlag, 2000.

[30] P. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, and Y. Wang. The
MLPQ/GIS Constraint Database System. Journal of SIGMOD Record, 29(2),
June 2000.

[31] P. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, and Y. Wang. The
MLPQ/GIS Constraint Database System. In Proc. the ACM SIGMOD In-
ternational Conference on Management of Data, Dallas, Texas, May 2000.

[32] P. Revesz, R. Chen, and M. Ouyang. A Software Architecture for Constraint
Database Systems. In Software Architectures, Components, and Frameworks,
submitted.

[33] P. Revesz, R. Chen, and M. Ouyang. Constraint Approximation and Querying
of Relational Databases. Journal of Constraints, submitted.

[34] P. Revesz and Y. Li. MLPQ: A Linear Constraint Database System with
Aggregate Operations. In Proc. the 1st International Database Engineering
and Applications Symposium, 1997.

[35] J. Star and J. Estes. Geographic Information Systems: An Introduction.
Prentice-Hall, Inc., 1989.

[36] U.S. Geological Survey. Geographic Information Systems.
http://www.usgs.gov/research/gis/title.html.

101

[37] J. Ullman. Principles of Database and Knowledge-Base Systems, volume I and
II. Computer Science Press, 1988-1989.

[38] L. Vandeurzen, M. Gyssens, and D. Van Gucht. On the Desirability and
Limitations of Linear Spatial Query Languages. In M. J. Egenhofer and J. R.
Herring, editors, Proc. the 4th International Symposium on Spatial Databases,
LNCS 951, pages 14–28, Berlin, 1995. Springer-Verlag.

