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Abstract

A genome map is an ordering of a set of clones according to their believed position on a DNA
string. Simple heuristics for genome map assembly based on single restriction enzyme with complete
digestion data can lead to inaccuracies and ambiguities. This paper presents a method that adds
additional constraint checking to the assembly process. An automaton is presented that for any
genome map produces a refined genome map where both the clones and the restriction fragments in
each clone are ordered satisfying natural constraints called step constraints. Any genome map that
cannot be refined is highly likely to be inaccurate and can be eliminated as a possibility.

1 Introduction

Deoxyribonucleic acid or DNA, the genetic material that encodes the blueprint of any living organism,
is composed of a string of nucleotides that are adenine (A), thymine (T), cytosine (C), and guanine (G).
Clones are copies of random substrings of a given DNA string. Clones may overlap in a clone database.

Restriction enzymes are enzymes that cut a nucleotide string always at specific sites.! Each different
restriction enzyme cuts the nucleotide string at different sites. After cutting all information about the
original order of the small fragments is lost, because the small fragments just float randomly in the
restriction enzyme.? In this paper we assume that each clone is cut at all restriction sites that are specific
for the enzyme applied. This is called complete digestion. Clones can be copied easily and completely
digested by various enzymes and the lengths of the fragments after the digestion can be measured.

A genome map is a sequence of clones cy,...,c, of some DNA string such that the left end of ¢;
precedes the left end of ¢;+1 on the DNA string. A refined genome map according to a specific enzyme is
a genome map where the restriction fragments of each clone are also ordered from left to right according
to their position on the DNA string. We can summarize the problem of genome map assembly with single
enzyme complete digestion as follows:

INPUT: For an enzyme and for each of a set of N clones of the same DNA string the approximate fragment
lengths after complete digestion of the clone by the enzyme.
OUTPUT: All possible map assemblies compatible with the input.

For example, the following may be an input to the genome map assembly problem:

*This work was supported by NSF grant IRI-9625055. A preliminary version of this paper was presented at the CP96
Workshop on Constraints and Databases, August, 1996.

! For example, one restriction enzyme may cut the DNA at each occurrence of the substring GTTAAC (from left to right
or right to left, it does not matter for the enzyme) into GTT and AAC.

2The only exception is that we may identify the two ending fragments of each clone and take out these from each
clone [13]. Hence only fragments that are cut at both ends by the restriction enzyme are considered.



Clone | Fragment Lengths
C1 5,10,15,25,30,35
C2 5,10,15,20,35,40
C3 5,20,25,30,45,50
C4 5,10,20,25,30,45
C5 5,10,15,20,25,35
C6 8,15,20,25,40
c7 15,20,25,30,45,50
C8 8,20,25,35,40
C9 15,40,45,50

The unit of measurements in the above table is hundred nucleotides. For any fragment its mea-
surement can be off by a few nucleotides from its actual length. Small errors can be eliminated from
consideration by rounding the measurements to the nearest tenths or hundreds of nucleotides.

There are some good heuristics for assembling genome maps, although the problem is known to be
NP-complete in the number of restriction fragments in the clones [6, 10]. However, the simple heuristics
often lead to incorrect maps or ambiguities. The refinement method introduced in this paper aims to
correct inaccuracies and eliminate ambiguities in genome maps.

In this paper we devise a nondeterministic automaton that refines genome maps. Given any unrefined
genome map (derived using some simple heuristic), the automaton decides whether it can be refined,
that is, whether the restriction fragments can be ordered in each clone in a way that the orderings in the
individual clones are compatible. If a refinement is not possible then the unrefined genome map assembly
is highly likely to be invalid.

The automaton can be implemented in programming languages that provide (1) representation of
sets, (2) representation and solving of set constraints, and (3) recursion. One such language is provided
in the DISCO database system (short for Datalog with Integer and Set order COnstraints), which is
currently implemented at the University of Nebraska [1]. We expressed the automaton in DISCO and
tested it on small sample problems.

The paper is organized as follows. Section 2 describes heuristics for the genome map assembly
problem. Section 3 presents an automaton for refining genome maps. Section 4 provides implementation
in DISCO of the automaton and some sample results. Section 5 discusses related work. Section 6 presents
some conclusions and open problems.

2 Basic Genome Map Assembly Heuristics

The basic strategy of the solution is the following. We try to find the order of the clones according to
the position of their left ends on the DNA string. Then we walk through from left to right on the clones.
That is we pick our best guess for the leftmost clone. Then we try to identify the next leftmost clone
and so on until we reached the end of the DNA string. Next we consider several heuristics for choosing
the next clone.

Threshold Heuristic: If A = {ay,...,a,} is the current clone, choose as the next clone out of the
yet unused ones the clone B; such that the cardinality of A N B; is above a certain constant threshold.

For our example, the cardinality of the intersections considering the enzyme discussed are the fol-
lowing:
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Figure 1: The search tree using the maximal overlap heuristic
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Maximal Overlap Heuristic: This is a heuristic that we introduce and use in this paper. This
extends the previous heuristic with the following. In case several clones could be chosen according to the
enzyme threshold heuristic, then choose the one with the highest overlap.

Suppose we know that clone 8 is the leftmost clone on the DNA string. Then using the maximal
overlap heuristic, we obtain for our example the search tree shown above. The search tree shows that
there is some ambiguity in the genome map assembly. We have seven possible genome maps to consider.

3 A Refined Genome Map Assembly Automaton

In the refined genome map assembly problem we are not only interested in the order of the clones, but
also the order and alignment of the restriction fragments in each clone. Sometimes, it is hard to know how
to align two clones even when we know that they overlap. Suppose that the cardinality of the intersection
of clones A and B is 4. Then we can be fairly sure that these two overlap if our threshold value is 3.3
The restriction fragments measured as 495 and 502 may or may not be actually the same may be

But do they overlap on each of the four segments that they have in common, or only on three, two

3The threshold value is also influenced by the accuracy of the measurements. For example, some of the 5s in the table
in the introduction may reflect measurements of 495, or 502. In general, the more accurate the measurements, the smaller
threshold values we need [11].
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Figure 2: A refined genome map

or one of them? The maximal alignment seems the most reasonable assumption under the following
conditions, which we assume to hold in the rest of this paper:

(1) No clone contains another clone.

(2) No clone contains two different restriction fragments with the same length. However, different clones
may contain different restriction fragments that have the same length.

(3) Each restriction fragment is contained in at most k clones, where k is some fixed number.

(4) The right end of each clone overlaps the left end of at least one other clone when they are mapped to
their correct positions on the DNA string.

Note that all the unrefined genome maps that we want to check and refine further if we can will
automatically satisfy (4). To solve the example in the previous sections, we test each of the seven genome
maps in Figure 2 separately. Out of the seven only one, namely the genome map corresponding to the
topmost branch of the tree, can be refined with maximal alignment as shown in Figure 3. Hence this
genome map is the most likely to reflect the real order of clones on the DNA string,.

We present a refinement automaton (see Figure 3) that tests whether a candidate unrefined genome
map is valid or not under the assumptions listed above. The basic idea is to build a staircase like the one
shown in Figure 3.

We call any subset of the staircase with k + 1 clones a window. As we refine the genome map this
window will move to the right and down the staircase. Let at all times the elements of the window be
called A;,...,Ag41 in order.

We say that a clone is active if it must contain the element that we pick next. At any time one to
five clones are active. The main idea in the automaton is to have a separate state ¢ for the case when 3
clones are active. We also keep two counters, d and u to signal that we must move to a lower or higher
state. When d = 0 we will move to a lower state. Moving to a lower state is needed when we read the

4Any set of clones satisfying conditions (1) and (4) can be arranged into a staircase. Just sort the clones according to
the position of their left endpoints on the DNA string. The sorted order forms a staircase because condition (1) implies
that if the left end of clone A precedes the left end of clone B, then the right end of clone A also precedes the right end of
clone B and condition (4) ensures that the adjacent clones overlap.
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Figure 3: The automaton for k£ = 5.

last item from the leftmost clone Al. Moving to a lower state occurs again after picking cardinality of
A2\ Al number of items, because then we will read the last item of A2. Hence when we move to a lower
state we set the counter d to card(A2\ Al). When moving to a lower state we also advance the window
one step downward. This means that we assign to A; the previous value of A;;1 for each 1 < < k and
assign to ax41 the next clone of the genome map that we wanted to refine. If no next clone exists, that
is, when we are reading the last few clones in the genome map, then the value of Ax41 will be the empty
set.

Similarly, when u = 0 we move to a higher state. Moving from state ¢ to state i + 1 is needed when
we already picked all items in A; \ 4;11. Moving to a higher state occurs again after picking all items in
Aiv1 \ Aiga, because then we read all items in A;; which don’t occur in A;». Hence when we move to
a higher state we set the counter u to card(A;11 \ Aiy2).

Finally, there are transitions from each state ¢ to itself. On these transitions we pick a value from
the leftmost ¢ clones in the window. On each self-transition, we also decrease by one the counters d and
u.

Let d; be the number of fragments in ¢, and let d; be the cardinality of ¢; \ ¢;_1 for 1 <i < n. Let
u; be the cardinality of ¢; \ ¢;41 for each 1 <4 < n, and let u,, be the cardinality of ¢,. Let a(c;) be the
number of elements picked from clone c;.

Lemma 3.1 Suppose that the automaton reaches the halt state given a genome map ¢y,...,¢,. Then
the following must be true for each 1 < i < n:

a(c,-+1) = Oé(Ci) + di+1 — U;

Proof: When the automaton moves from a lower state to a higher state and starts picking items
from ¢; it sets u = u; and does not move to a higher state until u; number of items are picked from ¢;
that are not in ¢; 1. After that the automaton moves to a higher state and starts picking items from
¢i+1- But while it picks items from c¢;; it must also pick simultaneously the same items from c¢; until
shifting c¢; out from the window. When shifting c¢; out from the window the automaton sets d = d;;1 and



does not shift out ¢; 1 also until d;11 number of items are picked from ¢; 1. These three facts imply that
a(ci+1) = a(C,’) + dz'+1 —u;. O

Next we prove that to reach the halt state the automaton must pick all the items from each clone.
At first, note the following identity (*) for each 1 <i < n:

card(ciy1) = card(c;) + card(c;q1 \ ¢i) — card(c; \ ¢iy1) = card(c;) + diy1 — u;

Lemma 3.2 Suppose that the automaton reaches the halt state given a genome map c¢y,...,¢,. Then
the following must be true for each 1 < i < mn:

a(e;) = card(c;)

Proof: We prove the Lemma by induction on i. When moving from state sg to s; the automaton
sets d = d; and does not shift out ¢; from the window until d is zero, and at each decrement of d a new
item is picked and removed from ¢;. Hence d; items are picked from ¢;. By definition di = card(cy),
hence a(c;) = card(cy) and the lemma is true for i = 1.

Now assume that the lemma is true for ¢ and prove for ¢+ 1. By Lemma 3.1 we know that a(c;y1) =
a(c;) + (diy1 — u;) holds. By the induction hypothesis, we know that a(c;) = card(c;). Hence a(ciy1) =
card(c;) +diy1 —u;. This last equation and the identity (*) above imply that a(c;+1) = card(ciy1). This
proves the lemma. O

For each adjacent pair of clones ¢;,¢;+1 we call the requirement that the items in ¢; \ ¢;1 precede
the items in ¢; N ¢;41 which are aligned and precede the items in ¢; 11 \ ¢; the ith step constraint.

Theorem 3.1 The automaton reaches the halt state if and only if the input genome map can be refined
such that all step constraints are satisfied.

Proof: (if) Suppose that the input genome map can be refined such that the refinement satisfies all
step constraints. We have to show that the automaton can reach the halt state.

Let the refined genome map be ¢y,...,¢, where the refinement consist of picking the restriction
fragments in the order r1,...,7,.

We prove that the automaton can reach the halt state by induction on m. For m = 1, we can have
only one clone because no clone contains another. The initial values when moving from state sg to s1
will be u = d = 1, and after one transition from state s; to itself both u = d = 0. At this point the
automaton can move to the halt state.

Now assume that we can always reach the halt state for problem sizes of length m, and prove for
m + 1. Having an extra restriction fragment means that we have a sequence of restriction fragments
T0,T1,---,Tm that satisfies all step constraints. Then we have one of the following subcases.

Case (i): There is a new restriction fragment ro added to clone ¢;. Since rg,r1,...,r, satisfies all step
constraints, it must be the case that r¢ in not in clone ¢;. In this case we have to increase by one the
values of d; and u;. Then the automaton can move from state sg to state s; and set d = dy and u = u;.
Then it can make a transition from state 1 to itself while reading restriction fragment rq from clone cq.
After that the automaton can run as before. Obviously, this run of the automaton would still satisfy all
step constraints.

Case (ii): There is a new clone ¢y added to the beginning of the genome map and rq is contained in clone
¢o but not in clone ¢;. In this case let dy be the cardinality of ¢y and d; be the cardinality of ¢; \ ¢q.

In this case, the automaton can move from state so to s1, and set d = d; and u = 1 by definition.
Then the automaton can read restriction fragment 7o from clone ¢yp. At that point it can enter state 2



and start reading 71,...,7rq,—1. It is apparent from the structure of the automaton that while reading
these items, the automaton can run as before the extension except for being in one higher numbered state
than before. After picking rg,_1 the automaton can make a downward transition and run perfectly the
same way as before. This run of the automaton would satisfy all previous step constraints as well as the
new step constraint 0.

(only if) Suppose that the automaton reaches the halt state. We have to show that the fragments
picked by the automaton form a refinement of the input genome map in which each step constraint ¢ is
satisfied.

Let ¢y, ..., ¢, be the input genome map and let ¢; be any arbitrary clone in it. Just before picking the
first item from ¢;, the automaton moves to a higher state and sets u = u; which is exactly the cardinality
of ¢;\ ¢i+1. The automaton does not move again from a lower to a higher state until u = 0, that is after we
picked u; number of elements from ¢; that are not in ¢;;1. Therefore, the first u; picks of the automaton
after setting u = u; must be exactly the elements of ¢; \ ¢;+1. Then until the automaton shifts ¢; out of
the window, it picks items that are in ¢; N ¢;41. After shifting ¢; out of the window, the automaton sets
d = d;4+1 and does not shift out c¢;41 until d;11 elements are picked from c¢;y;. If the automaton picks
all elements in ¢; N ¢;j+1, then these last d;;1 elements picked must be in ¢;y1 \ ¢;. By Lemma 3.2 the
automaton picks all items from each clone. Hence the ith step constraint must be satisfied by the order
of the restriction fragments picked by the automaton. Since we can reason similarly for each c;, each step
constraint must be satisfied. O

4 Solution in DISCO

DISCO is a constraint database system. Constraint databases generalize the relational data model by
describing extensional database predicates using constraint tuples, with each constraint tuple being a
quantifier-free conjunctive formula of atomic constraints in some constraint theory. Constraint query
languages [9] map input constraint databases to output constraint databases.

The advantages of constraint database systems include the following (1) flexibility of implicit repre-
sentation of data, (2) compact representation of large and possibly infinite relations, (3) more efficient
pruning of the search space than in non-constraint based systems, and (4) higher expressive power.
Because of (4) it is possible to express and solve many problems in constraint database systems that
traditional database systems cannot handle.

4.1 The DISCO Query Language

The syntax of the query language of DISCO, denoted Datalog<z>SP(2) | is that of traditional Datalog (Horn
clauses without function symbols) where the bodies of rules can also contain a conjunction of integer or

set order constraints. That is, each program is a finite set of rules of the form: Ry :— Ry, Ra,. .., R;. The
expression Ry (the rule head) must be an atomic formula of the form p(v,...,v,), and the expressions
Ry,...,R; (the rule body) must be atomic formulas of one of the following forms:

1. p(vy,...,v,) where p is some predicate symbol.

2. vOu where v and u are integer variables or constants and 8 is a relational operator =, #, <, <, >, >
, <y where g is any natural number. For each g the atomic constraint v <4 u is used as shorthand
for the expression v + g < u.

3. VCUorV =U where V and U are set variables or constants.

4. ce U or ¢ ¢ U where c is an integer constant and U is a set variable or constant.



Atomic formulas of the form (2) above are called gap-order constraints and of the form (3-4) are
called set order constraints. In this paper we will always use small case letters for integer variables and
capital letters for set variables. Set variables always stand for a finite or infinite set of integers.

Let M be the set of all possible ground tuples over the integers and sets of integers. Let P be a
Datalog<? <P program and d be a constraint database. Let D be the set of ground tuples implied by
d. The function Tp from and into M is defined as follows.

Tp(D) = {t € M : there is a rule Ry :— Rx,..., R in P and an instantiation 6 such that
Ry0 =t, and R;0 holds if R; is a constraint and R;0 € D otherwise for each 1 <i < k. }

It is shown in [1] that Datalog<%<P@ queries have a fixpoint model which coincides with the least
model. It was also shown in [16] that the data complexity of DISCO queries is DEXPTIME-complete.
Therefore DISCO can express a wide variety of combinatorial and logical problems. For example, DISCO
can express the basic NP-complete problem of testing the satisfiability of a propositional formula in
conjunctive normal form by a fixed query and a variable size database [1].

4.2 Expressing the Refinement Automaton in DISCO

We start by expressing the clone data by the input database relation:

clone(1, {5,10,15,25,30, 35}).
clone(2,{5,10,15,20, 35,40}).
clone(3, {5, 20,25, 30, 45,50}).
clone(4, {5, 10, 20,25, 30,45}).
clone(5, {5,10,15,20, 25,35}).
clone(6,{8,15,20,25,40}).
clone(7,{15,20, 25,30, 45, 50}).
clone(8,{8,20,25,35,40}).
clone(9,{15,40,45,50}).

We define the card_dif f(a,b, k) relation in the input database to be true if the cardinality of the
difference of the elements of clones a and b is k. We define card(a, k) to be true if the cardinality of clone
a is k. We also define the relation next that allows us to count from 0 to the largest k in the previous
two relations.

next(0,1).

next(6,7).

The candidate genome map assembly that we would like to refine is represented by the input relation
next_clone(a,b) which is true if after clone a the next clone is clone b, and the relation first(a) which
is true if a is the first clone. We also add a dummy clone C10 to the end of the list with empty set of
fragments and declare next_clone(10,10) to be a true fact in the database.

Let L be the set of length values that occur in any of the clones. In the example of Figure 3 the set
L is {5,8,10,15,20,25.30,35,40,45,50}. Only the values in L need to be tested for membership in sets.
Hence for each constant ¢ € L we add the following constraint tuples to the input database:

in(c, X) — ceX.
notin(c,X) — c¢ X.

We define the relation cut(i, X,Y’) which means that ¥ C X \ {i} as follows.
cut(i,X,Y) — Y C X, notiin(i,Y).

To express the automaton, we keep the configuration of the automaton in the relation si(j, a1, A1, - - ., ag, Ak, d, u).



This configuration indicates that we are in state i, the current window is the remaining parts Ay, ..., Ag
of the clones ay, .. .,ax, and if j # —1, then j was the last item picked, otherwise we just made a transition
from another state to state i. The transitions from state ¢ to itself for each 1 < ¢ < 5 can be expressed
as follows.

5i(j,a1,B1,-.. 0, Bi,aig1, Aig1, .- - ap, A, dy,un)  —  si(di, a1, A, ag, Ay, du),
Z’I’L(J, Al)a s ,’I:Tl(j, Az)a nOt_i'fL(j, Ai+1)7
cut(j, Al,Bl), e ,cut(j, Ai,Bi),
next(dy,d), next(uy,u).

The transitions from lower states to higher states can be expressed as:
Sz'-i-l(_]-’al)Al) ree 7ak7Ak7d7u) — Si(ja G’l)Al’ tee 7akaAkad5 0)7Card—diff(ai-i-lﬂai-i-Qau)‘
The transitions from higher states to lower states can be expressed as:

si—1(—=1,a2, Az, ..., ap41, Apy1,d,u) — si(j,a1, A1, .., ap, Ak, 0,u), carddif f(az,a1,d),
next_clone(ay, agt1), clone(ag41, Aky1)-

Finally, the initial transition from state 0 to state 1 and the final transition from state 1 to state h
can be expressed as:

h(ai,...,ax) — sl1(j,a1,4{},.-,ak, {},0,u).

s0(=1,a1, A1, ... a5, Ag,d,u) — first(a1),next_clone(ay,as),...,next_clone(ay_1,ax),
clone(ay, A1), ..., clone(ag, Ag),card(ar,d), card_dif f(a1,as,u).

4.3 Testing on a Sample Data

We tested the algorithm on the sample data shown in Figure 3 and described in Section 2. The following
table shows one sequence of partial tuples (only seven out of sixteen arguments are shown) found by the
DISCO system. In the actual implementation, we added an extra sixteenth temporal argument ¢ which
was initialized to 0 and was increased by 1 for each transition from state ¢ to itself. This helped us to
keep track of the order of the tuples and to check the correctness of the program. In the future, we will
add a trace routine by which DISCO will be able to print out the proof trees.



ST A1 A2 A3 A4 A5 A6
s1 | -1 | {8,20,25,35,40} | {8,15,20,25,40} | {5,10,15,20,35,40} | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
s1 | 35 | {8,20,25,40/* | {8,15,20,25,40} | {5,10,15,20,35,40} | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
s2 | -1 | {8,20,25,40}* | {8,15,20,25,40} | {5,10,15,20,35,40} | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
s2 | 8| {20,25,40}* {15,20,25,401* | {5,10,15,20,35,40} | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
s2 | 25 | {20,40}* {15,20,40}% {5,10,15,20,35,40} | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
s3 | -1 | {20,40}* {15,20,40}* {5,10,15,20,35,40} | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
s3 | 40 | {20}% {15,201* {5,10,15,20,35}* | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
sd | -1 | {20}% {15,201* {5,10,15,20,35}* | {5,10,15,20,25,35} | {5,10,15,25,30,35} | C4
sd 20 {J {151% {5,10,15,35}* {5,10,15,25,35}* | {5,10,15,25,30,35} | C4
s3] -1 | {15}* {5,10,15,35}* | {5,10,15,25,35}* | {5,10,15,25,30,35} | {5,10,20,25,30,45} | C3
s | 1] {I51* {5,10,15,35}* | {5,10,15,25,35}* | {5,10,15,25,30,35} | {5,10,20,25,30,45} | C3
sd 15 | {J {5,10,35}* {5,10,25,35} {5,10,25,30,35}* | {5,10,20,25,30,45} | C3
s3 | -1 | {5,10,35}% {5,10,25,35}* | {5,10,25,30,35}* | {5,10,20,25,30,45} | {5,20,25,30,45,50} | C7
s3 | 35 | {5,101* {5,10,25}* {5,10,25,30}F {5,10,20,25,30,45} | {5,20,25,30,45,50} | C7
sd | -1 {5,101* {5,10,25 % {5,10,25,30} {5,10,20,25,30,45} | {5,20,25,30,4550} | C7
sd [ 10 | {5} {5,251* {5,25,30} {5,20,25,30,45}* | {5,20,25,30,45,50} | C7
s5 | -1 | {5} {5,251% {5,25,30} {5,20,25,30,45}* | {5,20,25,30,45,50} | C7
s5| 5] {} {251% {25,301 {20,25,30,45}F {20,25,30,45,50}* | C7
sd | -1 | {25)% {25,301* {20,25,30,45}1* {20,25,30,45,50}* | {15,20,25,30,45,50} | C9
s5 | -1 | {25}% {25,301 {20,25,30,45} {20,25,30,45,50}* | {15,20,25,30,45,50} | C9
5125 | {J {301* {20,30,45}% {20,30,45,50}* {15,20,30,45,50}* | C9
sd | -1 | {30}* {20,30,451% {20,30,45,50}* {15,20,30,45,50}* | {15,40,45,50} Iy
s 30 {} {20,45}1* {20,45,50} {15,20,45,50}* {15,40,45,50} {
s3 | -1 | {20,451% {20,45,501* {15,20,45,501* {15,40,45,50} {0 {
s3 | 20 | {45}% {45,501* {15,45,50} {15,40,45,50} { {
sd | 1] {451* {4550} {15,45 50 }* {15,40,45,50} { {
s |45 | {} {501* {15,501* {15,40,50}* { {
s3 | -1 | {50}* {15,50}* {15,40,50}* {3 { U
s3 | 50 | {} {15}* {15,40}* { { {
s2 | -1 | {15}* {15,40}* {} {} { {}
s2 | 15| {} {40}* { { { {
sl | -1 | {40}* {} {} { { {
s1]40 | {} { {} { { {
h [-1]{} { { { { {

In the last column of the above table C'3,C4,C7 and C'9 stand for the set of items in clones 3,4, 7 and

9 respectively. Sets that are upper bounds only are marked with a star. From the table one can read out
the sequence: 35, 8, 25, 40, 20, 15, 35, 10, 5, 25, 30, 20,45, 50, 15,40 by skipping the —1s which indicate only
the initialization and transitions between states. In the example, the order of the restriction fragments
with lengthes 8 and 25 in clone 8 could be reversed, leading to another solution, which is also computed
by DISCO. On this problem DISCO was run on a SUN sparc 2 workstation in 579 CPU seconds.

5 Related Work

There are many variations of the genome map assembly problem beside the one we considered in the
paper. One other version called the probed partial digestion problem is considered in [19]. Here the task
is to align a number of DNA fragments each of which overlaps the same small piece of the DNA string.
This is different from our problem, where some pairs of clones (for example in Figure 3 clones C8 and
C9) do not overlap. The probed partial digestion problem is solved using the deductive database system

LDL [18].
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In a second version of the genome mapping problem, the clones do not all overlap and the information
of overlap derives from probe data and not from restriction fragment length similarities as in our problem.
This problem was considered for example in [7]. Here a rough map is constructed first and refined by
considering certain graph properties that must hold to make a map linear.

A third version of the mapping problem considered in [2, 20] relies on multiple restriction enzyme
data. In this version, we are given for three copies A, B, and C of the same DNA string the following
information: For A the set of fragment lengths that are obtained after enzyme one is applied, for B the
lengths after enzyme two is applied, and for C' the lengths when the two enzymes are applied together.
The problem is to order the restriction fragments in the three copies in parallel such that every time
there is a cut in copy A or in copy B, there is also a cut in copy C. This problem is solved in [20] using
the constraint logic programming system CLP(R) [§].

The DISCO constraint database system is related to several other systems that allow some type of
set constraints [3, 4, 5, 12, 14, 17]. The automaton described in Section 3 can be implemented in these
systems as well. However, the running times and scaling for larger size problems could be very different
in these systems because they use different methods for solving set constraints.

6 Conclusions and Open Problems

As is apparent, there are several variations on the genome map assembly problem. These variations
suggest that modifications may be necessary in tayloring any algorithm to particular applications. Hence
it seems that declarative, high-level and easily maintainable solutions will have a special advantage. We
also plan to modify our solution by adding probe data information and use them together with restriction
fragment lengths information.
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