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Chapter 1

Introduction

Geographic Information Systems (GISs) are specialized computer systems for the

storage, retrieval, manipulation, analysis and display of large volumes of spatial or

map type data [36].

Many GIS systems contain spatiotemporal data such that the geographically

distributed values change continuously over time. These continuously changing

data will create infinite number of tuples in traditional relational databases. Con-

straint databases [27] provide a natural way to represent them such that these

infinite values can be represented in finite constraint tuples.

There are now a number of implemented constraint database systems, such as

CCUBE [3], DEDALE [10] and MLPQ [28]. The architecture of these constraint

database systems are very similar. They all contain several special features which

never occur in relational and object-oriented database system design. These fea-
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tures may include modules for constraint representation, data approximation and

special data visualization.

Value-by-area cartograms provide a highly expressive visualization of geograph-

ically distributed data. For continuously changing data, an animation can be

done by successive displaying of value-by-area cartograms at different time in-

stances. Such an animation can reveal more information than is revealed by only

a few selected value-by-area snapshots. In this dissertation we describe several

value-by-area cartogram animation algorithms that can be used to visualize ge-

ographically distributed continuous spatiotemporal data that often occur in GIS

systems. We implemented the algorithms as part of the graphical user interface of

the MLPQ/GIS database system.

In GIS systems (and also many other systems), continuously changing data are

often measured and recorded only sporadically as time series data. Since a fine

granularity of time may be needed, the traditional representation of time series

data, as a set of data points, requires too much computer storage space and allows

only inefficient data retrieval and querying. We propose more efficient alternative

representations for time series data: piecewise linear approximation. In the piece-

wise linear approximation, the time series data s is approximated by a piecewise

linear function f , such that at each time instance, the error between actual data

and the approximate data is less than some fixed error tolerance.
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Piecewise linear approximation is very important in animation because it pro-

vides interpolation of data, enabling the animation to be done in any time gran-

ularity. The data compression in piecewise linear approximation also helps the

evaluation process to work faster.

Query optimization is very important in query evaluation [18, 24, 29, 32, 35].

Wong and Youssefi’s query optimization algorithm [35] for relational algebra queries

is a well-known optimization algorithm that forms the basis of several systems.

In this dissertation we propose a new query optimization algorithm which is an

improvement of Wong and Youssefi’s algorithm.

1.1 Outline of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 gives a brief intro-

duction on relational and constraint databases, as well as reviewing the previous

work on cartogram animations and query optimizations.

Chapter 3 describes several methods for value-by-area cartogram animation

and a new algorithm for creating single value-by-area cartogram. We present the

algorithm and methods such that they can be used to construct a cartogram an-

imation system that works fast enough to avoid pre-computing and saving of the

snapshots. This enables us to animate databases that have a large number of

snapshots. This chapter is based on our work of [20, 21].
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Chapter 4 discusses the piecewise linear approximation for GIS time series

data. We propose an O(n) complexity algorithm that can compress the original

time series data while guaranteeing certain maximal error tolerance. It is based on

the work of [4, 5, 26].

Chapter 5 tries to combine Chapter 3 and Chapter 4 to explore the usage of

piecewise linear approximation in the value-by-area cartogram animation. The

interpolation and data compression abilities in piecewise linear approximation help

to make more smooth and more efficient value-by-area cartogram animation.

Chapter 6 is based on [6]. It discusses the approximate evaluation of queries

based on the piecewise linear approximation. We show that approximate evaluation

can get high precision and recall while creating much less constraint tuples.

Chapter 7, based on [19, 22], proposes a new hypergraph partitioning based

query optimization strategy whose evaluations require less space for the interme-

diate size relations than the optimized expressions given by earlier algorithms. It

also gives parallel evaluation strategies which can be more efficient in parallel com-

puters.

Finally, Chapter 8 concludes the dissertation with some directions for future

work.



Chapter 2

Background

2.1 Relational and Constraint Database Systems

Database management system is a very important component of a modern com-

puter system. In its early ages in the 1960s, the network and hierarchical models

were widely used. Now, the relational database model has become the primary

model for commercial databases. For relational database model, there are some

theories that assist the design of databases and the efficient processing of queries.

The relational database model was first proposed by Codd in 1970. In relational

database model, a database is a collection of one or more relations. Each relation

has a unique name and can be represented by a table with rows and columns [29].

In relational databases, each relation consists of a relation schema and a

relation instance. The relation schema describes the design of the relation (table),
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such as the relation name, the name and domain of each field of the relation (table).

A relation instance is a table as the instance of the relation schema. The following

Table 2.1 gives a relation instance for the relation schema

CSE413 Scores = (name, SSN, score)

which record the scores of each student in the course of “CSE413”.

Example 2.1.1 Relational Database table for relation CSE413 Scores = (name,

SSN, score):

name SSN score

Amy 999-99-0001 90
Billy 999-99-0017 85

Charlie 999-99-0117 88
Dick 999-99-0227 92
John 999-99-3227 98

Table 2.1: Database for Relation CSE413 Scores

Besides relational database representations, an alternative way to represent the

data is to use constraint databases. The constraint data model provides a finite

representation of the unrestricted relational data model. The essential difference is

that in the constraint data model, the value of any attribute is specified implicitly

using variables and constraints [27].

Example 2.1.2 Suppose in a single day we record the precipitation in a city with

area 4 ∗ 1012 (square inches). It began to rain at 9:00am, 0.5 inch per hour and
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the rain stopped at 1:00pm. At 7:30pm, it began to rain 0.75 inch per hour and

stopped at 11:30pm. Then the amount of rainfall in this city (in cubic inches) is

shown in Figure 2.1

10
13

13
2*10

2010 24 t

r

Figure 2.1: Amount of Rainfall

Suppose that the amount of rainfall at each time instance is represented in the

following relation schema:

Amount of Rainfall = (time, rainfall)

In the unrestricted relational data model, a database instance could contain an

infinite number of tuples. The rainfall relation contains an infinite number of

tuples because the time instance can be any real number between 0 and 24, as

shown in Figure 2.2.

The constraint relation for the above example is shown in Table 2.3. This
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time rainfall

00:00 0.0
· · ·
10:00 2.0 ∗ 1012

· · ·
21:30 1.4 ∗ 1013

· · ·
24:00 2.0 ∗ 1013

Table 2.2: Unrestricted Relational Database for Rain

constraint relation describes the same relation as in Table 2.2. However, the repre-

sentation is different. In constraint relation, it uses a variable t as the value of the

time and the valuable r as the rainfall. Both variables range over the real numbers.

The first row of the of relation means that the rainfall is r at the time t, if the

condition 0 ≤ t ≤ 9.0, r = 0.0 is true. We call such a condition a constraint. Each

constraint can be a list of atomic constraints which are separated by commas that

are read “and”. The first constraint expresses that up to time 9.0 (9:00am), the

amount of rainfall is 0. The next row expresses the rainfall is 2.0 ∗ 1012 ∗ (t − 9)

when t is between 9.0 (9:00am) and 13.0 (1:00pm). Other rows can be explained

similarly.

Note that the entire constraint relation consisted of only five constraint tuples

although it represents the infinite relation described earlier.

Having some databases in a computer system, a user can use query languages to

request information from them. Relational algebra is one option, it consists of a set
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time rainfall

t r 0 ≤ t ≤ 9.0, r = 0.0
t r 9.0 < t ≤ 13.0, r = 2.0 ∗ 1012 ∗ (t− 9)
t r 13.0 < t ≤ 19.5, r = 8.0 ∗ 1012

t r 19.5 < t ≤ 23.5, r = 8.0 ∗ 1012 + 3.0 ∗ 1012 ∗ (t− 19.5)
t r 23.5 < t < 24.0, r = 2.0 ∗ 1013

Table 2.3: Constraint Database for Rainfall

of operations that take one or two relations as input and produce a new relation

as their result. The fundamental operations in the relational algebra are select,

project, union, set difference, Cartesian product and rename. other operations

include set intersection, natural join, division and assignment [29].

In relational algebra, we use lowercase Greek letter sigma (σ ) to denote selec-

tion, the uppercase Greek letter pi (Π) to denote project,
⋃

for union, − for set

difference, × for Cartesian product and ρ for rename. We also use
⋂

for intersec-

tion, ⊲⊳ for natural join and / for division. In this way, the query of finding the

students whose scores are greater than 90 can be written as:

Πname σscore>90 CSE413 Scores (2.1)

Relational algebra is a formal query language. However, commercial database

systems usually use SQL language. SQL is not only a “query language”, it contains

many capabilities besides querying a database. Including features for defining
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the structure of the database, modifying the database and for specifying security

constraints [29].

The following is a SQL query that is equivalent to relational algebra in 2.1.

Select name
from CSE413 Scores
where score > 90

(2.2)

Another query language is Datalog, which is a rule-based language related to

Prolog. In Datalog each rule is a statement saying that if some points belong to

some relations, then other points must also belong to a defined relation. Each

Datalog query contains a Datalog program and an input [28]. The Datalog query

for the previous database retrieval problem can be written as:

High Scores(name) : −CSE413 Scores(name, SSN, score),

score > 90.

Both the constraint databases and the relational databases can be queried by

either relational algebra, SQL or Datalog.

2.2 Cartograms and Cartogram Animation

Many GIS databases contain spatiotemporal data such that the geographically

distributed value change continuously over time. Population and precipitation
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distributions are two such examples. Value-by-area cartograms provide a highly

expressive visualization for this kind of data. A value-by-area cartogram is created

by dividing the original map into small areas (cells) and then enlarging or shrinking

each cell to make its area proportional to its given “value”. For example, a value-

by-area cartogram where the cells are the continental U.S. states and the values are

their populations in 1990 is shown in Figure 2.2, the population data comes from

the US Census Bureau http://www.census.gov. In this value-by-area cartogram,

each state’s area is proportional to its population. By looking at the map, we can

easily see the population distribution in the continental United States.

Figure 2.2: A Value-by-Area Cartogram for the U.S. Population in 1990

For the same set of data, there are several possible value-by-area cartograms.
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In general, the easier it is to recognize which cells are which in a value-by-area

cartogram the better (and more informative) it is. For example, for anyone famil-

iar with the usual geographical map of the continental U.S. states, it is easy to

recognize the individual states. In that way, one can learn that for example Cali-

fornia has a high population compared to its area as it is enlarged, which Nebraska

has a small population compared to its area as it is shrunk compared to the usual

geographic map. It is in this way that cartograms can be informative and useful

for people who do not wish to look at statistical tables.

There are two basic forms of cartograms: contiguous cartograms and non-

contiguous cartograms. In contiguous cartograms, the internal cells are adjacent

to each other, while in noncontiguous cartograms, this is not necessary the case.

Figure 2.3 illustrates the original map with four cells, each has the geographic dis-

tributed value with it, the contiguous cartogram and the noncontiguous cartogram

whose cell areas are proportional to the its “value”.

Generally, contiguous cartograms looks better than noncontiguous cartograms

because they look more like real maps, the geographic arrangement of cells also

helps people to recognize the cells with respect to original geographic map. On the

other hand, it is easier for noncontiguous map to preserve original shape of each

cell, and they are easier to construct. Because if we do not care the continuity of

the cartogram, we can simply enlarge/shrink each cell to its desired area.
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Figure 2.3: Contiguous and Noncontiguous Cartograms

Contiguous cartograms are much more difficult to construct. Usually the cells

are represented by polygons. When trying to construct contiguous cartograms,

each cell has to be enlarged/shrunken. The enlarge/shrink requirement for each

cell may give conflict move direction for cell corner vertices. The cell shape has to

be somehow distorted to keep the cartogram contiguity.

Cartograms can be drawn manually. However, computer programs are more

desirable. From 1973, a few computer algorithms for creating contiguous value-by-

area cartograms have been proposed [7, 13, 11, 30]. Among them, the pseudo-

cartogram algorithm proposed by Tobler [30] is the earliest. Generally, pseudo-

cartogram algorithm converges slowly (if it converges at all), and the area error is

large.

Dougenik et al.’s algorithm [7] and Gusein-Zade et al.’s algorithm [11] are based

on rubber-sheet transformation idea, which can give highly accurate cartograms,
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but the computation time is long.

House and Kocomoud [13] proposed another value-by-area algorithm. They

view the construction of value-by-area cartogram as a constraint optimization prob-

lem, and they apply the simulated annealing approach to solve it. This algorithm

runs quiet slow, according to [13], it will take hours to compute a 1980 United

States population cartogram on a 300MHz Compaq Professional Workstation with

128MB memory.

For continuously changing data such as population or precipitation data the

value-by-area cartogram animation successively displays value-by-area cartograms

at different time instances. Such animations can reveal more information than is

revealed by only a few selected value-by-area cartogram snapshots. For example,

we did an animation for the monthly precipitation in the continental U.S. states

between 1948 and 1998. The animation revealed that the precipitation has more

regular cycles in the New England states than in the western states. Such anima-

tions allow everyone to make similar observations without even knowing anything

about statistics.

Cartogram animation is a relatively new topic. Kocomoud and House [16] give

an animation for the U.S. population cartograms from 1900 to 1996, which contains

eleven cartogram snapshots of 1900, 1910, · · ·, 1990 and 1996. White et. al. [34]

give an animation for the infant mortality in the United Kingdom from 1856 to
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1925, which contains less than 10 snapshots. In both animations, the cartogram

snapshots are pre-computed and saved for display. This pre-computation strategy

is practical if an animation contains only a small number of snapshots. However,

if an animation requires a large number of snapshots, it is not practical to pre-

compute and save the snapshots. For example, if we want to study the monthly

precipitation pattern from decades of precipitation data, then the animation may

contain hundreds of snapshots, it will require too much space if we pre-compute

and save the snapshots.

2.3 Query Optimization

Query optimization is a very important problem in database systems. Wong and

Youssefi’s query optimization algorithm [35] is a well-known optimization algorithm

that forms the basis of several systems. It is based on the idea of hypergraph

representation of the queries and on a particular reduction of the hypergraphs. In

the reduction the edges are taken away from the hypergraph according to some

rules and the order implies a particular sequence of operations.

Hypergraph Representation of Queries A hypergraph H(V,E) is an ex-

tension of a graph in which V = {v1, v2, · · · , vn} is the set of vertices, E =

{e1, e2, · · · , em} is the set of hyperedges. Each hyperedge is a connection of two

or more vertices. A graph can be seen as a special hypergraph such that each
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hyperedge connects exactly two vertices.

A query can be represented as a hypergraph [32]. The following is an example

for a query on relations and the corresponding hypergraph.

Example 2.3.1 In the following GIS database, there are four relations:

WeatherStation(SN, longitude, latitude, state, county)

WeatherData(SN, date, highTemperature, lowTemperature, precipitation)

EnergyConsumption(state, county, date, electricConsumption)

Capital(state, capital)

In the above relations, WeatherStation (SN, longitude, latitude, state,

county) give the information of a weather station, which includes the sta-

tion number (SN), the longitude and the latitude, the state and county

in which the station locates. The relation WeatherData (SN, date,

highTemperature, lowTemperature, precipitation) gives the daily weather data

(highTemperature, lowTemperature, precipitation) for each day. The relation

EnergyConsumption( state, county, date, electricConsumption) gives the elec-

tric consumption data for each day and the relation Capital( state, capital) gives

the capital city for each state. Suppose that there is a weather station in each

county and we would like to study the relations between the weather and the elec-
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tric consumption in the capital city of Nebraska, we can use the following relation

algebra query to list the weather and electronic consumption data data:

ΠWeatherData.date,highTemperature,lowTemperature,precipitation,electricConsumption

σ WeatherStation.SN=WeatherData.SN ∧ WeatherData.date=EnergyConsumption.date ∧

WeatherData.state=EnergyConsumption.state ∧ WeatherData.county=EnergyConsumption.county ∧

WeatherData.state=Capital.state ∧ WeatherData.county=Capital.capital ∧ Capital.state=“Nebraska′′

(WeatherStation×WeatherData× EnergyConsumption× Capital)

The above query can be represented by a hypergraph. In the hypergraph

representation of a query, each attribute in the relation is represented by a single

vertex, except if two attributes a and b have the equality condition a = b in the

query expression, then they are merged into one vertex. Each relation or select

condition is represented by a hyperedge that contains the related attributes.

Wong-Youssefi’s Optimization Algorithm: Wong and Youssefi [35] pro-

posed a hypergraph based query optimization algorithm in which the query op-

timization is done by taking away from the hypergraph the hyperedges one at a

time.

The algorithm tries to find “small hyperedges” that when taken away will dis-

connect the hypergraph. A hyperedge is considered small if it represents selections



18

energyConsumptiondatehighTemperature

county

capital

WeatherStation

Capital

EnergyConsumption

WeatherData

precipitation

SN

lowTemperature

longitude statelatitude

Figure 2.4: Hypergraph for SQL Query

with equality conditions between attributes and constants or were reduced by a

semi-join operation with another relation. The algorithm gives preference to small

hyperedges even if they do not disconnect the graph. If there is no disconnecting

hyperedge, then just an arbitrary hyperedge is taken away.

In addition, whenever a hyperedge/relation is taken away, the Wong-Youssefi

algorithm also takes a semi-join of it with other hyperedges/relations with which

it shares some common attributes.



Chapter 3

Data Visualization

In this chapter, we propose several methods for value-by-area cartogram animation.

Each animation method is based on a new algorithm for creating single value-by-

area cartograms. The presentation below is based on our work in [20, 21].

We also implemented the animation system and integrated it into the MLPQ

constraint database system[14] as one of the visual interface. It can provide highly

expressive animations for real spatiotemporal databases.

The rest of this section is structured as follows. Section 3.1 discusses three

different methods for creating sequences of value-by-area cartograms as well as

a new fast value-by-area cartogram algorithm. Section 3.2 gives implementation

results.

19
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3.1 Animation with Large Number of Snapshots

Some cartogram animation models [16, 34] pre-compute and save the snapshots for

display. Each of these models contains only a few cartogram snapshots, thus they

can be pre-computed and saved for display. However, if the animation contains a

large number of snapshots, then the pre-computation strategy is not practical. A

better way is to compute the snapshots during animation. This strategy requires

fast algorithms for snapshot computation.

3.1.1 Value-by-Area Cartogram Animation Methods

We describe three basic methods for value-by-area cartogram animation, which

provides a visualization of geographically distributed continuous spatiotemporal

data.

Each animation method uses as a basic procedure some value-by-area car-

togram snapshot algorithm. Each snapshot algorithm takes as input a map with

some cell division and values for each cell and gives as output a distorted map in

which each cell has the same cell density (the “density” is the result of cell value

divided by cell area). Independent of the basic snapshot procedure used, the three

animation methods work in different ways.

Parallel Method: It is possible to apply the algorithms described in [7, 11, 13, 30,
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31] to compute the cartogram snapshots for animation. This is the idea behind the

Parallel Method , which is one way to compute the series of cartogram snapshots.

The Parallel Method constructs each cartogram snapshot based on the original

geographic map. We call it Parallel Method since each snapshot can be computed

independently of the other snapshots and thus they can be computed in parallel.

In theory, the Parallel Method can be used together with any of the algorithms

described in [7, 11, 13, 30, 31]. But actually these algorithms are too slow for

animation. We describe a faster algorithm in Section 3.1.2. An illustration of the

Parallel Method is shown in Figure 3.1.

...

data2data1
Original map

data_n

Figure 3.1: Constructing cartogram snapshots using Parallel Method

Serial Method: The Parallel Method provides one possible way to compute

a series of cartogram snapshots. In many cases (such as a series data of annual

population statistics, annul gross state product, etc.), the data change smoothly

from one snapshot to the next, and thus one cartogram should be much more

similar to the next cartogram in the series than to the original geographic map.

This idea leads to the Serial Method to construct a series of cartograms.
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In the Serial Method, the cartograms are constructed in sequence from the

previous cartogram (except for the first cartogram, which is constructed from the

original geographic map), i.e., instead of taking the original geographic map as the

input for the transformation process, we can take the previous cartogram snapshot

in the series as the input for the transformation process. Since for each step the

input map is much similar to the destination cartogram, it will be computed faster

and the display will be smoother. An illustration for the Serial Method is shown

in Figure 3.2.

...

data2data1
Original map

data_n

Figure 3.2: Constructing cartogram snapshots using Serial Method

Hybrid Method: This method combines the previous two methods. It generates

each k×nth snapshot from the original map, and all the other snapshots from the

previous snapshots (see Figure 3.3).

Comparison: The Parallel Method is easily parallelized because each snapshot

can be computed independently, while the Serial Method is not immediately paral-

lelizable. However, the Parallel Method is slower than the Serial Method in a single

processor computer because there is usually a bigger difference between the original

map and a snapshot than between two consecutive snapshots, hence calculating the
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...

...

data_2*n

data_k*n+1 data_k*n+2 data_(k+1)*n

data1 data2

data_n+2

. . .

...

Original map
data_n

data_n+1

Figure 3.3: Constructing cartogram snapshots using Hybrid Method

snapshot from the original map requires generally more time than calculating it

from the previous snapshot.

For the Serial Method, the cartogram snapshot quality is not as good as in the

Parallel Method. Because in the Serial Method, the previous snapshot will transmit

cell distortion to its successor and hence cell shape distortion may accumulate.

The Hybrid Method overcomes the cell shape distortion accumulation problem

inherent in the Serial Method, while being almost as fast as the Serial Method.

Table 3.1 summarizes the discussions on three methods.
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Parallel Hybrid Serial
Category Method Method Method

Speed Slow Fast Fast
Easily

Parallelizable Yes Yes No
Shape Distortion
Accumulates No No Yes

Table 3.1: Comparison of three Snapshots Construction Methods

3.1.2 A New Value-by-Area Cartogram Algorithm

From 1973, several computer algorithms have been developed for constructing con-

tinuous value-by-area cartograms [7, 11, 13, 30, 31]. In these algorithms, a value-

by-area cartogram algorithm takes the geographic map as the initial map, divides it

into many small parts (cells), and in an iterative process, enlarge or shrink each cell

by some “density” value related to that cell, at the end of iteration, a value-by-area

cartogram is created with each cell area error less than some threshold.

Among previous value-by-area cartogram algorithms the rubber-sheet based

algorithms of [7, 11] produce the most accurate cartograms although they may be

slow. We review and improve the speed of these algorithms below.

In both rubber-sheet transformations [7, 11] the map is divided into small cells

(polygons). Each cell has a “value” which describes the size of its desired area. The

cell is inflated (if its actual area is smaller than the desired area) or deflated (if

its actual area is larger than the desired area). An iterative process to inflate or
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deflate the cells is done until the difference between the actual cell area and the

desired cell area is less than some error tolerance value.

In order to prevent holes in the map or overlaps among the cells, in [7, 11] the

inflation/deflation of any cell influences all the corner vertices of the cells in the

map. The two algorithms calculate slightly differently the influence values, but in

both the further the corner vertex is from the center of the inflated/deflated cell the

less it is influenced or changed. When enlarging/shrinking a cell, a corner vertex

is moved along the line that connects the cell center and this vertex, as shown in

Figure 3.4.

Suppose that a map with area S is divided into n cells C1, C2, · · · , Cn , the area

of cell Ci is ACi . For each cell Ci , there is a value Vi related to this cell. Then

we define the average cell density DAVG , desired cell area ADi and cell distortion

∆i for cell Ci as following:

DAVG =
Σn

i=1Vi

S

ADi =
Vi

DAV G

∆i =
|ADi − ACi|

ADi

The move distance of a corner vertex under a cell inflation/deflation is calcu-

lated in the following way:
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Figure 3.4: Corner Vertices Movement when Enlarging a Cell

Suppose that a cell to be inflated/deflated has area ACi , it’s desired area is

ADi . We calculate the “radius” r of the cell to be r0 =
√

ACi/π . Suppose that

the distance between a vertex and this cell’s center is r , then the move distance d

is calculated as:

d =

{

(ADi

ACi

− 1) ∗ r0 if r ≤ r0
ADi−ACi

2πr
if r > r0

(3.1)

A naive cartogram algorithm, as in [7, 11], works in the following way:

———————————————————————
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A NAIVE VALUE-BY-AREA CARTOGRAM ALGORITHM

Input: A map with n cells and a value for each cell,

cell area percent error tolerance ǫ,

Output:New coordinates for cell vertices that

make them form a value-by-area cartogram

begin

for each cell, calculate ACi and ADi , begin

repeat

for each cell Ci , begin

compute its ACi

update Cell Ci ’s corner vertices

update all other corner vertices

end for

until for all cell i, |ACi−ADi|
ADi

≤ ǫ

end

———————————————————————-

Note that the influence of a particular cell’s inflation/deflation on the corner

vertices in the map decreases with the distance from the cell center to this corner

vertex and increases with the percent the cell is inflated/deflated. For example,

suppose that a map with left bottom (0, 0) and right top (100, 100) is divided into
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100×100 equal size square cells. If the cell with left bottom (50, 50) and right top

(51, 51) inflates 1%, then the influence on a vertex say at (52, 53) is about 0.0049,

while the influence on a vertex at (1, 2) is about 0.0001, which may be too small

for consideration.

In the computation of inflation/deflation influences on the corner vertices of

cells, instead of computing each influence, it is practical to ignore some small

influences. Therefore, for any particular cell inflation/deflation, we can have an

effective range. If a corner vertex is out of a cell inflation/deflation effective range,

the change on this vertex will be too small for consideration and can be ignored.

For example, in Figure 3.5 the dotted lines represent the original cell division

and S0 is inflated. Here the effective range is shown by the dashed cycle. The

corner vertices within the effective range are changed resulting in the new cell

division shown in solid lines.

In the value-by-area cartogram transformation, if a cell S0 with center co-

ordinate (x0, y0) inflates/deflates, then instead of computing the distances from

(x0, y0) to each of the corner vertices (xi, yi) in the map to see if (xi, yi) is inside

the effective range, we can simply compute the distance di , which is the distance

from (x0, y0) to the center of cell Si . We can use the distance di to approximately

represent the distances from (x0, y0) to each of the corner vertices of cell Si in

deciding if a corner vertex of cell Sj is inside the effective range. This will decrease
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the computational time if each cell has a lot of corner vertices.

Map area

S1

S2

S3

S4

Map area

Effective range

S0S4 S0

S1

S2

S3

Figure 3.5: Effective Range

The following is the pseudo-code for the new algorithm.

———————————————————————

VALUE-BY-AREA CARTOGRAM ALGORITHM

Input: A map with n cells and a value for each cell,

cell area percent error tolerance ǫ,

Output:New coordinates for cell vertices that

make them form a value-by-area cartogram

begin

for i = 1 to n do

Compute ADi , the desired area of the ith cell

end for

repeat



30

for i = 1 to n do

Compute ACi , the area of the ith cell

Compute the center (xi, yi) of the ith cell

ei =
abs(ACi−ADi)

ADi

, the percent area error

if ei ≥ ǫ then

reff = 100∗abs(ADi−ACi)√
πACi

for j = 1 to n do

dj =
√

(xi − xj)2 + (yi − yj)2

if dj ≤ reff then

for each corner vertex (x, y) in cell j do

d =
√

(x− xi)2 + (y − yi)2

if d ≤ reff then

if d ≤
√

ACi/π then

x = xi + (x− xi)
√

ADi

ACi

y = yi + (y − yi)
√

ADi

ACi

else

x = xi + (x− xi)
ADi−ACi

2πd2

y = yi + (y − yi)
ADi−ACi

2πd2

endif

endif

end for
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endif

end for

endif

end for

for i = 1 to n do

Recompute ACi , the area of the ith cell

Recompute ei =
abs(ACi−ADi)

ADi

, the percent area error

end for

until (∀i, ei < ǫ)

end

———————————————————————-

At the beginning of the algorithm there is a for loop which computes the desired

area ADi for each cell i, followed by a repeat loop, which does the value-by-area

cartogram transformation.

Inside the repeat loop are four for loops. The first for loop computes the cell

area ACi , cell center (xi, yi) and the precent cell area error ei for each center. If

ei is greater than the error tolerance ǫ, then inside the first for loop, the second

for loop computes the radius of the effective range reff based on ADi and ACi .

Then the second for loop computes the distance dj as described before. If dj is

less than reff , then the third loop transforms the corner vertices of cell Sj which
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are inside the effective range. The goal of the fourth for loop inside the repeat

loop is to compute the percent cell area error between the cell area and the desired

cell area for each cell. Those are used to control the termination of the algorithm.

The algorithm terminates if all the percent error between cell area and desired cell

area is less than the error tolerance ǫ.

3.2 Implementation Results

We implemented in Visual C++ the algorithms and did some experiments on a

450 MHz Pentium-Pro PC with 128MB memory running Windows/NT.

3.2.1 Runtime Comparisons for Different Animation Meth-
ods

Table 3.2 gives the run time results for three problems: daily mean temperature,

daily temperature spread, and monthly precipitation of the United States. Four

strategies are used for creating animations. ParD is the Parallel Method with

Dougenik et al.’s cartogram algorithm, ParN is the Parallel Method with the new

cartogram algorithm, HybN is the Hybrid Method with the new cartogram algo-

rithm the SerN is the Serial Method with the new cartogram algorithm. The tem-

perature and precipitation data are from the web-site of the United States National

Climatic Data Center (http : //www.ncdc.noaa.org ). For daily mean temperature
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and daily temperature spread animation, the periods are from January 1, 1993

to December 31,1994. For monthly precipitation animation, the period is from

January 1948 to December 1997.

Run time (seconds)

Problem Snap- ParD ParN HybN SerN
shots

DMT 730 343 89 44 *
DTS 730 353 136 56 *
MPR 600 287 135 50 44

Table 3.2: Computational times for different problems (DMT: daily mean temper-
ature. DTS: daily temperature spread. MPR: monthly precipitation)
A “*” in the table means the algorithm will run into cell distortion.

Table 3.2 shows that the Hybrid Method with the new cartogram algorithm

runs much faster than the Parallel Method with Dougenik et al. cartogram algo-

rithm.

We did several experiments to see the runtime results with different divisions

of the map. Generally, the more cells a map has, the more time is required for

finding the value-by-area cartogram. Figure 3.6 shows the relationship of the run

time and the number of cells.

The average number of edges for the polygonal cells will also affect the com-

putation runtime, but generally is not as much as the number of cells. Figure 3.7

shows the relationship between the animation time and the average number of
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Figure 3.6: Runtime for different number of cells

edges for cells when the number of cells dividing a map is fixed.

Figures 3.6 and 3.7 together suggest experimentally that Dougenik et al.’s

algorithm has an average case complexity of O(m× n2) while our cartogram algo-

rithm has approximately O(m×n) complexity, where n is the number of cells and

m is the average number of edges for the cells. In particular, Figure 3.7 shows that

they all grow linear in m, while Figure 3.6 shows that Dougenik et al.’s algorithm

grows quadratically while our cartogram algorithm grows approximately linearly

in n.
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Figure 3.7: Runtime for different number of average number of cell edges

3.2.2 Accuracy of the Algorithms

Dougenik et al.’s algorithm runs slowly. The Serial Method runs fast but due to

shape distortion accumulation it gives poor cartogram snapshots, or, even totally

distorts the cartogram snapshots during the animation. Thus neither of them is

suitable for animation.

The Parallel and the Hybrid Methods with new cartogram algorithm give highly

accurate cartograms and run fast. More specifically, the Hybrid Method often runs

faster and gives more accurate cartogram snapshots than the Parallel Method. Fig-

ure 3.8 shows the error comparison for the Parallel Method and the Serial Method

during daily mean temperature animation.
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Figure 3.8: Area error comparison for Parallel Method and Hybrid Method



Chapter 4

Piecewise Linear Approximation
for Time Series Data

In this chapter, We discuss an efficient way to represent and approximate GIS time

series data. The presentation below is based on our work in [4, 5, 26].

Many databases contain spatiotemporal data that change continuously with

time but are measured and recorded only sporadically. For example, population

and various other census data in the United States is recorded only every ten

years. Different weather and environmental stations throughout the world may be

measuring and reporting data like air temperature, precipitation, wind direction,

wind speed and levels of different air or water pollutants with different frequencies

and regularities. These data are all time series data.

A time series S is a sequence of data points (t1, y1), · · · , (tn, yn) where the ts

are monotone increasing time values. Note that in a time series the ts need not

37
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always increase uniformly with the same increment. Many GIS databases contain

time series data, for example, the temperature and precipitation data.

It is obvious that all these spatio-temporal data cannot be available for all

locations at all times. If we are interested in the value of a spatio-temporal variable

at a particular time, then we have to somehow approximate that value based on

some interpolation from the available data.

The interpolation could be done at two different levels. One approach is to

represent the measured data in a standard relational database. Then the relational

database can be embedded in a high-level computer program that retrieves the

measurements, interpolates them and does other calculations. This approach may

be a workable one for some scientists who are advanced programmers or who have

such help readily available. It is not feasible for average users.

An alternative approach, that we advocate in this chapter, is to perform the

interpolation at the time of the data entry, that is, the data should be stored as a

constraint database [14, 23, 33], where the constraints are parametric functions of

time that interpolate the data. This approach is advantageous because it is possible

to build powerful database systems (for example, CCUBE [3], DEDALE [10] and

MLPQ [28]) that can be queried by standard relational database query languages,

such as relational algebra, SQL and Datalog. This enables a much wider range of

users to use the database.
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Applications of constraint database systems were until now severely limited to

a few well-understood areas of constraint representation, for example, GIS where

convex polygonal areas were represented as conjunctions of linear inequality, i.e.,

half-plane intersection, constraints. Our work on interpolation functions as a nat-

ural source of constraint data opens up a range of uses of constraint databases

beside these narrow focus applications.

The following is an example of the time series data .

Example 4.0.1 The recording of temperature at a weather station is a

time series. For example, for weather station 1 a time series may be

(0, 75), (1, 77), (2, 86), (3, 87), (4, 90). This can be represented by the first five tu-

ples of relation Temperature as shown in Table 4.1. For other weather stations

(2,3 and 4) we can represent similarly their corresponding time series by adding

more tuples to the Temperature relation.

Piecewise Linear Approximation: We can see that the Temperature relation

can get quite large. In our system we can compress this relation by using a piecewise

linear function. A piecewise linear function is a continuous function that is the

union of a set of linear functions whose domains are disjoint. For example, the

following function f is a piecewise linear function, which is the union of the linear

function 2t+75 when t ≤ 1, the function 9t+68 when 1 < t ≤ 2, and the function
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SN Temp t
1 75 0
1 77 1
1 86 2
1 87 3
1 90 4
2 70 0
2 72 1
2 75 2
2 80 3
2 85 4
3 80 0
3 86 1
3 81 2
3 80 3
3 78 4
4 85 0
4 83 1
4 81 2
4 78 3
4 76 4

Table 4.1: The Temperature relation

2t+ 82 when t > 2.

f(t) =











2t+ 75 t ≤ 1
9t+ 68 1 ≤ t ≤ 2
2t+ 82 t ≥ 2

(4.1)

For a sequence of time series data, we can use the piecewise linear function to

approximate these data (piecewise linear approximation).
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4.1 Piecewise Linear Approximation Algorithm

Given a time series S and an error tolerance constant Ψ, the piecewise linear

approximation problem is the problem of finding a piecewise linear function f

such that:

|f(ti)− yi| ≤ Ψ for each (ti, yi) ∈ S. (4.2)

and

The corner vertices of f must occur in S (4.3)

In general, the smaller Ψ is the more pieces the piecewise linear function will

contain.

Piecewise linear approximation is a traditional problem in applied mathemat-

ics. There are some algorithms that transform a sequence of time series data into

a piecewise linear function where the number of pieces in the piecewise linear ap-

proximation is minimized. Hakimi et. al. [12] give an O(N2) (N is the number of

points in S ) algorithm which computes such an approximation. The complexity is

improved to O(N
4

3
+δ) (where δ can be any positive value) by Agarwal et. al. [1].

There are some other faster algorithms which are not optimal (the number of

pieces in the approximation is not minimal), such as Ramer’s algorithm [25] and

David et. al.’s algorithm [8]. If a sequence of time series data has N points and

is approximated with N ′ pieces, then the complexity of Ramer’s algorithm and
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David et. al.’s algorithm is O(N logN ′).

If a time series data set S contains a large number of data points, then the

above algorithms may run slow. Another disadvantage for these algorithms is that

each time even if we slightly modify or add only one point, we have to recompute

the approximation based on the whole data set. In geographic databases, adding

new data may be very frequent, making these algorithm very inefficient. In this

case, we may need a faster approximation algorithm, although it may not give the

result with optimal number of pieces in the approximation. Below we present such

a piecewise linear approximation algorithm that runs in O(n) worst case time and

is very efficient to append new points in the database.

We will describe our algorithm below. First let us define some terms to be used

in explaining the algorithm.

Definition 4.1.1 On the time interval [tb, te], let us define Yb,e(t) to be the linear

function:

Yb,e(t) =
ye − yb
te − tb

(t− tb) + yb (4.4)

Note: The linear function Yb,e(t) can be drawn as a line segment with end-

points (tb, yb) and (te, ye).

Definition 4.1.2 Given two points (tb, yb) and (te, ye) where (b < e), and the
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maximum approximation error threshold is Ψ, then the lower line for these two

points is the line which passes through the points (tb, yb) and (te, ye−Ψ), denoted

as:

Lb,e(t) =
(ye −Ψ)− yb

te − tb
(t− tb) + yb (4.5)

and the upper line for these two points is the line which passes through the

points (tb, yb) and (te, ye +Ψ), denoted as:

Ub,e(t) =
(ye +Ψ)− yb

te − tb
(t− tb) + yb (4.6)

Note: The lower line Lb,e(t) can be drawn as a line that has one endpoint

(tb, yb) and passes through (te, ye − Ψ). Similarly, the upper line Ub,e(t) can be

drawn as a line that has the same endpoint (tb, yb) and passes through (te, ye+Ψ).

Our piecewise linear approximation algorithm is shown below. The algorithm

initializes the values of b and e to be 1 and 2. Note that the line segment with

endpoints (t1, y1), (t2, y2) is the smallest possible first piece of the piecewise linear

function.

In the if clause of the while loop, the algorithm creates a new piece Yb,e(t) if

the sequence (tb, yb), . . . , (te, ye) can be approximated but the one longer sequence
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(tb, yb), . . . , (te+1, ye+1) cannot be approximated as required by Formula (4.2).

b,b+1

U

U

L

L

U

b

b,b+1Ψ

b+1

L b,b+3

b,b+3

b,b+2

b,b+2

b+3

b+2

Figure 4.1: Successive change of U and L

In the else clause of thewhile loop, the algorithm extends the current sequence

by one point and if necessary tightens both the current lower and the current upper

lines. The working of the else clause is illustrated in Figure 4.1. There we see three

pairs of lower and upper lines. Suppose that we enter three times successively the

while loop and each time execute the else clause. Then the lower line L will after

the first iteration Lb,b+1 , in the second Lb,b+2 , and in the third Lb,b+2 . Similarly,

the upper line U will be after the first iteration Ub,b+1 , in the second Ub,b+2 , and

in the third Ub,b+3 . Note that we get the highest slope lower bound line and the

smallest slope upper line as the final result for L and U , respectively.

———————————————————————————————————
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PIECEWISE LINEAR APPROXIMATION ALGORITHM:

Input: A time series S with n pairs (t1, y1), . . . , (tn, yn).

Ψ the maximum error threshold in the approximation.

Output: A piecewise linear function approximation of S .

Local Vars: The b and e are integer variables such that the sequence

(tb, yb), . . . , (te, ye) can be approximated by one piece.

L and U stand for the current lower and upper lines.

b := 1 and e := b+ 1

L := Lb,e and U := Ub,e

while e < n do

if ye+1 < L(te+1) or ye+1 > U(te+1) then

Create a piece Yb,e defined by Formula (4.4)

b := e and e := b+ 1.

L := Lb,e and U := Ub,e .

else

if Lb,e+1(te+1) > Lb,e(te+1) then

L := Lb,e+1
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end-if

if Ub,e+1(te+1) < Ub,e(te+1) then

U := Ub,e+1

end-if

e := e+ 1

end-if

end-while

Create a piece Yb,e defined by Formula (4.4)

———————————————————————————————————

Example 4.1.1 Suppose the maximum error threshold Ψ = 3, and given the

relation as Table 4.1 from a relational database. The piecewise linear approximation

algorithm will accept this relation as input, and transform it to a piecewise linear

function for each weather station (that is, for each sn). The resulting constraint

relation is shown as Table 4.2.

The representation for this is shown in Table 4.2.

The piecewise linear approximation algorithm first transforms the relational
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SN Temp t

sn temp t sn = 1, temp = 2t + 75, t ≥ 0, t ≤ 1.
sn temp t sn = 1, temp = 9t + 68, t > 1, t ≤ 2.
sn temp t sn = 1, temp = 2t + 82, t > 2, t ≤ 4.
sn temp t sn = 2, temp = 3.75t+ 70, t ≥ 0, t ≤ 4.
sn temp t sn = 3, temp = 6t + 80, t ≥ 0, t ≤ 1.
sn temp t sn = 3, temp = −2.67t + 88.67, t > 1, t ≤ 4.
sn temp t sn = 4, temp = −2.25t + 85, t ≥ 0, t ≤ 4.

Table 4.2: The Temperature Relation

tuples whose sn = 1 into a piecewise linear function. There are 5 tuples for

sn = 1, therefore, n = 5. And it gets the time-value pairs (t1 = 0, y1 = 75),

(t2 = 1, y2 = 77), (t3 = 2, y3 = 86), (t4 = 3, y4 = 87) and (t5 = 4, y5 = 90).

First it intializes the b to 1, and e to 2, then sets the current upper line to

be the line L1,2 , and the current upper line to be the line U1,2 . Then, since e is 2

which is smaller than n, it enters the while loop. For the top level if clause, the

condition ye+1 < L(te+1) or ye+1 > U(te+1) is true. This is because the condition

is equivalent to the condition 86 < L(2) or 86 > U(2). L(2) is L1,2 , that is,

y = −t + 76 by its definition, so L(2) = −2 + 76 = 74. U(2) is U1,2 , that is,

y = 5t+ 70 by its definition, so U(2) = 5× 2 + 70 = 80. Therefore, the condition

86 < L(2) or 86 > U(2) is true. So it enters this clause. Here it creates a piece

Y1,2 which is 2t + 75, then sets the b to 2, and e to 3, and updates the current

L to be L2,3 and U to be U2,3 . Then since current e is 3 which is less than n, it

enters the while loop again.
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The condition in the top level if clause is still true, so it enters this clause.

Then it creates a piece Y2,3 which is 9t + 68, then sets the b to 3, and e to 4,

and updates the current L to be L3,4 and U to be U3,4 . Then since current e is

4 which is less than n, it enters the while loop again.

At this time the condition in the top level if clause is not true, so it enters the

else clause. Here it updates the current lower line L to be L3,5 since the condition

Lb,e+1(te+1) > Lb,e(te+1) is true, and updates the current upper line U to be U3,5

since the condition Ub,e+1(te+1) < Ub,e(te+1) is also true. Then increase e by 1,

that is, e = 6. Because now e is greater than n, it exits from the while loop.

Then it executes the last statement, so it creates the last piece Y3,5 , which is

2t+ 82.

Similarly, the peicewise linear approximation algorithm transforms the tuples

for other weather stations into corresponding piecewise linear functions. The final

transformed constraint relation is shown as Table 4.2.

Theorem 4.1.1 The piecewise linear approximation algorithm is correct for any

error tolerance value Ψ and time series S .

Proof: We have to show that for any S and Ψ the algorithm finds a piecewise

linear function f that satisfies Formula 4.2. To show that, it is enough to prove

the following invariant condition for each entry of the while loop, by induction on
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the number of entries:

Invariant Condition (1): The line segment Yb,e(t) on the time iterval [tb, te]

satisfies Formula 4.2.

For the first entry of the while loop, the initialization implies the line segment

Y1,2 . Clearly, that satisfies Formula 4.2 because it gives zero error for both t1 s and

t2 .

Now we assume that invariant condition (1) holds before some entry of the

while loop, and then we show that it will also hold before the next entry or exit

from the while loop.

There are two basic cases. The first case is when we enter the if clause of the

while loop. In that case we add the current Yb,e(t) to the piecewise linear function,

and that is correct. Then we reset the values of b and e to be two consequtive

points. Therefore, similarly to the initialization, these will also satisfy Formula 4.2.

For the else clause in the while loop, we prove the following condition that

holds before entering the else clause.

Invariant Condition (2): If f(t) is a line that passes through (tb, yb) and

is between L and U (i.e., has a higher slope than L but a smaller slope than U

has), then |f(ti)− yi| ≤ Ψ for each b ≤ i ≤ e.

We fix the value of b and prove the condition by induction on e − b. (This
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corresponds to repeatedly executing the else clause.)

If e = b+ 1, then condition (2) obviously holds.

Now assume that the condition holds for some k = e − b. Then we prove it

for k + 1. Clearly k can increase only if e has increased by one since we fixed the

value of b.

If we increased e since the last entry of the else, then we must have also

updated L and U . Let the previous values be L′ and U ′ and the new values be

simply L and U . Since the slope of L is greater than or equal to that of L′ , and

the slope of U is less than or equal to that of U ′ , there can be only a smaller or

equal region between L and U than between L′ and U ′ .

Let f(t) be any line that passes through (tb, yb) and is between L and U .

Then by the above, f(t) also is between L′ and U ′ . Therefore, by the induction

hypothesis |f(ti) − yi| ≤ Ψ holds for b ≤ i < e. Also, by the definition of L and

U , we have that |f(te) − ye| ≤ Ψ. This proves that invariant condition (2) must

hold.

Finally, note that invariant condition (2) implies invariant condition (1).

That is because if we are in the else clause, then we can choose for f(t) the linear

function Yb,e(t).

Finally, if we exit the while loop, then we get the last piece, which also must
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satisfy Formula 4.2 because none of our arguments above depended on the value

of n. Hence if we had more values we could continue by entering again the while

loop, that is, invariant condition (1) still must hold.

Next we analyze the computational complexity of our approximation algorithm.

Theorem 4.1.2 The computational complexity of the piecewise linear approxi-

mation algorithm is O(n) in the worst case where n is the number of points in the

time series to be approximated.

Proof: There is only loop, the while loop in the piecewise linear approximation

algorithm. The while loop is executed only at most n− 2 times, because initially

the value of e is two, then it is incremented by one in each iteration until e = n.

We also have to show that each iteration of thewhile loop takes only a constant

time. Within the while loop the top level if statement has two clauses. The

then clause takes a constant time, because there we only do a fixed number of

comparison and assignment operations and add one piece to the piecewise linear

function, which will be the output of the algorithm. By keeping the pieces in a

linked list and a pointer to the end of the last list, we can do the addition in

constant time. In the else clause we again do only fixed number of comparison

and assignment operations.

Therefore, the worst case computational complexity of this algorithm is O(n).
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Remark: There are other advantages of the piecewise linear approximation algo-

rithm beside data compression. First, we do interpolation as well as conversion of

data. For example, this allows us to ask what was the temperture at time instances

other than the original time instances when the original time series measurements

were taken. Second, because the data is much smaller, querying and visualizations

could be also done faster using the compressed data.

4.2 Analysis of the Expected Number of Points

in a Piece

Now we analyze the expected number of this ratio, assuming that the time series

(t1, y1), · · · , (tn, yn) satisfies the following property, for some constant M and for

each 1 < i ≤ n










y1 = 0
Prob(yi − yi−1 = M) = 0.5
Prob(yi − yi−1 = −M) = 0.5

(4.7)

For example, consider the time series which starts with (0, 0) and records for

each later time a coin is flipped and the number of heads minus the number of tails

seen since the beginning. This time series satisfies Property (4.7) with M = 1 if

heads and tails have the same probability.

As another example, the daily temperature could be described by a time series
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that satisfies Property (4.7), if we use a thermometer in which the adjacent scales

are M Fahrenheit degrees apart instead of the usual single Fahrenheit degrees,

where M is the largest daily change, and if we record only on those days when

there is a change in temperature according to the rougher thermometer.
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Figure 4.2: Piecewise Linear Approximation for Points

Let E(Ψ,M) be the expected number of original points spanned by a single

piece of the piecewise linear approximation, including the two endpoints, when the

approximation uses the tolerance Ψ and the time series satisfies Property (4.7).

We can prove the following.

Theorem 4.2.1 If a time series satisfies Property (4.7), then

E(Ψ,M) ≥
(⌊

Ψ

2M

⌋

+ 1
)2

.
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Proof: Let R(h) be the expected number of additional points before the time

series goes out of the error range −Ψ
2
≤ y ≤ Ψ

2
when it starts from height hM as

shown in Figure 4.2. For k = ⌊ Ψ
2M

⌋ , we have the following system of equations:











R(−k) = 1
2
(1 +R(−k + 1))

R(i) = 1
2
(1 +R(i− 1)) + 1

2
(1 +R(i+ 1)) for − k < i < k

R(k) = 1
2
(1 +R(k − 1))

(4.8)

Note that −kM is the lowest height that is still within the error range. The

first equation is true because there is one half chance that we go out of the error

range and also one half chance that we go to height (−k+1)M and continue from

there. The other two equations can be similarly explained.

Next we will prove that the solution for the above equations is:

R(i) = k2 − i2 + 2Ψ.

We will prove by induction.

1. We prove that R(k) = k2 − k2 + 2Ψ and R(k − 1) = k2 − (k − 1)2 + 2Ψ.

We sum all the equations in 4.8, then we can get the following equation:

1

2
(R(k) +R(−k)) = 2Ψ

Because R(k) and R(−k) are symmetric in equations 4.8, they have the

same value, hence we can get that:

R(k) = 2Ψ = k2 − k2 + 2Ψ
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Having the value of Rk , from the equation

R(k) =
1

2
(1 +R(k − 1))

We can get

R(k − 1) = k2 − (k − 1)2 + 2Ψ

2. Suppose that R(i) = k2− i2+2Ψ and R(i−1) = k2− (i−1)2+2Ψ for some

1 ≤ i ≤ k ,

Then from the equation

R(i− 1) =
1

2
(1 +R(i)) +

1

2
(1 +R(i− 2))

We have

R(i− 2) = 2R(i− 1) +R(i)− 2

= 2k2 − 2(i− 1)2 + 4Ψ−K2 + i2 − 2Ψ− 2

= k2 + 2Ψ− (i2 − 4i+ 4)

= k2 − (i− 2)2 + 2Ψ

From 1 and 2 we can get that

R(i) = k2 − i2 + 2Ψ.
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for all 0 ≤ i ≤ k . For the cases that −k ≤ i ≤ 0, we can similarly prove that

R(i) = k2 − i2 + 2Ψ.

Hence,

R(0) = k2 + 2Ψ.

Now suppose that the piecewise linear approximation algorithm creates a piece

between P1 and Pv as shown in Figure 4.2. If we connect P1 to any point before

Pu , then the error will not exceed Ψ because all points lie between −Ψ
2

and Ψ
2
.

Hence the approximation algorithm can go at least to point Pu . This shows that

E(Ψ,M) ≥ R(0) + 1 = (k + 1)2 =
(⌊

Ψ
2M

⌋

+ 1
)2
. Hence the theorem holds.

For example, for the coin flipping time series when Ψ = 6 each piece of the

piecewise linear approximation function is expected to span at least 16 original

time series points.

4.3 Update of Piecewise Linear Function

The update module is responsible for modifying the database as the user requests.

Usually the query languages are augmented with special language constructs to

express updates. The most important types of update operations are insertions

and deletions of tuples in relational databases.



57

In this section we consider what happens in the system if we approximated by

a constraint database some relational database that represents a time series and

the user requests an insertion or deletion of a point in the time series. Note that

the user can request insertions and deletions of time series points (i.e., tuples of

the relational database) and not the constraint database, because the constraint

database representation is hidden from the user.

If the user requests a deletion of a time series data point, then the request can

be ignored because the approximation function still satisfies the error tolerance for

the remaining points.

The insertion of points is much more complex. In this case, we have to update

the piecewise linear function. Consider Figure 4.3. There the original piecewise

linear function is shown as a solid black line in (1). In (2) the point P1 is to be

inserted, but the piecewise linear function is not changed since P1 is in the error

tolerance Ψ. In (3) the point P2 is to be inserted, and the piecewise linear function

is updated by splitting the middle piece into two pieces. In (4) the point P3 is to be

inserted, and the piecewise linear function is updated by splitting the third piece

into two pieces.

The system insertion algorithm for a single data point (tα, yα) is shown below.

Remark 3: In Remark 2, we mentioned that a piecewise linear approximation
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Figure 4.3: Inserting Points into Piecewise Linear Function

can be represented as a set of endpoints of the pieces. Now, we add a Boolean

tag o to each point. The tag will be true if it is a point that is an original point,

otherwise it is a point which was inserted and the tag will be false. This allows us

to reconstruct from any updated piecewise linear function f , the original piecewise

linear function, denoted fo , as the sequence of points with the true tags. Finally,

we assume that for no point (tα, yα) to be inserted is there already a point with

time tα .

———————————————————————————————————
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INSERTION ALGORITHM:

Input: A piecewise linear function f represented as a sequence of points

(t1, y1, o1), . . . , (tn, yn, on) as in Remark 3.

Ψ the maximum error threshold in the approximation.

(tα, yα) the point to be inserted.

Output: An updated piecewise linear function.

if tα < t1 then

Add (tα, yα, false) as the first point in f .

else if tα > tn then

Add (tα, yα, false) as the last point in f .

else if fo(tα)−Ψ > yα then

Add (tα,
1
2
((fo(tα) + Ψ) + yα), false) between points with times ti < tα and ti+1 > tα .

else if fo(tα) + Ψ < yα then

Add (tα,
1
2
((fo(tα)−Ψ) + yα), false) between points with times ti < tα and ti+1 > tα .

end-if

———————————————————————————————————

We can show the following theorem.
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Theorem 4.3.1 Suppose that a time series S is approximated by a piecewise

linear function fo with n “pieces” and Ψ error tolerance. Then any set I of m

insertions such that each insertion point is at most some constant δ ≥ Ψ distance

from fo can be done by the TAQS insertion algorithm such that the updated

piecewise linear function f has at most n+m “pieces” and the following holds.

|f(ti)− yi| ≤
Ψ+ δ

2
for each (ti, yi) ∈ S ∪ I.

Proof: From the algorithm above, there are four cases to insert one point (tα, yα),

which are (1): tα < t1 , (2): tα > tn , (3): t1 < tα < tn and fo(tα) − Ψ > yα , and

(4): t1 < tα < tn and fo(tα) + Ψ < yα .

First we prove that the updated piecewise linear function f has at most n+m

pieces after m insertions. In either of the four cases, the algorithm adds one point

to f . In other cases, the algorithm does not add any point to f . Therefore, for

a sequence of m insertions, at most m points are added to f . Further, no points

are ever deleted by the insertion algorithm. Hence, f has at most n +m points.

Next, we prove that |f(ti)− yi| ≤
Ψ+δ
2

for each (ti, yi) ∈ S ∪ I . We prove this

by induction. Let us assume that after a sequence of insertions the condition is true

and now we are inserting some new point (tα, yα). We prove that the condition

also holds after the insertion of (tα, yα).
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Case (1): The insertion algorithm in effect adds a new piece with endpoints (tα, yα)

and (t1, y1) to f . The condition is clearly true in this case, because the point

(tα, yα) is contained in the new piece.

Case (2): This is similar to case (1).

Case (3): In this case, the old piece between ti, yi and (ti+1, yi+1) is deleted and

replaced with two new pieces, one with endpoints A(ti, yi) and C(tα,
1
2
((fo(tα) +

Ψ)+yα), and the other with endpoints C(tα,
1
2
((fo(tα)+Ψ)+yα) and B(ti+1, yi+1).

Note that by the induction hypothesis, all points in S before A or after B still

satisfy the condition. Hence we only have to prove that the condition is still true

for the points of f that are between A and B . First let us consider the points on

the piece AC .

Consider the original piecewise linear function between A and B . Let D and

E be points on the line fo(t)− Ψ, and F and G be points on the line fo(t) + Ψ

as shown in Figure 4.4. The coordinates of these four points can be calculated to

be D(ti, fo(ti)−Ψ), E(tα, fo(tα)−Ψ), F (ti, fo(ti)+Ψ) and G(tα, fo(tα)+Ψ). For

the point to be inserted (tα, yα), we calculate the following:

|f(tα)− yα|
= 1

2
((fo(tα) + Ψ) + yα)− yα by y coordinate of C

= 1
2
((fo(tα) + Ψ)− yα)

= 1
2
(Ψ + (fo(tα)− yα))

≤ Ψ+δ
2
.

(4.9)
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Figure 4.4: Insert a point

The last inequality follows form the condition that each point inserted is at

most δ distance from the original piecewise linear function. Hence (tα, yα) satisfies

the condition.

Note that there cannot be any other I point H before (tα, yα) that is between

A and C and has more than Ψ distance from fo . If we had, then we would have

to use either AH or HB instead of AB when we are inserting (tα, yα).

Now we can assume that all S and I points before (tα, yα) and between A

and C are at most Ψ distance from fo . Therefore, these all fall into the trapezoid

region DEGF , showing that any point within DEGF satisfies the condition.

At first we show the condition for the corner vertices. For D and F the



63

condition is true by the induction hypothesis, that is, they are both at most Ψ+δ
2

distance from A. Note that yα is at most δ and both E and G are at most Ψ

distance from fo . Since the y coordinate of C is at the midpoint of yα and the y

coordinate of G, both G and E are at most Ψ+δ
2

distance from C .

B
A

C

C’A’

G
F

ED

Figure 4.5: Proof condition for point M

Let A′ be the point exactly Ψ+δ
2

below F , and let C ′ be the point exactly Ψ+δ
2

below G. Suppose that M = (t, y) is any point within DEGF . Let M1 be the

point directly above M and intersecting the line segment FG and M2 be the point

directly below M and intersecting the line segment A′C ′ as shown in Figure 4.5.

Clearly, the distance between M and AC is less than the distance between M1

and M2 , which is exactly Ψ+δ
2

. Hence M must satisfy the condition. Therefore,
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all points within DEGF satisfy the condition.

The above took care for points between A and C . We can prove similarly that

all points in S and in I before (tα, yα) and between C and B also satisfy the

condition.

Case (4): It is similar to Case (3).

For example, if δ = 3Ψ, then the error tolerance for the updated piecewise

linear approximation will be 2Ψ for all original and newly inserted data points.

4.4 Export Conversion

The export conversion deals with the conversion from constraint databases to re-

lational databases. Constraints in general cannot be converted to a relational

database representation because that would require an infinite number of tuples.

However, if there are a finite set of time instances which are of interest, then we

can generate from the constraint database a relational database that contains the

values for the needed time instances. This conversion is illustrated in an example

below.

Example 4.4.1 Suppose that we are given the constraint database relation

Temperature shown in Table 4.2 and we are interested in the temperatures at

times 1 and 1.5. Then we can convert the constraint database to the relational
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database shown in Table 4.3.

SN Temp t

1 77 1
1 81.5 1.5
2 73.75 1
2 75.625 1.5
3 86 1
3 84.665 1.5
4 82.75 1
4 81.625 1.5

Table 4.3: The Conversion Result

Note that we could not obtain the above table from the relation database shown

in Table 4.1 because that does not give the temperature for the time t = 1.5. By

using the interpolation implicit in the piecewise linear approximation that actually

yields the constraint database in Table 4.2, we could access an approximate value

of the temperature at any time instance between 1 and 4 including 1.5. The

constraint database representation is better in this case as we do not know ahead

what time instances the users may be interested in.



Chapter 5

Using Piecewise Linear
Approximation in Cartogram
Animation

5.1 Approximate Cartogram Animation

Value-by-area cartogram animation is generally used to animate geographically dis-

tributed time series data. These data usually change continuously but are usually

measured sporadically and hence we only have the data at some time instance. A

simple animation strategy is to create one snapshot for each recorded time instance.

However, there are some shortcomings in this simple animation strategy:

First, we can not freely choose different time granularity for animation. If the

data are sampled sparsely over time, without inserting some intermediate snap-

shots, the animation may look “jumping” from one snapshot to a quiet differently

next one.

66
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Second, sometimes we may need to animate the values which are not in the

original data set. For example, if the temperature is measured every 2 hours, that

is, it is measured at 0:00am, 2:00am, · · ·, 10:00pm, they we can not show animation

of temperature at 11:00am each day.

Third, suppose there are two temperature datasets for two cells, one of them

records the temperatures every 10 days, the other one does every 7 days. How to

animate both of them in the same animation? They will have same day’s data for

every 70 days.

Some GIS data may be very huge. For example, in the United States there are

over 8,021 weather stations, if each station measures temperature and precipitation

data hourly, then each year large quantities of data will be gathered. The data may

need to be compressed in order to be efficiently queried and displayed.

As discussed in Section 4, piecewise linear approximation can compress a se-

quence of time series data, while guaranteeing some error tolerance. It is very

useful to approximate time series values for animation.

Some advantages for using piecewise linear approximation to approximate the

data for animation are:

1. We can select the animation time granularity to get a smooth animation.

2. We can animate the data for any time instance.
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3. If the data volume is huge and accessing them requires sometime, by com-

pressing them into piecewise linear functions and access much fewer number

of these functions, it is hopeful to decrease data access time and thus have

faster animation.

4. At some extent, we can use the piecewise linear approximation to do some

prediction.

Piecewise linear approximation can compress the data and provide some inter-

polation and prediction. However, generally it will introduce some error between

the real value and the approximated value. If in some cases we need to have

the exact values at the recorded time instances, we can use the piecewise linear

approximation and let the error tolerance to be zero.

5.2 Animation to Real Data

Next we give an example to show how we can use piecewise linear approximation

in value-by-area cartogram animation.

Example 5.2.1 We would like to animate the daily mean temperature data in the

continental United States with each state as a cell. There are over 8,021 weather

stations in the continental United States, which report the weather data for its
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area. The temperature for each state is calculated as the average temperature of

all weather stations inside this state.

The 8,021 weather stations record each day the high temperature, low temper-

ature and precipitation. Each high temperature, low temperature or precipitation

is recorder in a 4 bytes string. Hence, the 50 years data are 1.76GB large.

If we use piecewise linear approximation to approximate each stations temper-

ature with error tolerance Ψ = 10, the data can be compressed to about 96MB.

For this volume of data, retrieval can be done much faster.

Another advantage for piecewise linear approximation is the data interpolation.

In the weather dataset as above, there are often some data missing for some weather

stations for some day. If we are interested in the values at a particular day for all

locations, we have to somehow approximate these values based on piecewise linear

approximation.



Chapter 6

Approximate Query Evaluation
Method

In Chapter 4, we described that time series data can be approximated in linear

constraint databases by piecewise linear function. In this chapter we will discuss

the query evaluation in linear constraint database based on piecewise linear approx-

imation, which is a faster approximation that preserves high precision and recall.

The presentation below is based on our work in [6].

Suppose that there are a sequence of time series weather data S =

{(d1, ht1, lt1), (d2, ht2, lt2), · · ·, (dn, htn, ltn)} where di s (1 ≤ i ≤ n) are consecu-

tive days, hti s (1 ≤ i ≤ n) are daily high temperatures and lti s (1 ≤ i ≤ n) are

daily low temperatures. The data are saved in relational database R(day, ht, lt).

The following SQL query finds the pair of days such that the first day’s low tem-

perature is higher than the second day’s high temperature, which is shown in the

70
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following query 6.1:

Select R1.day, R2.day
from R R1, R R2
where R1.lt > R2.ht

(6.1)

In linear constraint database system (such as MLPQ), we can use piecewise

linear approximation to approximate the hts and lts in the relation R . Suppose

that we use a relation A(day, ht, lt) in MLPQ which has k linear constraint tuples

to approximate R such that at each day di , the max error for the temperature is

less than some constant error tolerance Ψ. The constraint tuples are as following:

Day ht lt

d ht lt d1 ≤ d < dd2, ht = h1 + s1 ∗ (d− d1), lt = l1 + t1 ∗ (d− d1)
d ht lt dd2 ≤ d < dd3, ht = h2 + s2 ∗ (d− dd2), lt = l2 + t2 ∗ (d− dd2)
... ... ... ...
d ht lt ddk ≤ d < dn, ht = hk + sk ∗ (d− ddk), lt = lk + tk ∗ (d− ddk)

Table 6.1: The constraint tuples in linear constraint database

Then in constraint database system, the previous query can be written as the

following SQL query 6.2:

Select A1.day, A2.day
from A A1, A A2
where A1.lt > A2.ht

(6.2)

The constraint database system (such as MLPQ) can evaluate the above query

and give linear constraint database output. From the linear constraint database
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output, we can create the pair of days output by the export conversion described

in Chapter 4.

Suppose that the set of tuples returned by query 6.1 is R , the set of tuples as

the export conversion result from query 6.2 is C . We can consider the approximate

evaluation of query 6.2 as an information retrieval system of query 6.1. Then in

this system, each tuple t of possible pair of days must fall into one of the following

four categories, as shown in Figure 6.1:

1. t ∈ R and t ∈ C , we call this as “Relevant Retrieved”

2. t ∈ R and t 6∈ C , we call this as “Relevant Not Retrieved”

3. t 6∈ R and t ∈ C , we call this as “Non-Relevant Retrieved”

4. t 6∈ R and t 6∈ C , we call this as “Non-Relevant Not Retrieved”

From [17], the two major measures are:

Precision =
Number Retrieved Revelent

Number Total Retrieved

Recall =
Number Retrieved Revelent

Number Possible Revelent

In our example the Number Total Retrieved is |C| , the Number Possible Revelent

is |R| .
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Figure 6.1: Search Result

6.1 Experimental Results

We did some experiments using the temporal dataset containing 10 years’ daily

high temperature, daily low temperature datasets between the year 1987 and 1996

from the weather station in Nebraska State (station number: 252820). We use

different Ψ values to restrict the piecewise linear transformation. The original

weather data comes from the website of the National Climatic Data Center at

http://www.ncdc.noaa.gov.

We used the running window method to smooth the original data. The running

window size is set to 7.

Rhigh(day, high temp) is the high temperature relation, Rlow(day, low temp)
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Ψ #Pieces in High # Pieces in Low
Temperature Dataset Temperature Dataset

— 3,653 3,653
1.0 1,426 1,084
2.0 790 594
4.0 428 335
2.0 197 140

Table 6.2: Number of Pieces in Datasets

is the low temperature relation. During the comparison, Rhigh and Rlow

are renamed as R′
high and R′

low respectively. Also, we get the relation

R(day, high temp, low temp) by join the relation Rhigh and Rlow .

The following are some experimental tests for simple and composite algebraic

queries based on these three relations. In these tests, we use MLPQ system to

evaluate the constraint queries and after getting the constraint tuple output, use

export conversion as in Chapter 4 to get the pair of days.

Simple Algebraic Queries

Example 6.1.1 We try to find all pair of days such that for each the high tem-

perature in one day is greater than or equal to that in the other.

The SQL query is as follows.

select R_1.day, R_2.day

from R_high R_1, R_high R_2
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where R_1.high_temp >= R_2.high_temp;

The Datalog query in MLPQ is as follows.

Pair(day1, day2) :- R_high(day1, high_temp1),

R_high(day2, high_temp2),

high_temp1 >= high_temp2.

The test results are as Table 6.3.

Ψ MLPQ Actual
Constraints # Solutions Precision Recall

1.0 2,006,001 6,645,646 99.39% 99.49%
2.0 1,208,010 6,645,646 98.54% 98.67%
4.0 235,639 6,645,646 96.83% 96.97%
8.0 51,681 6,645,646 93.39% 93.53%

Table 6.3: Rhigh >= R′
high

Example 6.1.2 We try to find all pair of days such that for each the low temper-

ature in one day is greater than or equal to that in the other.

The SQL query is as follows.

select R_1.day, R_2.day

from R_low R_1, R_low R_2

where R_1.low_temp >= R_2.low_temp;
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The Datalog query in MLPQ is as follows.

Pair(day1, day2) :- R_low(day1, low_temp1),

R_low(day2, low_temp2),

low_temp1 >= low_temp2.

The test results are as Table 6.4.

Ψ MLPQ Actual
Constraints # Solutions Precision Recall

1.0 2,006,343 6,644,379 99.29% 99.42%
2.0 697,901 6,644,379 98.35% 98.51%
4.0 235,624 6,644,379 96.38% 96.51%
8.0 51,676 6,644,379 92.84% 92.99%

Table 6.4: Rlow >= R′
low

Composite Algebraic Queries:

Example 6.1.3 We try to find all pair of days such that for each the high tem-

perature in one day is greater than or equal to that in the other and the low

temperature in one day is also greater than or equal to that in the other.

The SQL query is as follows.

select R_1.day, R_2.day

from R R_1, R R_2
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where R_1.high_temp >= R_2.high_temp

and R_1.low_temp >= R_2.low_temp;

The Datalog query in MLPQ is as follows.

Pair(day1, day2) :- R(day1, high_temp1, low_temp1),

R(day2, high_temp2, low_temp2),

high_temp1 >= high_temp2,

low_temp1 >= low_temp2.

The test results are as Table 6.5.

Ψ MLPQ Actual
Constraints # Solutions Precision Recall

1.0 1,836,631 6,091,441 99.30% 99.44%
2.0 639,797 6,091,441 98.40% 98.66%
4.0 215,649 6,091,441 96.45% 96.67%
8.0 46,449 6,091,441 92.72% 92.68%

Table 6.5: Rhigh >= R′
high and Rlow >= R′

low

Example 6.1.4 We try to find all pair of days such that for each the high temper-

ature in one day is greater than or equal to that in the other or the low temperature

in one day is also greater than or equal to that in the other.

The SQL query is as follows.
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select R_1.day, R_2.day

from R R_1, R R_2

where R_1.high_temp >= R_2.high_temp

or R_1.low_temp >= R_2.low_temp;

The Datalog query in MLPQ is as follows.

Pair(day1, day2) :- R(day1, high_temp1, low_temp1),

R(day2, high_temp2, low_temp2),

high_temp1 >= high_temp2.

Pair(day1, day2) :- R(day1, high_temp1, low_temp1),

R(day2, high_temp2, low_temp2),

low_temp1 >= low_temp2.

The test results are as Table 6.6.

Ψ MLPQ Actual
Constraints # Solutions Precision Recall

1.0 2,175,713 7,198,584 99.39% 99.48%
2.0 755,959 7,198,584 98.56% 98.60%
4.0 255,614 7,198,584 96.93% 97.00%
8.0 56,908 7,198,584 94.05% 94.37%

Table 6.6: Rhigh >= R′
high or Rlow >= R′

low

From above we can see that the approximate evaluation gives much fewer num-

ber of output tuples because of the data compression in piecewise linear approxi-
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mation. It also preserves high precision and recall. Our work shows that there is a

trade-off between space and accuracy for the evaluation (which is depend on the ap-

proximation error tolerance). For different precision and recall requirements we can

choose different approximation error tolerance such that it satisfies the precision

and recall requirements in query evaluation and use as less space as possible.



Chapter 7

Query Optimization

In this chapter, we propose a new query optimization strategy based on the hyper-

graph representation of queries. The presentation below is based on our work in

[19, 22].

Since the introduction of Wong and Youssefi’s algorithm in 1976, there were

many important discoveries on the efficient partitioning of hypergraphs [2, 15, 22].

To our knowledge, these more recent discoveries were not used yet to develop new

query optimization strategies for relational algebra queries. In this chapter, we de-

scribe a new optimization strategy that requires smaller intermediate size relations

in the evaluation. Also, our optimization strategy tends to yield expressions that

can be evaluated easily by parallel processors.

Hypergraph Partitioning: We are considering in this chapter hyperedge

partitioning of hypergraphs. In such a partitioning each hyperedge belongs to

80
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exactly one of two parts. However, a vertex may belong to several parts. We call

a hyperedge a cross edge if it contains vertices that belong to both parts.

The rest of this section is structured as follows. Section 7.1 discusses hyper-

graph partitioning-based query optimization on natural join queries. Section 7.2

compares Wong-Youssefi’s optimization algorithm with hypergraph partitioning-

based optimization algorithm on an example query. Section 7.3 discuss the op-

timization of queries with select operation. Section 7.4 discuss the optimization

for general queries. Section 7.5 briefly discuss the hypergraph partition heuristics,

which can be used for query optimization.

7.1 Hypergraph Partitioning-based Optimiza-

tion for Join Operations

Let us first explore the case when there are only natural join operations in the

query. To optimize such a query, we first represent it as a hypergraph. Then we

find a hyperedge partitioning of the hypergraph. After the partition, we evaluate

each part separately and finally join them.

For large hypergraphs, each part is recursively partitioned into smaller parts

until each part contains less than four relations. This recursive algorithm yields an

evaluation tree as shown in Figure 7.1.

Now we will describe the hypergraph partitioning-based optimization strategy.
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P000

P001

Partitioning Strategy Evaluation Strategy

P01

P0 P1

P00

(P1)(P0)

... ... ... ...

Figure 7.1: Recursively Partitioning-based Optimization

———————————————————————————————————

HYPERGRAPH PARTITIONING-BASED OPTIMIZATION ALGORITHM:

Input: A relational algebra query with only natural operations

Output: A binary tree which gives an evaluation strategy.

Local Vars: root is a binary tree node type variable which has

left and right pointers and item as a

hypergraph/subgraph. s is a stack which has

the same element type as root. a, p1 and p2

are tree node type variables.
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Represent the query using a hypergraph H=(V,E).

root− > item = H; root− > left = NULL; root− >right=NULL;

push(s, root);

while stack s is not empty do

begin

a = pop(s);

if a− > item has more than one relation, then

begin

partition the hypergraph a− > item into 2 parts p1 and p2

create two new tree nodes t1 and t2

t1− > item = p1 ;

t1− > left=NULL;

t1− >right=NULL;

t2− > item = p2 ;

t2− > left=NULL;

t2− >right=NULL;

a− > left=t1 ;

a− >right=t2 ;

push(s, t1 );

push(s, t2 );

end



84

end

———————————————————————————————————

Partitioning Heuristic: Suppose that we partition a hypergraph into two

parts P0 and P1. The more common attributes (vertices shared by two or more

hyperedges) there are within the relations of P0, the smaller P0 will be in gen-

eral. Similarly, the more common attributes P1 contains, the smaller it will be in

general. Since we want to have small intermediate size relations, our goal is to find

a partition such that (1) both parts have about the same number of hyperedges

and (2) the number of common attributes within each part is maximal.

Clearly, the whole graph contains a fixed number of common attributes. Most

of these occur also as common attributes in P0 or in P1. However, there are some

common attributes which are shared only by a hyperedge in P0 and a hyperedge

in P1. It is the number of these common attributes that we want to minimize.

As an approximation of this, we may choose a partition that minimizes the

number of hyperedges that cross the two parts. This is called the minimum parti-

tioning problem for hypergraphs for which several good heuristics have been already

developed that we can use (see Section 7.5).
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Extended strategy with Semi-joins: Even though we minimized the num-

ber of cross edges during the partition, we could still take some advantage of the

common attributes found in the cross edges, by semi-joining them with the adjacent

edges in the other part. This method would alleviate the fact that there are still

some attributes that are common only between the two hyperedges that belong to

different parts. Note however, that even under this assumption, it still makes sense

to choose a minimal partitioning of the hypergraph, in this case not for maximizing

the number of common attributes in the two parts, but for minimizing the number

of semi-join operations that need to be introduced in each partition step.

Next let’s use an example to illustrate the strategy.

Example 7.1.1 Suppose that there are 6 relations, A(a1, a2, a3), B(a3, a4, a5),

C(a5, a6, a7), D(a7, a8, a9), E(a9, a10, a11), F (a11, a12, a1). We need to compute

the natural join of the 6 relations, that is, to calculate:

A ⊲⊳ B ⊲⊳ C ⊲⊳ D ⊲⊳ E ⊲⊳ F (7.1)

The algorithm first construct the hypergraph corresponding to the query 7.1

as in Figure 7.2.

The recursively partitioning process is shown in Figure 7.3, which yields the

evaluation tree as shown in Figure 7.4.



86

3 4 5

62

a 11

a

1 7

C DEF B

8

910

12

A

a

a

a

a

a

a

a

a

a a

Figure 7.2: Hypergraph for A Natural Join Query

The evaluation is bottom-up on the binary tree. The following is the algorithm

for creating the evaluating strategy from the binary tree created in hypergraph-

partitioning based optimization algorithm.

———————————————————————————————————

EVALUATION STRATEGY ALGORITHM:

Name Evaluation strategy

Input: A binary tree created by hypergraph-partitioning

based optimization algorithm.

root is the root of the tree.

Output: An evaluation strategy.
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Figure 7.3: Hypergraph Partitioning Solution

Local Vars:le and re are evaluation results.

if ((root− > left==NULL) && (root− >right==NULL))

return(root− > item);

else

begin

le=evaluate(root− > left);

re=evaluate(root− >right);

return(le ⊲⊳ re);

end



88

Level 1

Level 0

Level 2

Level 3

ED

CB

FA

Figure 7.4: Evaluation Tree

———————————————————————————————————

Using the above algorithm, we get the following relational algebra expression

for the query:

((A ⊲⊳ B) ⊲⊳ F ) ⊲⊳ ((C ⊲⊳ D) ⊲⊳ E)

7.2 Comparison with Wong-Youssefi’s Optimiza-

tion Algorithm

In this section, we compare our optimization result to the result of Wong-Youssefi’s

optimization algorithm.

Wong-Youssefi’s optimization strategy first tries to find and reduce a small

hyperedge or a hyperedge that when taken away would disconnect the hypergraph.

Note that in Figure 7.2, there is neither a small hyperedge nor a hyperedge that

when taken away would disconnect the hypergraph. Hence, we have to arbitrarily
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choose one hyperedge to reduce the hypergraph. Suppose we arbitrarily choose

hyperedge A. Then we have:

B = B ∝ A, F = F ∝ A.

FromWong-Youssefi’s algorithm, now both B and F become “small” relations.

Next we can reduce either B or F . We arbitrarily choose B to reduce, we now

have:

C = C ∝ B .

Next we can reduce D , then E and then F , the final evaluation result is:

B = B ∝ A

F = F ∝ A

C = C ∝ B

D = D ∝ C

E = E ∝ D

F = F ∝ E

H1 = F ⊲⊳ E

H2 = D ⊲⊳ H1

H3 = C ⊲⊳ H2

H4 = B ⊲⊳ H3

R = A ⊲⊳ H4

The evaluation tree for Wong-Youssefi algorithm is shown in Figure 7.5 (in this
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figure we only show the ⊲⊳ operations and do not show the ∝ operations):

C

B

A

D

Level 5

Level 4

Level 3

Level 2

E F Level 0

Level 1

Figure 7.5: Wong-Youssefi’s Solution

7.2.1 Comparison of Costs and Parallel Evaluation

In order to estimate the output cost for joins in each level of the evaluation tree, let

us suppose that each relation has 1000 tuples, that is, TA = 1000, ..., TJ = 1000,

and suppose that for each attribute ai in each relation the different number of

attribute values is 100, that is, Iai = 100 for each 1 ≤ i ≤ 12. We also assume

that there are no dangling tuples, hence semi-join operations do not shrink the size

of the relations. From the formula in [32], the number of tuples in the natural join

of the two relations R(B1, · · · , Bk, A1, · · · , Aj) and S(B1, · · · , Bk, C1, · · · , Cm) is:

TRTS

IB1
· · · IBk

Based on the above assumption and the formula, we can estimate the number
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of tuples of the intermediate relation in each level of the evaluation tree. The

estimates for Wong-Youssefi’s algorithm is shown in Figure 7.6, while the estimates

for our algorithm is shown in Figure 7.7. It can be seen that the maximum size of

any intermediate relation in Wong-Youssefi’s algorithm is 107 , while for our new

algorithm it is only 105 . Therefore, our optimization algorithm can be expected to

perform faster in this example.

D

C

B

A

E

10^6

10^7

10^6

10^5

10^4

F

Figure 7.6: Number of Tuples for Wong-Youssefi’s Algorithm

CB

FA D

10^6

10^5

10^4

10^5

10^4

E

Figure 7.7: Number of Tuples for New Algorithm
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Parallel Evaluation: As we can see in Figure 7.6 the structure of the query

evaluation tree of Wong-Youssefi’s algorithm tends to be a long chain unless there

are disconnecting edges which are chosen frequently. In contrast, as Figure 7.7

suggests, our algorithm is returning well-balanced query optimization trees. There-

fore, the output of our algorithm is much more easily parallelized. It also should

be pointed out that the partitioning itself can be also done by parallel computers

(see Section 7.5).

7.3 Hypergraph Partitioning-based Optimiza-

tion of Queries with Joins and Select Con-

ditions

Now we discuss a little bit more complex case. We discuss the join operations with

selection conditions. That is, the case of expressions with form:

R = σF1∧···∧Fk
(R0 × R1 × · · · ×Rn)

.

Here each condition Fi is any condition expression except the logic AND of

two expressions.

The query with join operations and select conditions can also be represented as

a hypergraph. In this case, we represent both the relations and the select conditions
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with hyperedges.

In order create a hypergraph to represent the query, we first create vertices

for the hypergraph. Generally, each attribute in a relation will create a vertex,

however, if there is an equal condition between two attributes of two relations,

which means that there is a natural join between these two relations, then these

two vertices should be merged into one.

After creating the vertices, we create hyperedges for both relations and select

conditions. Each relation is represented as a hyperedge which contains all vertices

corresponding to the attributes in this relation. For a select condition Fi , if it is

not a equal condition of two attributes (which has been represented by merging

the two equal vertices) and it is related to attributes a1, a2, · · · , an , then it creates

a hyperedge EFi
that include vertices {a1, a2, · · · , an} . The following algorithm

illustrates this.

———————————————————————————————————

HYPERGRAPH CREATING ALGORITHM:

Input: A relational algebra query with join operations

and select conditions.

Output: A hypergraph H=(V,E) which is corresponding to the query.
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Local Vars: e1 and e2 are variables for hyperedge

V=Φ;

E=Φ;

for each relation ri in the query

for each attribute aj in relation ri

V=V ∪ {aj}

for each equal select condition of form aj = ak

V=V − {aj} /* merge aj and ak */

for each relation ri in the query

begin

e1=Φ;

for each attribute aj in relation ri

if aj has been merged with another vertex ak , then

e1 = e1 ∪ {ak}

else

e1 = e1 ∪ {aj}

assign the edge weight of e1 be MAXINT

E=E ∪ {e1}

end
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for each select condition ci in the query

if it is not the equal of two attributes, then

begin

e2=Φ;

for each attribute aj in condition ci

if aj has been merged with another vertex ak , then

e2 = e2 ∪ {ak}

else

e2 = e2 ∪ {aj}

assign the edge weight of e2 be 1

E=E ∪ {e2}

end

———————————————————————————————————

In the following example, we use solid line hyperedges to represent relations,

and dashed line hyperedges to represent conditions, as in [32].

Example 7.3.1 Suppose that there are 5 relations R0(A,B), R1(C,D),
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R2(E, F ), R3(G,H, I), R4(J,K). For the query:

σA=E∧C=F∧D<G∧H=J∧I<K(R0×R1×R2×R3×R4) (2)

The hypergraph for this query is shown in Figure 7.8.

A/E

K

IH/J

GC/F

B

I<KD<G

R0 R4R3R1R2

D

Figure 7.8: Hypergraph for SQL Query (2)

In Figure 7.8, the equal conditions A = E , C = F and H = J can be expressed

by merging vertices (A,E), (C, F ) and (H, J). Conditions D < G and I < K

can be expressed by two hyperedges (see the dashed line hyperedges in Figure 7.8).

Since generally the evaluation of non-equal conditions is more costly than equal

joins and creates more tuples. Equal joins should be evaluated before evaluating

non-equal conditions. For a hypergraph, we should first evaluate each part that is

connected by equal joins. Then we evaluate the hyperedges of non-equal relations.

For each part that is connected by equal join hyperedges, it is evaluated just as

in Section 7.1. In the previous algorithm, by assigning different edge weight for
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hyperedges (MAXINT for equal condition, 1 for other cases), the minimal-cut

hyperedge partitioning algorithm will try to partition the hypergraph into two parts

that is connected by non-equal conditions, which means that the equal conditions

will be evaluated earlier. For example, Figure 7.8 should be evaluated as:

P0 = σA=E∧C=F (R0 ×R1 × R2)

P1 = σH=J∧I<K(R3 ×R4)

R = σD<G(P0 × P1)

Small Relations

A relation with select condition of the form A = a where A is an attribute

and a is a constant is said to be a “small” relation, because generally the condition

A = a will greatly eliminate the number of tuples.

If a relation joins to a “small” relation, it is likely that the result is also not

much large. Hence this non-equal join operation should be done earlier than other

non-equal joins. The following example demonstrates this idea.

We can change the above hypergraph creating algorithm to deal with small

relations. After we create the hypergraph,

Example 7.3.2 Suppose that there are 7 relations R0(A,B), R1(C,D),

R2(E, F ), R3(G,H), R4(U, V ), R5(W,X), R4(Y, Z). For the query:

R = σA=E∧C=F∧D<G∧H>U∧U=2∧V=W∧X=Y (R0 ×R1 ×R2 ×R3 ×R4 ×R5 ×R6)
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(3)

The hypergraph for this query is shown in Figure 7.9.

D<G

R0 R1R2

C/F G

A/E B
H

R6R4R3

H>U

R5

U V/W

X/Y ZD

Figure 7.9: Hypergraph for SQL Query (3)

In this example, because we have the select condition U = 2, the relation R4

is a small relation. And because R5 and R6 have equal join relations to small

relation R4 , they all from a small relation subpart of the graph. In Figure 7.10,

there are two non-equal joins (D < G and H > U ), because the non-equal join

H > U is a join to a small relation, it should be evaluated earlier than join D < G.

The evaluation strategy should be:

P00 = σA=E(R0 ×R2)

P0 = σC=F (P00 × R1)

P100 = σU=2R4

P10 = σV=W (P100 ×R5)

Rsmall = σX=Y (P10 × R6)

P1 = σH>U(R3 ×Rsmall)
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Figure 7.10: Small Relations in Hypergraphs

R = σD<G(P0 × P1)

7.4 Hypergraph Partitioning-based Optimiza-

tion of General Queries

Now we discuss the optimization for general query expression. I.e., the query with

the form:

R = Πa1,···,amσF1∧···∧Fn
(R1 × · · · ×Rk).

Where a1, · · ·, am are attributes of relations, F1 · · ·, Fn are conditions. The

R1 , · · ·, Rk are any relations.

The hypergraph for this query is the same as the quey without the projection

operations. The idea for optimizing these queries is to push the projections as

far down the evaluation tree as possible, we can use the technology described in
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Chapter 11 of [32] within our partitioning-based optimization to handle these cases.

Concretely, in the partitioning-based optimization, after we compute the join result

of relations, we use the technology in [32] to do projection operations to eliminate

unnecessary attributes as early as possible to get efficient optimization solution.

7.5 Hypergraph Partitioning Heuristics

In previous sections, we propose a new hypergraph partitioning based query opti-

mization algorithm. Now we will briefly discuss the classes of hypergraph parti-

tioning heuristics.

Basically, hypergraph partitioning algorithms try to partition a hypergraph

into a number of parts, such that the size of each partition satisfies some partition

size constraints, and the number of hypergraphs across the partitions is minimized.

The hypergraph partitioning problem is NP-hard.

There are a lot of hypergraph partitioning algorithms. The earliest sets of

partitioning algorithms are iterative refinement partitioning algorithms. In these

algorithms, an initial partitioning is computed (often obtained randomly) and then

the partitioning is refined by repeatedly moving vertices between subsets of the

partition to reduce the hyperedge-cut. Kernighan-Lin (KL) heuristic and the faster

Fiducia-Matteyses (FM) refinement heuristic [9] are two examples for this class of

heuristics. The partition produced by these methods are usually poor especially
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for large hypergraphs.

In 1990s, a new class of partitioning algorithms was developed that are based

on the multi-level paradigm. Following this paradigm, a sequence of successively

smaller graphs are constructed, usually based on matching algorithms for graphs

or hypergraphs. A bisection of the smallest graph is computed, and the bisection

is then successively projected to the next less coarsened hypergraph, and at each

level an iterative refinement algorithm such as FM is used to further improve the

bisection, as illustrated in Figure 7.11.

Initial Partitioning

G3

G1

Uncoarsening and refiningCoarsening
G2

G1

G2

G0
G0

Figure 7.11: Multilevel Paradigm for Hypergraph Partitioning

In [22], we proposed a new algorithm, which is called “Multilevel Cooperative

Search Algorithm” for hypergraph partitioning. In the new partitioning algorithm,

hypergraph is coarsened to form a successively smaller sequence of hypergraphs,

and during the partitioning process, each level of hypergraph cooperatives by shar-

ing information between adjacent levels. The new partitioning algorithm is able to

give better partitioning results than state-of-art multilevel hypergraph partition-
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ers. Figure 7.12 shows the paradigm for the new partitioning algorithm. This can

be used to find better query optimization solutions when using the hypergraph

partitioning based optimization as described in previous sections.

G3

Destroy, Create

Destroy, Create

G1

G2

Destroy, Interpolation

Destroy, Interpolation

Destroy, Interpolation

Destroy, Interpolation

Destroy, Interpolation

Destroy, Interpolation

Destroy, Create

G1

G2

G0G0

Destroy, Create

G3

Destroy, Create

Destroy, Create

Figure 7.12: Multilevel Cooperative Search Paradigm



Chapter 8

Conclusion

In Chapter 3 we presented a fast value-by-area cartogram transformation algorithm

that can be used as a subroutine within animation algorithm. We also presented

the idea of serial and hybrid animation methods that further enhance the speed

of the animation while avoiding excessive cell shape distortion accumulation. The

speed of our animation methods avoids the need to pre-compute all the snapshots of

the animation. The system can animate databases that contain several thousands

or even more snapshots, which is impractical for others that using pre-computation

strategy.

Chapter 4 described the piecewise linear approximation algorithms, which can

be used to interpolate and compress data. Chapter 5 showed how to combine the

work in Chapter 4 and Chapter 5 to get more efficient cartogram animation.

In Chapter 6, we dealt with approximate evaluation of queries. Approximate

103
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evaluation runs very fast and can get high precision and recall. it is extremely

suitable for large volume GIS spatiotemporal databases.

In Chapter 7, we proposed a new query optimization algorithm. Our algorithm

uses new discoveries on the efficient partitioning of hypergraphs to create more

efficient and parallelable query evaluation strategies.

8.1 Open Problems and Future Work

The animation system can be easily extended to display different levels of anima-

tion. For example, when animating the population distribution, at top level, it

displays the value-by-area cartogram with each country as a cell. At this level,

when we want to see the population detail of the United States, we can click on

the cell of the United States, then it begins to animate the United States popu-

lation cartogram with each state as a cell. Then, if we want to further study the

population of the Nebraska state, we can click on the cell of Nebraska and see the

population distribution at county level, and so on.

Our computer experiments show that our cartogram algorithm works much

faster than traditional cartogram algorithms [7, 11, 13, 31]. However, in general, it

is difficult to analyze theoretically the computational complexity of value-by-area

cartogram algorithms, and therefore no such analysis is contained in the papers

[7, 11, 13, 31]. For future work, we are planing to do some theoretical analysis for
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the complexity of the algorithm.

Another work is to study and compare the quality of the cartogram algorithms.

Our algorithm gives better looking cartograms. We are planning to study the qual-

ity of cartogram based on similarity measure between the cartogram and the origi-

nal geographic map to see how to improve the quality of the cartogram animation.

For piecewise linear approximation, an open problem is to find an optimal

piewise linear approximation agorithm which has O(N) complexity.

In Chapter 7, we propose a new hypergraph partitioning based query optimiza-

tion strategy that requires less space for the intermediate relations than the opti-

mized expressions given by earlier algorithms. For future work, we can try to com-

bine the hypergraph partitioning based query optimization with cost-estimations

on physical structure of database such as the existence of indices, the number of

tuples in each database. This may give more precise estimations for the operations

and thus yield more efficient evaluation strategies.
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