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Abstract. In this paper we consider Datalog queries with linear con-
straints. We identify several syntactical subcases of Datalog queries with
linear constraints, called safe queries, and show that the least model of
safe Datalog queries with linear constraints can be evaluated bottom-
up in closed-form. These subcases include Datalog with only positive
and upper-bound or only negative and lower bound constraints or only
half-addition, upper and lower bound constraints. We also study other
subcases where the recognition problem is decidable.

1 Introduction

Constraint databases is an active area of current research. In particular, lin-
ear constraint databases have been used for modeling geometric data and in
other applications [3, 14,15, 22,23]. There are several proposals to define query
languages for linear constraint databases.

Most query language proposals are based on first-order logic. However, it
has been found that first-order languages even with real polynomial constraint
databases are incapable of expressing many simple recursive queries like finding
the transitive closure of an input graph [2].

Other query language proposals are based on fixpoint-logic [1,29]. Unfortu-
nately, the evaluation of fixpoint queries with linear constraint databases is not
guaranteed. This is a major drawback for database use, where non-expert users
should be allowed to express new queries without having to worry about termi-
nation problems. For example, Kuijpers et al. [22] prove for a five-rule stratified
Datalog program that defines topological connectivity that it terminates for any
rational linear constraint database input. However, the proof is quite complicated
and works only for that single program.

Recently, Grumbach and Kuper [12] have proposed a tractable language with
a bounded inflationary fixpoint operator. This is advantageous from the point of
guaranteed termination for any query expressible in the language. However, the
query language has a syntax and semantics which is not particularly elegant.

In this paper we consider restricted subsets of fixpoint-logic with linear con-
straint databases. For these restricted cases, we show that termination of the
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query evaluation can be guaranteed. In addition, the correctness of the syntax
of the language is easy to check even by beginning users, while the semantics of
the language is based on standard fixpoint-logic.

An important problem that occurs in database applications is the recognition
problem. Given a query program, an input database, a defined relation name R,
and a tuple ¢ of constants (rationals or integers) the recognition problem asks
whether ¢ is in R within the least fixpoint of the query program and the input
database.

The recognition problem is known to be undecidable in general for fixpoint
queries and linear constraint databases. In this paper we identify several syn-
tactical subcases of fixpoint queries for which the recognition problem can be
solved in finite time. We call these syntactical subcases safe queries.

The primary language based on fixpoint logic is Datalog. Theorem 1 shows
that the least fixpoint of any Datalog query with only positive and upper bound
constraints or only negative and lower bound constraints is evaluable in PTIME.
Theorems 2 shows that the least fixpoint of Datalog queries with integer half-
addition constraints is also evaluable in finite time. These theorems extend the
known cases of Datalog with constraint queries whose least fixpoints can be
found in finite time.

In both cases the least fixpoints will be computed in a constraint form, where
the output relations are a set of constraint tuples. Each constraint tuple is a
shorthand description for the set of constant tuples that satisfy the constraint.
Therefore, it is easy to test whether ¢ is in relation R by testing whether ¢ satisfies
any constraint tuple of R. We also consider the complexity of the recognition
problem for any fixed program on a variable size input database. This measure,
often used in databases, is referred to as the data complezity of queries [6,30].
Theorem 3 shows that Datalog with half-addition constraints has a DEXPTIME-
complete data complexity. Theorems 4 and 6 show that the recognition problem
is also decidable for two subcases of Datalog with addition and Datalog with
linear equation constraints.

This paper is organized as follows. Section 2 lists some basic definitions,
including various types of constraints and Datalog queries with constraints. Sec-
tion 3 describes the evaluation procedure for Datalog queries for positive and
upper bound, negative and lower bound and half-addition constraints and ana-
lyzes the data complexity of the recognition problem. Sections 4 and 5 study
the recognition problem for subcases of Datalog with addition and Datalog with
equation constraints. Finally, Section 6 discusses related work and conclusions.

2 Basic Concepts

2.1 Atomic Constraints

In this paper we consider several types of atomic constraints, which are all sub-
cases of linear constraints of the form

ary+...+cxxrip b



where ¢; is a constant and z; is a variable for each 1 < ¢ < k, the 6 is either >
or > and b is any constant. We call b the gap-value in each linear constraint.
We distinguish between two cases of linear constraints depending on the
domain of the variables and constants: the domain of rational linear constraints
is the set of rationals Q and the domain of integer linear constraints is the set
of integers Z.
We consider the following subcases of (rational or integer) linear constraints.

Positive Constraint: A positive constraint is an atomic constraint where
each coefficient is non-negative.

Negative Constraint: A negative constraint is an atomic constraint where
each coefficient is non-positive.

Lower Bound Constraint: A lower bound constraint is an atomic con-
straint of the form z 6 b.

Upper Bound Constraint: An upper bound constraint is an atomic con-
straint of the form —z 6 b.

Equality Constraint: An equality constraint is a conjunction of an upper
and a lower bound constraint of the form xz > b and —z > —b. We abbreviate
such a conjunction by z = b.

Half-Addition Constraint: A half-addition constraint is an atomic con-
straint of the form 1 + 22 >borxy — 29 >bor —x1 + 22 >bor —x1 —22 > b
where b is non-negative.

Addition Constraint: An addition constraint is a conjunction of two atomic
constraints of the form —x; + 22 > b and 21 — 79 > —b. We abbreviate such a
conjunction by x2 = 1 + b.

Equation Constraint: An equation constraint has the same form as an
atomic constraint except 8 is =. An equation constraint can be expressed by a
conjunction of two atomic constraints.

Note: An addition constraint can be expressed as dx3 =z + x3 > b and
—xo—x3 > —band x1+2x3 > 0and —z; —x3 > 0. Notice that addition constraints
cannot be expressed by half-addition constraints when b # 0, because either —b
or b is negative.

2.2 Datalog with Constraints

The following definition of the syntax and semantics of Datalog programs with
constraints extends the definition of Datalog without constraints in [1,29] and
was also given in [18].

Facts: Each input database is a set of facts (also called constraint tuples)
that have the form,

Ro(z1,...,28) :— . (fact)



where v is a conjunction of atomic constraints on z1, ...,z which are not nec-
essarily distinct variables or constants.
Rules: Each Datalog program is a set of rules that have the form,

Ro(xl, e ,.Zk) —_ Rl(ml,ly .. .,Ilfl’kl), .. .,Rn(a:n,l, . ,Ilfn’kn),’l,/}. (rule)

where Ry, ..., R, are not necessary distinct relation symbols and the xs are
not necessarily distinct variables or constants and 1) is a conjunction of atomic
constraints. We call the left hand side of :— the head and the right hand side
of :— the body of a fact or rule. Several facts or several rules can have the same
left-hand relation name. In the facts all variables in the body also appear in the
head. In the rules some variables in the body may not appear in the head.

Query: Each Datalog query consists of a Datalog program and an input
database.

Example 1 The following query checks whether at least k out of n formulas
filz1, -, om), -, fa(z1,. .., 2y) of atomic constraints can be simultaneously
satisfied. We assume that the formulas are in disjunctive normal form and that
fij(@1,...,2m) is the jth disjunct of the ith formula.

Let C(y,z1,...,2m,) be an input database relation which contains a con-
straint tuples of the form y =14, f; j(z1,...,zn) for each f; ;.

Let Next(z,y) be an input database relation that contains the constraint
tuples = i,y =i+ 1 for each 0 < ¢ < n. Let Need(x) and Out_O f(y) be the
relations that contains x = k and y = n, respectively. Then, the query can be
expressed as follows.

Sat(zy,...,Tm) — Test(x1,...,Tm,n, k), Out_Of(n) Need(k).

Test(x1,---,Tm,01,J1) — Test(x1,.-.,Tm,1,7), Next(i,i1),
Clir, Z1,---,Zm), Next(F, j1)-

Test(x1,y...,Tm,i1,)) — Test(x1,...,Tm,1,7), Next(i,i1).

Test(z1,...,Tm,0,0).

The query defines the relation Test such that Test(z1,...,2Tm,%,7) is true
for some values of x1,...,xn,1, j if and only if out of the first 7 formulas at least
7 can be simultaneously satisfied.

Semantics: Let () be any Datalog query with constraints. We call an interpre-
tation of () any assignment I of a finite or infinite number of tuples over §*(F:)
to each R; that occurs in (), where ¢ is the domain of the attribute variables
and a(R;) is the arity of relation R;.

The immediate consequence operator of a Datalog query @, denoted Ty, is a
mapping from interpretations to interpretations as follows. For each interpreta-
tion I:

Ro(a1,...,ar) € To(I) iff there is an instantiation o of all variables by constants
from 4, including variables z1, ...,z by constants ai,...,ak, in either a fact of



the form (fact) such that o(¢) is true, or a rule of the form (rule) such that
Ri(o(@i,---,%ik)) € I for each 1 <4 <n and o(v) is true.

Let Tg (I) = To(I). Also let T(SH(I) =Ty(I) UTQ (T4(I))- An interpretation
I is called a least fizpoint of a query Q iff I =, T ().

The above is a general definition of the syntax and the semantics of Datalog
programs with constraints. In this paper, we will be interested in particular with
the following cases of Datalog with constraints:

DatalogP?®: positive and upper bound constraints.

Datalog™9: negative and lower bound constraints.

Datalog”®: half-addition, upper and lower bound constraints.
Datalog¥4: addition constraints defining vector addition.
Datalog™™: equation constraints defining matrix multiplication.

For the last two types of queries some special restrictions apply that are
detailed in Sections 4 and 5.

2.3 Stratified Datalog with Constraints

Semipositive Datalog queries [1,29] extend Datalog with negation. Syntactically,
they are composed of facts of the form (fact) and rules of the form (rule) where
a negation symbol may occur before any relation symbol R; that is the head of
some fact.

Semantically, each semipositive Datalog program is a mapping from interpre-
tations to interpretations similarly to Datalog programs except if R; is negated
in a rule, then the consequence operator requires that R;(0(zi1,-..,Zik;)) € L.

Example 2 We can modify Example 1 to test whether exactly k formulas are
satisfied by inserting = C(i1,1,...,%y) into the body of the third rule.

Another extension of Datalog is the class of stratified Datalog programs. Each
stratified Datalog program I7 is the union of semipositive programs ITy, ..., I
satisfying the following property: no relation symbol R that occurs negated in a
II; is a head of a rule in any [I; with j > ¢. We call F; the ith stratum of the
program.

Each stratified Datalog program is a mapping from interpretations to in-
terpretations. In particular, if II is the union of the semipositive programs
IIy, ..., II};, with the above property, then the composition M(...HT1()...) is
its semantics.

The above is a general definition for semipositive and stratified Datalog pro-
grams. In this paper, we will be interested in the following;:

Stratified DatalogP®®/"¢9: that is, stratified Datalog programs in which:
— Each input database relation is either positive, that is, it contains only posi-

tive or upper bound constraints, or negative, that is, it contains only negative
or lower bound constraints.



— Each odd stratum contains only unnegated positive input database relations
or relations defined in earlier odd strata and negated negative input database
relations or relations defined in earlier even strata.

— Each even stratum contains only unnegated negative input database rela-
tions or relations defined in earlier even strata and negated positive input
database relations or relations defined in earlier odd strata.

3 Evaluation of Datalog with Constraints

In this section we show that the least fixpoint of DatalogP?®, Datalog™?d and
Datalog”® queries can be evaluated bottom-up.

3.1 Constraint Least Fixpoints and Least Models

Constraint Rule Application: Let us assume that we have a rule of the form
(rule) and we also have given or derived facts for each 1 <4 < n of the form:

Ri(xi1,. s @ik;) — Vi(@i1, -, Tik;)-

where formula v; is a conjunction of constraints. A constraint rule application
of this rule given these facts as input produces the following derived fact:

Ro(z1,...,25) i— d(z1,...,2k).

where ¢ is a quantifier-free formula that is equivalent to

3*wl(wl,ly---7'771,161);---7¢n(xn,17---;a:n,kn)7¢-

where * is the list of the variables in the body of the rule which do not occur in
the head of the rule.

The bottom-up constraint firpoint evaluation of Datalog queries starts from
the input facts and rules and repeatedly applies one of the rules until no new
facts can be derived and added to the database. We call the set of input and
derived facts the constraint least fixpoint of the query.

Remember that a constraint tuple is equivalent to a possibly infinite num-
ber of regular tuples of constants from the domain. Hence a finite number of
constraint tuples could represent an infinite least fixpoint. Proposition 1, which
relies on this observation, was proven in many instances in constraint logic pro-
gramming and constraint databases [16-18].

Proposition 1 For any Datalog with constraints query the bottom-up con-
straint least fixpoint is equivalent to the least fixpoint.

Observation 1: The evaluation of stratified Datalog queries can be reduced to
the evaluation of Datalog queries. We evaluate each stratum by at first replacing
in it each negated occurrence of a constraint relation R; by its complement



constraint relation co_R;. This evaluation gives a constraint least model for the
stratified Datalog query.

Proposition 1 gives some idea for computing even infinite least fixpoints in
finite time. However, the termination of the constraint least fixpoint evaluation
has to be proven for each particular case of constraints. For several cases of
constraints termination is not possible. However, we can show termination for
DatalogP?®, Datalog™®9, stratified Datalog??s/"¢9 and Datalogh® queries.

3.2 Termination Proof for DatalogP?®, Datalog™®? and Stratified
DatalogP?s/me9

Observation 2: For integers we can rewrite each > constraint with gap-value b
into an equivalent > constraint with gap-value b+1 and the same left hand sides.
Hence we will assume that we have only > constraints in the case of integers.
Otherwise, the statements in this section apply to both rationals and integers
with small differences that we point out as appropriate.

At first, we prove two quantifier elimination results, the first for positive
and upper bound constraints, and the second for negative and lower bound
constraints.

Lemma 1 Let S be any conjunction of positive and upper bound constraints
over &,¥1,---,Yn- Lhen we can rewrite x5 into a logically equivalent conjunc-
tion S’ of positive and upper bound constraints over y1, ..., Yn-

The symmetric case of the above is also closed under quantifier-elimination.

Lemma 2 Let S be any conjunction of negative and lower bound constraints
over x,y1,--.,Yn. Then we can rewrite x5 into a logically equivalent conjunc-
tion S’ of negative and lower bound constraints over y1,. .., y,.

We can now show the following theorem in case of Datalog with positive or
Datalog with negative constraints.

Theorem 1 The least fixpoint of any DatalogP®® or Datalog™? query is evalu-
able in closed form in PTIME in the size of the input database.

By Observation 1 we can reduce the evaluation of stratified DatalogP®®/m¢9
queries to evaluating for each stratum either a DatalogP?® or Datalog™®¥ query
by finding the complement relations before the evaluation of each stratum.

Lemma 3 Let R be any constraint relation with n number of tuples and at most
m number of atomic constraints in each tuple. Then the complement relation of
R can be found in PTIME in the size of the relation.

The proof of the above Lemma uses the fact that in any fixed k-dimension
n number of hyperplanes cut the space into a polynomial in n number of k-
dimensional polyhedra, each of which either belongs to R or to its complement.
From Lemma 3 follows:



Corollary 1 The least model of any stratified fixed DatalogP?®/™¢9 program
and variable input database is evaluable in closed form, where relations defined
in odd strata will have positive and relations defined in even strata will have
negative constraint forms, in PTIME in the size of the input database.

3.3 Termination Proof for Datalog"®

Datalog”® with Integer Domain: By Observation 2 we can again assume
that each 6 is >. We can transform any conjunction S of half-addition, lower
bound and upper bound constraints over a set of variables z1,...,%,_1 into a
S’ with only half-addition constraints over z1,..., T, _1,d where d is the largest
absolute value of the gap-values in S. This is because we can replace each > b
by z+d>(b+d) and each —z > bby —z+d > (b+d).

We consider d as if it were an nth variable z,,. We could have any distinct
pair of the n variables on the left hand side of a half-addition constraint. It does
not matter which element of a pair is written first and which is written second.
Without loss of generality we can insist that if &z; £, is on the left hand side,
then i < j. It is easy to see that there can be only 4n(n — 1)/2 = 2n(n — 1)
different left hand sides because there are four distinct cases considering whether
z; and x; has positive or negative signs.

We further simplify S’ so that it contains at most one half-addition constraint
with each different left hand side. If S’ has several half-addition constraints with
the same left hand side all but the one with the highest gap-value is superfluous
and is deleted. We call S’ the normal form of S.

Lemma 4 Let S be any normal form conjunction of half-addition constraints
over x,yi,...,Yy, and d. Then we can rewrite x5 into a logically equivalent
normal form S’ of half-addition constraints over y,...,y, and d.

Let us fix any ordering of the 2n(n — 1) possible left hand sides. Using this
fixed ordering, we can represent any S in normal form as a 2n(n —1)-dimensional
point in which the ith coordinate value will be (b+1) if S contains a half-addition
constraint with the ith left hand side and b is the gap-value in it, and 0 otherwise.

We say that a point dominates another point if it has the same dimension
and all of its coordinate values are > the corresponding coordinate values in the
other point.

Suppose that relation R(21,...,T,_1) is defined in some Datalog"® program.
As the constraint fixpoint evaluation derives new constraint tuples for R, the
right hand side of these constraint tuples will be conjunctions of half-addition
constraints over the n variables, including d. The sequence of derived constraint
tuples can be represented as described above using a point sequence:

Pp1,p2,---

It is easy to see that if point p; dominates point p;, then p; and p; represent
conjunctions S; and S; of half-addition constraints such that the set of solutions
of S; is included in the set of solutions of S;. This shows that the fixpoint
evaluation could be modified to add only points that do not dominate any earlier



point in the sequence. By the geometric Lemma in [24], in any fixed dimension
any sequence of distinct points with non-negative integer coordinates must be
finite, if no point dominates any earlier point in the sequence. This shows that
using a modified constraint fixpoint evaluation:

Theorem 2 The least fixpoint of any Datalogh® query is evaluable in half-
addition constraint form when the domain is the integer numbers.
For the recognition problem we can say the following.

Theorem 3 The recognition problem for any fixed Datalog”® program and vari-
able input database has a DEXPTIME-complete data complexity when the do-
main is the integer numbers.

Datalog”® with Rational Domain: We can assume without loss of generality
that the gap-values and the absolute value d are integer numbers, because if they
are not, then we can multiply all gap-values by the least common multiple m of
all the denumerators. Clearly, (ay, .. ., a) satisfies a transformed conjunction of
constraints if and only if (2L, ..., %) satisfies the original constraint.

For dealing with rational numbers we will also treat as a special variable z, 1
the value d+ % Otherwise, the normal form will be defined as in the integer case
except we allow both > and > comparisons within the half-addition constraints.

Lemma 5 Let S be any normal form conjunction of half-addition constraints
over T,Y1,...,Yn,d,d+ % Then we can rewrite 3z.S into a logically equivalent
normal form S’ of half-addition constraints over y1,...,yn,d,d + %

For the rest of the section, the proof is similar to the integer case. Hence we
have that:

Corollary 2 The least fixpoint of any Datalog"® query is evaluable in half-
addition constraint form when the domain is the rational numbers.

For the recognition problem we can say the following.

Corollary 3 The recognition problem for any fixed Datalog’® program and
variable input database has a DEXPTIME-complete data complexity when the
domain is the rational numbers.

4 The Recognition Problem for Datalog¥4 Queries

Datalog”4 queries are composed of regular relational database facts (sets of
constant tuples) and rules of the form:

R(Z’l,---,l'm,yl,---,yk) :7Fl(y1,17"-7y1,k1)7"'7Fn(yn,17-"7yn,kn)7
P(zla"'azmayp,la'"7yp,kp)7
X1 =21+C,y ooy Tyy = 2y + Cppy»



where the Fjs are input database relations, R and P are relation symbols
occuring in the head of rules. Relation P and each relation F; is optional in the
rule. The ys are not necessarily distinct variables among themselves but they
are all distinct from the ;s and z;s, which are all different.

The domain of the z; and z; variables is the set of non-negative integers
numbers N, but each ¢; and any constant in the input database can be any
integer.

The following theorem is proven by reduction of the recognition problem
for Datalog¥4 to the recognition problem in vector addition systems with states,
VASS, which is shown to be decidable in [21]. VASS is a generalization the reach-
ability problem in Petri nets, for which the containment problem is undecidable.
This implies for Datalog¥4 queries the following.

Theorem 4 The recognition problem for Datalog"4 queries is decidable and
for semipositive Datalog”4 queries is undecidable.

Nevertheless, it is possible to prove the following.

Theorem 5 It can be decided whether a Datalog’ 4 query is safe, i.e., its output
can be represented in constraint form for any valid input database.

5 The Recognition Problem for Datalog™™ Queries

DatalogMM queries are composed of regular relational database facts and rules
of the form:

R(x1,- - Tm) — R(W1,-- -, Ym),
—r1+criyr + .-+ CimYm =0,

—Tm + CmaY1 + -+ CmYm = 0.

or
R(z1,...,%m) i— F(21,...,%m).

where F is a regular input relation (sets of constant tuples), the z;s and y;s
are all different variables, and each c; ; is a rational constant. The domain of the
variables is the set of rational numbers.

It can be seen that Datalog™™ queries can express sets of Markov processes
when we make the restriction that for each j the >, ,.,. ¢;; = 1 and use only
a single recursive rule. We call this condition (1).

Further, it is known that the value of Markov processes approach a steady
state when all the ¢; js are positive. We call this condition (2).

Therefore, when conditions (1&2) hold, then after some finite number of rule
applications we will only get R(ay,...,an) tuples such that | a; — b; |< € where
(b1, -..,by) is the steady state value and € is an arbitrarily small positive rational
number.



We define the recognition problem with e tolerance the task of deciding
whether there is a tuple in the least fixpoint of the query such that each of
its elements is within an e distance from the corresponing element in the given
tuple. Taking advantage of the steady state convergence of Markov processes [28],
we can prove the following.

Theorem 6 The recognition problem with e tolerance for Datalog™™ quereis
satisfying conditions (1&2) is decidable.

6 Related Works and Conclusion

DatalogP®®, Datalog™? and Datalog"® queries are cases of constraint logic pro-
grams whose syntax and semantics was defined in a general way in [16]. Con-
straint bottom-up evaluations for constraint queries (both constraint logic pro-
grams and constraint relational calculus queries) were considered within a con-
straint database framework in [18] and many recent papers (see [17,26] for sur-
veys on constraint logic programming and constraint databases).

A gap-order constraintis alower bound constraint, an upper bound constraint
or a constraint of the form x + b < y where b > 0. Note that all gap-order
constraints are half-addition constraints, but some half-addition constraints are
not gap-order constraints. For example, z +y > 5 is a half-addition constraint
but it is not expressible by gap-order constraints. A least fixpoint evaluation for
Datalog with gap-order constraints is described in [24]. The recognition problem
is also studied in [8]. The DISCO system [5] implements Datalog queries with
integer gap-order constraints. Adding negation in a safe way to Datalog with
gap-order queries is studied in [25].

A temporal constraint is like a gap-order constraint but the gap-value can be
any integer (both negative and non-negative). Temporal constraints can express
addition constraints. Hence the recognition problem for Datalog with temporal
constraints is undecidable. However, an evaluation of relational calculus queries
with temporal constraints is possible and is considered by Koubarakis in [19,
20]. Efficient tests for temporal constraint satisfaction are described in [9] and
for monotone two-variable constraints in [11].

Chomicki and Imielinski [7] consider the language Datalogys which is like
Datalog extended with an increment operator which may occur only in the first
argument of relations. Linear recursive Datalog;s is a subcase of Datalog’4.
The least fixpoint is evaluable for Datalog;s queries [7].

Fribourg and Olsén [10] consider the connection between Petri nets and a
subset of Datalog’ 4 programs. [10] shows that the least fixpoint of those queries
that can be represented by a special case of Petri nets, called BPP-nets, is
evaluable in finite time.

There is a growing number of implementations of first-order constraint queries
with linear constraint databases, for example CCUBE [4], DEDALE [13] and
MLPQ [27]. The query evaluation algorithms described in this paper could be
useful extensions of these systems as well as some constraint logic programming



systems, for example CLP(R), that implement linear constraints. We already
started implementing safe recursive queries in MLPQ.
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Proof of Lemma 1: First, simplify the positive constraints by deleting all
variables with zero coefficients. Now, S’ will contain the set of constraints that
do not contain the variable x and all constraints that can be derived from some
upper bound constraint of the form —z6;b and a positive constraint of the form
cor + c1y1 + - - - + cpynbaa where ¢; is a positive rational number for 0 < 7 < n.
The new constraint created will be ¢iy; + - .. + cpynb3za + cob, where 63 is > if
0, and 6 are both > and > otherwise. This is still a positive constraint and if
a,b and ¢y are integers, then the new gap-value created will be also an integer.
Therefore, upper bound and positive constraints are closed under existential
quantifier elimination in the case of both rationals and integers. We can prove
the soundness of the quantifier elimination similarly to the proof of Lemma, 4.

Proof of Lemma 2: This case is symmetric to the case of Lemma 1. All
constraints created will be between a lower bound constraint and a negative
constraint.

Proof of Theorem 1: Let us consider any relation R(z1,...,z). Each fact
of R will contain a conjunction of positive and upper bound constraints. Note
that the left hand side of each positive constraint will be the same as the left



hand side of a positive constraint in the input database or one of the rules except
that some coeflicients can be changed to zero. Therefore, the number of different
left hand sides of positive constraints is a finite number (if we have m variables
in a positive constraint, then there could be 2™ different left hand sides that
could be generated from it).

Let C be the set of positive coefficients in any positive constraint in the
input database or the rules. Let B be the set of gap-values in any upper bound
constraint. Let D denote the set of all possible products of an element in B and
and element in C. Now, consider any positive constraint with m variables. As
we eliminate any variable from it by adding it to an upper bound constraint
we always add an element of D to the gap-value of the positive constraint.
Further we can add only m times. Hence the number of possible gap-values
that can be created is finite. In fact, if there are at most m variables in any
positive constraint, then the set of possible gap-values that can be created are
S={b+di+...+dn : b€ B,di € DU{0},1 <i < m}. For any fixed
program, m will be a constant equivalent to the maximum number of variables
in any rule or fact. Hence the number of possible gap-values that can be created
is polynomial in the size of B and C' and hence also in the size of the input
database.

Since both the set of left hand sides and the set of right hand sides that could
occur in any constraint in any fact of R is a polynomial in the input database
size, the number of possible constraints and the number of possible facts of
R is also polynomial in it. The fixpoint evaluation needs to continue at most
the number of different constraint tuples that could be added to the database.
Since that is a polynomial number in the input database size, after that many
iterations the fixpoint evaluation can stop. Hence each fixed DatalogP?® query
can be evaluated in PTIME in the size of the input database.

A similar argument can show that Datalog™? is also evaluable in PTIME
data complexity.

Proof of Lemma 4: S’ will be the conjunction of all the half-addition
constraints in S that do not contain the variable z and all the half-addition
constraints that can be derived from any pair of half-addition constraints in S
using the implication table below.

rT—2>b —z+2>b z+2>0b —xr—2z22>b
T—y>a —y+z>a+b —y—z>a+b
—r4+y>a y—z>a+b y+z2>a+b
rT+y>a y+z>a+b y—z>a+b
—x—y>a—-y—z>a+b —y+z>a+b

Given any two half-addition constraints with opposite signs for z, their sum
is returned by the implication table. It is easy to see that if S consisted of half-
addition constraints, then S’ will contain only half-addition constraints because



in each constraint created using the implication table the gap-value will be the
sum of two gap-values already present in S. Therefore only non-negative gap-
values will be created using the implication table. The only case that merits
special mention is when y and z are the same variables. In that case we may
obtain either 2y > a+b or —2y > a+b. These two cases can be rewritten into half-
addition constraint form as y+d > floor(“t2)+d and —y+d > floor(“E2) +d
respectively, where the floor function takes the smallest integer value that is
greater than or equal to any given rational value.

For any instantiation, if two half-addition constraints are both true, then
their sum also must be a true half-addition constraint. Hence if S is true, then
S’ must be also true for any instantiation of the variables z,y1, ..., yn-

For the other direction, suppose that S’ is true for some instantiation of
the variables yi,...,¥y,. Then make the same instantiation into S. After the
instantiation, z will be the only remaining variable in S. Wherever x occurs
positively, the constraint implies a lower bound for z, and wherever = occurs
negatively the constraint implies an upper bound for z.

Suppose that the largest lower bound [ is implied by some constraint f and
the smallest upper bound w is implied by some constraint g. Since the sum of f
and g under the current instantiation is equivalent to I < u and is in S’, which
is true, we can find a value between [ and wu inclusively for = that will make S
also true.

Proof of Theorem 2: We can modify the basic fixpoint evaluation method
by adding for each relation R only “points” that do not dominate any earlier
point added to relation R. This shows that the number of points added to R
must be finite. By reasoning similarly to R for each defined relation, we can
see that the modified fixpoint evaluation must terminate. The correctness of the
modification follows from the observation that points that are not added are not
new (in the sense that there is no instantiation which makes them true but does
not make any other input or already derived fact true).



