
Parametric R-Tree: An Index Structure for Moving Objects∗

Mengchu Cai
IBM Silicon Valley Laboratory

555 Bailey Ave.
San Jose, CA 95141, USA

mcai@us.ibm.com

Peter Revesz
Dept. of Computer Science and Engineering

University of Nebraska–Lincoln
Lincoln, NE 68588, USA

revesz@cse.unl.edu

ABSTRACT
We describe an indexing method for parametric rectangles
that were recently proposed in [6] to represent moving ob-
jects. Parametric rectangles are a more natural representa-
tion of moving objects than moving points. Our indexing
method extends R-trees, with the following important mod-
ifications among others: (i) definition of parametric rectan-
gle trees, or PR-trees (ii) searching a PR-tree for intersection
queries (iii) insertion into PR-trees (iv) deletion from PR-
trees. These modified operations need new algorithms for
finding a minimum bounding parametric rectangle (MBPR)
of a set of parametric rectangles and a new insertion and
splitting criteria and algorithms. Experiments show that
PR-trees provide a significant improvement over R-trees for
intersection queries with moving rectangles.

1. INTRODUCTION
Applications such as weather forecasting and air traffic

control require the monitoring of the continuous change in
the shape and the position of a large number of moving ob-
jects. Such novel applications pose many challenges because
relational databases cannot model continuous change, and
spatial indexing techniques like R-trees [11], R*-trees [2] and
R+-trees [18] cannot efficiently index moving objects.

Some recent work propose to represent moving objects by
moving points, for example [7, 9, 19]. Other work also con-
sider the indexing of moving points [1, 15, 16, 20]. However,
a limitation of moving points is that they do not represent
the spatial extents of objects and therefore cannot express
some natural queries that involves intersection of the spatial
extents. For example, if each airplane and cloud is repre-
sented as a moving point, then a simple query like “Find all
the airplanes that are currently traveling within some cloud”

∗The second author was supported by NSF grant IRI-
9625055 and a Gallup Research Professorship. Contacts:
revesz@cse.unl.edu

ADVANCES IN DATA MANAGEMENT 2000
Krithi Ramamritham, T.M. Vijayaraman (Editors)
Tata McGraw-Hill Publishing Company Ltd.
c© CSI 2000

cannot be expressed and evaluated.
Constraint database [13] systems like MLPQ/GIS [14],

DEDALE [10] and CCUBE [5] with linear constraints of
the spatial and temporal dimensions can represent moving
objects with their changing extents, but their data repre-
sentation does not allow efficient indexing except in special
cases [4, 12].

Our work is based on the PReSTO [6] database system,
which uses sets of parametric rectangles for modeling moving
objects. This also allows representing moving objects with
their changing extents. For example, parametric rectangles
could model a set of growing or shrinking clouds that can-
not be modeled by moving points. The PReSTO database
system can also express relational algebra queries (like the
query above).

In this paper we describe a new indexing method called
PR-tree for parametric rectangles. While the overall method
is based on the main ideas of R-trees, several important
considerations are special to PR-trees, including new defi-
nitions/algorithms for finding the parametric bounding box
for a set of other parametric bounding boxes, choosing a
subtree in a PR-tree, and a splitting criterion.

The paper is structured as follows. Section 2 gives the
definition and background of parametric rectangles. Section
3 describes the PR-tree index structure and an efficient algo-
rithm to compute the minimum bounding parametric rect-
angle of a set of moving objects. Section 4 describes the
PR-tree search algorithm. Section 5 presents the insertion
and deletion algorithms of the PR-tree. Section 6 compares
the performance of PR-trees with R-trees. Finally, Section
7 covers related work.

2. BACKGROUND: PARAMETRIC RECT-
ANGLES

We consider a database of moving objects that change
their position and shape continuously over time. Assume
that the moving objects are modeled as a set of parametric
rectangles [6]. A parametric rectangle (R) is a multidimen-
sional moving rectangle defined as follows:

R = (I1, . . . , Id, t[, t])

where d is the number of dimensions, Ii is a closed bounded
interval in the ith dimension such that the lower and the
upper bound of Ii denoted by x

[
i and x

]
i are linear functions

of time t where t ∈ [t[, t]] and the start time t[and the

end time t] are two rational numbers. The projection of R

on the xi dimension, denoted by Πxi
, is a one dimensional

parametric rectangle or interval (Ii, t[, t]).
The semantics of a d-dimensional parametric rectangle r

is a polyhedron P in the d + 1 space. Given two paramet-
ric rectangles r1 and r2, we say that r1 includes r2 if the
corresponding polyhedron of r1 includes that of r2.

3. THE PARAMETRIC R-TREE INDEX STRUC-
TURE

Our goal is to develop an index structure to answer effi-
ciently queries of the form:
“Report all objects that intersect a moving rectangle R”.
R is also represented by a parametric rectangle. The index
structure allows the database to be dynamic, that is, to in-
sert a new object or to delete an old one from the database.

The parametric R-tree (PR-tree) we present is an R-tree [11]
like structure for multidimensional moving objects. Like an
R-tree, a PR-tree is a height-balanced tree and each node
has between M/2 and M children, where M is a constant
depended on the page size. However, while each node of
an R-tree is associated with a minimum bounding rectan-
gle that represents the stationary position and extents of a
spatial object, in contrast, each node of a PR-tree is associ-
ated with a minimum bounding parametric rectangle which
is defined as follows:

Definition 3.1. Suppose S is a set of d-dimensional para-
metric rectangles, then we call a parametric rectangle r the
minimum bounding parametric rectangle of S if and only if

1. r contains all parametric rectangles in S.

2. The area of the project of r onto the (xi, t) space is
minimized for each i = 1, . . . , d.

Example 3.1. Table 1 represents eight moving objects (r4
– r11) and their bounding boxes r1, r2 and r3 by parametric
rectangles. Figure 1 shows the snapshots of the moving ob-
jects (shaded) and their bounding boxes at t = 0 and t = 10.
r6 and r8 are not shown in the snapshot at t = 0 since they
do not exist at t = 0. For the same reason, r7 is not shown
in the snapshot of t = 10. Figure 2 shows the eight moving
rectangles organized in a PR-tree with M = 3.

x[x] y[y] t[t]

r1 30 + 7t 90 + 7t 50 + 5t 100 + 6t 0 10
r2 0 50 10 + 5t 55 + 5t 0 10
r3 60− 6t 100 − 5t 0 40 + t 0 10
r4 30 + 7t 50 + 7t 80 + 6t 100 + 6t 0 10
r5 30 + 12t 40 + 12t 50 + 5t 65 + 5t 0 10
r6 75 + 6t 90 + 7t 70 + 8t 80 + 8t 2 10
r7 0 15 40 + 5t 55 + 5t 0 9
r8 0 12 20 + 4t 40 + 4t 1 10
r9 30 50 10 + 7t 20 + 7t 0 10
r10 80− 5t 100 − 5t 2t 20 + 3t 0 10
r11 60− 6t 70 − 6t 30 − 3t 40 − 2t 0 10

Table 1: Moving objects and their bouding boxes

represented by parametric rectangles

Now let us consider how to compute the minimum bound-
ing parametric rectangle. Suppose that S is a set of d-
dimensional parametric rectangles. Let R be the MBPR

r10

r1

r11

t = 0

r3

r5

r7

x

y

r2

0
r9

r4

0 100

100

100 150

r3 r11
50

100

r6

r5

r2r8

r9

t = 10

50

r4

0

r10

150
r1

y

x
0

Figure 1: Two snapshots of the moving objects and

their bounding boxes

of S. It is easy to see that the start time of R is the min-
imum of the start times of the parametric rectangles in S
and the end time of R is the maximum of the end times of
the parametric rectangles in S. Let tmin and tmax denoted
the start and the end time of R, then

tmin = min
r∈S

(r.t[), tmax = max
r∈S

(r.t])

So the main task of computing R is to compute the functions
for the lower and the upper bounds of R in xi dimension,
for each i = 1, . . . , d. Since the projection of each paramet-
ric rectangle in S onto the (xi, t) space corresponds to a
trapezium with four extreme points as shown in Figure 3
(left), the projection of S onto the (xi, t) space corresponds
a set Si of 4|S| extreme points in the (xi, t) space. Let Hi

be the convex hull of Si. We will show that the lower and
the upper bounds of R for the xi dimension are extensions
of some edges of the convex hull Hi, which can be computed
efficiently [8]. For example, the polygon in thin solid line in
Figure 3 is the convex hull of four parametric rectangles in
the (xi, t) space, and the trapezium in bold line in Figure 3
(right) is their MBPR projected on the (xi, t) space.

Lemma 3.1. For each xi, let Si be the projection of a set

r3r2r1

To data tuples

Root

r5 r6r4 r11r10r7 r8 r9

Figure 2: A PR-tree

i

t t

xi x

medttmin tmaxmaxt mint

Figure 3: The convex hull and MBPR of four para-

metric rectangles

S of parametric rectangles onto the (xi, t) space, then the
lower and the upper bounds of the MBPR of S projected
onto (xi, t) overlaps some edge of the convex hull of Si.

Lemma 3.2. The lower and the upper bounds of the mini-
mum bounding parametric rectangle of S projected onto (xi, t)
are the extensions of the edges of Hi that intersect the me-
dian line t = tmed, where

tmed =
tmin + tmax

2
.

Figure 3 shows in the xi dimension the bounds of the
MBPR of a set of parametric rectangles are extension of the
edges of the convex hull that intersect the line t = tmed.

Theorem 3.1. The minimum bounding parametric rect-
angle of M number of d-dimensional parametric rectangles
can be computed in O(dM log M) time.

Proof: Let S be a set of M number of d-dimensional
parametric rectangles. It is easy to see tmax and tmin can be
computed in O(M) time. For each i = 1, . . . , d, let Si be the
projection of S onto the (xi, t) space, we can compute the
corresponding extreme points of Si in O(M) by subtituting
the start and the end times of each parametric rectangle in
S to the functions. The convex hull of Si can be computed
in O(M log M) time [8]. We can also find the edges of Hi

that intersect with tmed in O(M) time. By Lemmas 3.1 and

Input: S (a set of parametric rectangles)
Output: RS , the MBPR of S

1. tmin = minr∈S(r.t[)

2. tmax = maxr∈S(r.t])
3. tmed = (tmin + tmax)/2
4. FOR each dimension xi DO

5. Find Si the set of extreme points of the Π(xi,t)S.
6. Compute the convex hull Hi of Si

7. Find the edges of Hi that intersect with tmed

8. Construct x
[
i and x

]
i

9. END-FOR

Figure 4: Algorithm for Computing MBPR

3.2, the functions of the lower and the upper bounds of the
MBPR R of S in xi are the functions of the edges of Hi that
intersect with tmed. Therefore the bounds of R in xi can be
computed in O(M) + O(M log M) + O(M) = O(M log M)
time.

For d dimensions, the MBPR of S can be computed in
O(dM log M) time. The algorithm is outlined in Figure 4.

4. SEARCHING
The search algorithm of a PR-tree is based on the algo-

rithm to check whether two parametric rectangles intersect
at any time instance. Given two parametric rectangles r1
and r2, let Πi,t(r1) and Πi,t(r2) denote the projection of r1
and r2 on the (xi, t) space, then r1 and r2 intersect if and
only if there is at least one time instance t1 such that for
each i = 1, . . . , d, Πi,t(r1) and Πi,t(r2) intersect at t1.

To determine if such a t1 exists, we first compute for each
dimension xi, the time interval when Πi,t(r1) and Πi,t(r2)
intersect. Then we check whether the intersection of the
d time intervals is non-empty. If it is not empty, then the
two parametric rectangles intersect, otherwise they do not
intersect.

Theorem 4.1. Whether two d-dimensional parametric rect-
angles intersect can be checked in O(d) time.

Proof: The proof follows from the correctness of the al-
gorithm outlined in Figure 5.

5. INSERTION AND DELETION

5.1 Insertion
The insertion algorithm of PR-trees is an extension of the

insertion algorithm of R-trees. We go down the tree to find
an appropriate leaf node to insert the new index record, split
the nodes that overflow, then propagate the split and the
change of the bounding box upward. However, new criteria
for choosing the appropriate subtree and splitting need to
be designed for PR-trees.

Appropriate Subtree: At each level we choose the child
whose bounding parametric rectangle needs least volume
enlargement to include the new tuple. More precisely, let

r = (x
[
1, x

]
1, . . . , x

[
d, x

]
d, t[, t]) be a d-dimensional paramet-

ric rectangle and P be the corresponding polyhedron in the
(x1, . . . , xd, t) space. We define the volume of r, denoted by

Input: Two parametric rectangles (r1, r2)
Output: 1 - intersect, 0 - not intersect

1. t[= max(r1.t[, r2.t[)

2. t] = min(r1.t], r2.t])
3. FOR each dimension xi DO

4. IF r1.x
[
i is parallel to r2.x

]
i AND

r1.x
[
i(t

[) > r2.x
]
i(t

[) THEN

5. RETURN 0

6. IF r1.x
[
i is not parallel to r2.x

]
i THEN

7. Determine the time t′ when

r1.x
[
i(t

′) = r2.x
]
i(t

′);

8. IF the slope of r1.x
[
i is greater than

the slope of r2.x
]
i THEN

9. t] = min(t′, t])

10. ELSE t[= max(t′, t[)

11. IF r1.x
]
i is parallel to r2.x

[
i AND

r1.x
]
i(t

[) < r2.x
[
i(t

[) THEN

12. RETURN 0

13. IF r1.x
]
i is not parallel to r2.x

[
i THEN

14. Determine the time t′′ when

r1.x
]
i(t

′′) = r2.x
[
i(t

′′);

15. IF the slope of r1.x
]
i is greater than

the slope of r2.x
[
i THEN

16. t[= max(t′′, t[)

17. ELSE t] = min(t′′, t])
18. END-FOR.

19. IF t[≤ t] RETURN 1
20. ELSE RETURN 0

Figure 5: Algorithm for Intersection Check

vol(r), to be the volume of P . Since for each time instance

t′ between t[and t], the intersection of P with the plane

t = t′ is a rectangle with area
� d

i=1(x
]
i−x

[
i)(t

′), the volume
of r is the integral of the area function as follows:

vol(r) =

� t]

t[

d�
i=1

(x
]
i − x

[
i) dt (1)

Since the lower bound (x
[
i) and the upper bound (x

]
i) of

r are linear functions of t, the area function is a d-degree
polynomial function of t, which can be translated into the
following form:

a0 + a1t + a2t
2 + . . . + adtd

where a0, a1, a2, . . . , ad are constants. Thus we can compute
vol(r) by translating Formula 1 to Formula 2:

vol(r) = (a0t +
a1

2
t2 +

a2

3
+ . . . +

ad

d + 1
td+1) ����

t]

t[
(2)

Let the children of a non-leaf node be E1, . . . , Ep and rj

be the bounding parametric rectangle of Ej . Suppose we
would like to insert a new tuple T into one child of the
node. Let MBPR(rj, T) denote the minimum bounding
parametric rectangle of rj and T . We will choose the child

that needs the minimum the enlargement to include T , that
is

min
j

enlarge(Ej, T)

where enlarge(rj, T) = vol(MBPR(rj , T))− vol(rj).

Example 5.1. Let us consider the PR-tree in Example 3.1
again. Suppose we would like to add a new tuple r12, where

r12:
x[x] y[y] t[t]

70 + 4t 90 + 3t 45 + 6t 55 + 6t 2 10

We start at the root of the PR-tree and try to add r12
to r1, r2 or r3. First we compute enlarge(r1, r12). Fig-
ure 6(left) shows that the projection of r1 in (x, t) space
already includes that of r12. So we do not need to enlarge
r1 in the x dimension. Figure 6(right) shows the projec-
tion of r1 and r12 on (y, t) space. The dashed line segments
AB and BC are the lower half of the convex hull of r1 and
r12 in (y, t) space. The lower bound of MBPR(r1, r12) in
y dimension is the extension of BC and the upper bound
of MBPR(r1, r12) in y dimension is that of r1. Therefore
MBPR(r1, r12) is

(30 + 7t, 90 + 7t, 46.25 + 5.375t, 100 + 6t, 0, 10)

and

enlarge(r1, r12) = vol(MBPR(r1, r12) − vol(r1)

=

� 10

0

60(53.25 + 0.625t)dt

−

� 10

0

60(50 + t)dt

= 825

Similarly, we compute enlarge(r2, r12) and enlarge(r3, r12)
as following Obviously, r1 is the best choice.

MBPR(r2, r12) = (0, 90 + 4t, 10 + 5t, 55 + 6t, 0, 10)

enlarge(r2, r12) = 20683

MBPR(r3, r12) = (60 − 6t, 100 + 2t, 0, 55 + 6t, 0, 10)

enlarge(r3, r12) = 51667

30

70

t

r1.x

r1. x160

100

120

y

160]

90

100

50

r12.y
r12.y

r1. y

r12.x

r1.y

B

105

A

]

[

[
C

0

]

]

x

r12.x [

30

70

90
[

10

120

50 t

Figure 6: Enlarge r1 to include r12

Node Splitting: When a new entry is added to a full
node with M entries, it is necessary to divide the collection
of M +1 entries between two nodes. The division should be
done in a way that makes the search as efficient as possible.

The PR-tree node splitting algorithm is an extension of
the quadratic split algorithm of R-tree [11]. The idea is to
choose two of the M + 1 entries whose minimum bound-
ing parametric rectangle has the largest volume increase as
the first elements of the two new groups, where the volume
increase is the volume of their MBPR minus their volume.
Each of the remaining parametric rectangle is inserted into
the group that needs less volume enlargement to include it.

Example 5.2. Let us continue Example 5.1. Suppose that
the maximum number of children of each node is 3 and the
minimum number of children is 2. We need to split the node
r1 since it contains 4 children after the insertion of r12 as
shown in Figure 7(1). For each pair of children, we compute
the volume increase of their minimum bounding parametric
rectangles as shown in the following table, since the matrix
is symmetric, we only fill the elements in the upper triangle:

r5 r6 r12
r4 16833 8250 16500
r5 - 14750 5656.25
r6 - - 9556

Since the MBPR of r4 and r5 has the largest volume in-
crease, we first put them in two new nodes r13 and r14, re-
spectively. Then we add r12 to r14 since enlarge(r14, r12) <
enlarge(r13, r12). We remove r1 and insert r13 and r14
into root as shown in Figure 7(2). This causes the splitting
of the root and the height of the tree increases by 1 as shown
in Figure 7(3). The process of the splitting of the root is
similar to the splitting of r1.

Theorem 5.1. The insertion of a PR-tree can be done
in O(logM N) time, where M is the page size (maximum
number of children per node) and N is the number of moving
objects.

Proof: It is easy to see that the height of the PR-tree for
N moving objects is logM N . At each level, it took O(M) =
O(1) time to choose an appropriate child. Hence to choose
the leaf to which the new entry is inserted can be done in
O(logM N) time.

If there is no node splitting, by Theorem 3.1, the MBPR of
a node of M entries can be computed in O(M log M) = O(1)
time, hence to propagate the change of MBPR upward can
be done in O(logM N) × O(1) = O(logM N) time. If there
are node splittings, it is easy to see that to split a node of
M entries takes O(M2) = O(1) time, there are O(logM N)
nodes that need to be splitted. Therefore, node splitting
can be done in O(logM N) time. Therefore, to insert a new
entry can be done in O(logM N + logM N) = O(logM N)
time.

5.2 Deletion
To delete a moving object, we first need to find the leaf

node in a PR-tree that contains the index record E of the
moving object. This is different from the PR-tree searching
algorithm for intersection queries in that in a non-leaf node
we choose the subtree whose MBPR includes E instead of

r11r10r9

Root

To data tuples

r1 r2 r3

r8r12r4 r7r6r5

(1) After insert r12 to r1

r2r13r14

Root

r3

To data tuples

r11r9r7 r8 r10r4 r6 r12r5

(2) Split r1

r2 r3r14r13

To data tuples

Root

r4 r6

r15 r16

r9 r11r10r8r12r5 r7

(3) Split the root

Figure 7: Procedure of inserting r12

intersect with E. Let r1 and r2 be two parametric rectan-
gles, then we can check whether r1 includes r2 by verifying
that the following conditions hold:

1. r1.t[≤ r2.t[and r1.t] ≥ r2.t]

2. Let t1 = r2.t[and t2 = r2.t], for each dimension xi,

i = 1, . . . , d, r1.x
[
i(t1) ≤ r2.x

[
i(t1) and r1.x

[
i(t2) ≥

r2.x
[
i(t2).

After we delete E from a leaf node, if there are at least
M/2 remaining entries, then we tighten the MBPR for the
node and propagate this upward. If there are less than M/2
remaining entries in the node, we eliminate the node, use a
sequence of re-insertions to relocate its entries and propa-
gate the elimination upward if its parent has less than M/2
remaining entries. Re-insertion is a modification of the in-
sertion algorithm described in the previous subsection in
that an entry from a non-leaf node need to be re-insert to a
non-leaf node at the same level as it used to be.

Theorem 5.2. To delete an index record E from a PR-
tree can be done in O(log2

M N) time, where M is the page

size (max number of children per node) and N is the number
of moving objects.

Proof: Let L be the leaf that contains E. If the number
of remaining entries in L is greater than or equal to M/2
after E is deleted, it is easy to see that deletion can be done
in O(logM N) time because for fixed M , the MBPR of a
node can be recomputed in O(M log2 M) = O(1) time,

If the number of remaining index records is less than M/2,
then we need to delete the node and reinsert all the re-
maining entries. And in the worst case, this may propa-
gate upwards to the root. Hence at most O(M

2
× logM N) =

O(logM N) entries may be reinserted. By Theorem 5.1, each
entry can be reinserted in O(logM N) time. Therefore each
deletion takes O(log2

M N) in the worst case.

6. A PERFORMANCE STUDY
We compared by experiments the performance of the PR-

tree with an R-tree. We assumed that all objects are 2D
moving rectangles, which are represented by parametric rect-
angles in the PR-tree and by 3D bounding boxes in the R-
tree.

We assumed that in the R-tree node each entry contains
a representation of a 3D rectangle by six numbers and a
pointer. Assuming each number and the pointer is 4-bytes,
the total size of an entry in the R-tree 28 bytes. Similarly,
for an entry in the PR-tree we need 10 numbers (for each

of x[, x], y[, y] the slope and the displacement values, and t[

and t]) plus a pointer, that is, a total size of an entry in
the PR-tree is 44 bytes. We assumed a page size of 2048
bytes (the largest page size used in [11]) and the maximum
number (M) of entries per node for the R-tree to be 73 and
for the PR-tree to be 46, respectively.

We generated moving rectangles and represented them as
(x[, x], y[, y], t[, t]) where

t[= 10k, t] = t[+ ∆,

x[= vxt + a, x] = x[+ w,

y[= vyt + b, y] = y[+ l,

vx = v cos(θ), vx = v sin(θ)

Each of the parameters k, ∆, a, b, w, l, v, θ were randomly
generated with a a uniform distribution. Parameter k was
an integer between 0 and 100, ∆ an integer between 80 and
120, a and b were rational numbers between 0 and 1000, the
width w and the length l were rational numbers between
0 and 2, the speed v of the object was a rational number
between 1 and 2, and the moving direction θ was an angle
between 0 and 2π.

We varied N , the number of moving objects, from 32000
to 512000. For each set of data, we executed 100 randomly
generated queries and computed the average number of I/Os
per query. (Each of the queries was another moving rect-
angle generated similarly to the data set.) Figure 8 shows
that the PR-tree needed fewer average number of I/Os per
query than the R-tree.

We also did another set of experiments where we allowed
the objects to shrink or grow in addition to moving. In this
case, the lower and the upper bounds of a moving object in
each dimension may have different speeds. That is, in this
case we let x] = x[+w + ct and y] = y[+ l+ dt, where c and

0

20000

40000

60000

80000

100000

120000

32 64 128 256 512

A
vg

 I
/O

s
pe

r
Q

ue
ry

Number of Moving Objects (in thousands)

"Rtree"
"PRtree"

Figure 8: Performance for Fixed Size Moving Ob-

jects

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

32 64 128 256 512

A
vg

 I
/O

s
pe

r
Q

ue
ry

Number of Moving Objects (in thousands)

"Rtree"
"PRtree"

Figure 9: Performance For Growing or Shrinking

Moving Objects

d are uniformly distributed rational numbers over [− w
∆

, w
∆

]

and [− l
∆

, l
∆

], respectively.1 We can see that the PR-tree
outperformed the R-tree in this case also Figure 9.

7. RELATED WORK AND CONCLUSION
Indexing moving objects is a novel area that is useful in

a wide range of applications. Regular spatial indexes like
R-trees [11] and its extensions R*-trees [2] and R+-trees [18]
model stationary objects as high dimensional bounding boxes,
but they are not efficient to index moving objects as shown
in Section 6 since the minimum bounding rectangle assigned
to a moving object requires much more space than necessary
and therefor causes too many false hits.

Most current indexing approaches for moving objects are
based on the moving point model [19] which represents mov-

1Note that choosing c and d in these ranges allow the rectan-
gles to grow at most double size in each dimension or shrink
to zero during its lifespan.

ing objects as a continuous function of time f(t) and updates
the database when the parameters of the motion like speed
or direction change. It does not consider the spatial extents
of the moving objects. [20] uses Quadtree [17] for indexing
one dimensional moving points as line segment in the (x, t)
plane. It partition the time dimension into time intervals
of length H and indexes the part of the trajectory of each
moving object that falls in the current time interval. This
approach introduces substantial data replication in the in-
dex because a line segment is usually stored in several nodes.

[15] proposes to map the trajectories of a moving point
represented by linear functions of the form y = vt + a to
a point (v, a) in the dual space and to index them by a
regular spatial index structure such as a kd-tree [3]. [15] also
provides theoretical lower bound on the number of I/Os to
answer d-dimensional range searching problems. However,
[15] assumes the trajectories of the moving objects extend
to “infinity”. It is not clear how to use this method to index
two dimensional moving rectangles with finite duration.

tmin tmax

Figure 10: Different bounds of a set of objects

[16] proposes an R-tree like index structure for mov-
ing points which uses a time-parameterized “conservative”
bounding rectangle to group moving points together. How-
ever, the “conservative” bounding rectangle of which the
lower and the upper bounds is set to move with the mini-
mum and the maximum speed of the enclosed points, respec-
tively, is not a For example, tight bound of moving points.
Figure 10 shows that the “conservative” bounding rectangle
(dash line) of a set of moving objects is larger than the min-
imum bounding parametric rectangle of the objects that are
used in PR-tree.

[1] proposes index structures for two dimensional moving
points and shows that it can find all moving points lying in
a static rectangle R in O((N/B)1/2+ε + T/B) I/Os. How-
ever, it cannot be used to index moving objects with spatial

extents. It does not consider the queries where R is moving.
Let N/B and T/N be the number of pages required to store

N constraint tuples and T retrieved tuples, respectively. [4]
describes a method that can answer half-plane queries for
non-moving 2D linear constraint tuples in O(logBN/B +
T/B) time assuming that the angular coefficient of the line
associated with the half-plane query belongs to a fixed finite
set. For moving objects no such upper bound is known yet.

8. REFERENCES
[1] P.K. Agarwal, L. Arge, and J. Erickson. Indexing

mobile points. In Proc. ACM Symposium on
Principles of Database Systems, pages 175–186, 2000.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In Proc. SIGMOD
Intl. Conf. on Management of Data, 1990.

[3] J.L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18:9:509–517, 1975.

[4] E. Bertino, B. Catania, and B. Shidlovsky. Towards
optimal two-dimensional indexing for constraint
databases. Information Processing Letters, 64:1–8,
1997.

[5] A. Brodsky, J. Jaffar, and M. Maher. Towards
practical query evaluation for constraint databases.
Constraints, 2:3-4:279–304, 1997.

[6] M. Cai, D. Keshwani, and P.Z Revesz. Parametric
rectangles: A model for querying and animating
spatiotemporal databases. In Proc. 7th International
Conference on Extending Database Technology, LNCS
1777, pages 430–444. Springer, 2000.

[7] M. Erwig, R.H. Güting, M.M. Schneider, and
M. Vazirgiannis. Spatio-temporal data types: An
approach to modeling and querying moving objects in
databases. In ACM Symposium on Geographic
Information Systems, 1998.

[8] M. I. Shamos F. P. Preparata. Computational
Geometry: An Introduction. Springer-Verlag, 1985.

[9] L. Forlizzi, R.H. Güting, E. Nardelli, and
M. Schneider. A data model and data structure for
moving object databases. In Proc. ACM SIGMOD
International Conference on Management of Data,
pages 319–330, 2000.

[10] S. Grumbach, P. Rigaux, and L. Segoufin. The
DEDALE System for Complex Spatial Queries. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 213–224,
Seattle, Washington, USA, 1998.

[11] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proc. ACM-SIGMOD Conf. on
Management of Data, pages 47–57, 1984.

[12] P. Kanellakis, S. Ramaswamy, D.E. Vengroff, and J.S.
Vitter. Indexing for data models with constraints and
classes. In Proc. ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 1993.

[13] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz.
Constraint query languages. Journal of Computer and
System Sciences, 51:26–52, 1995.

[14] P. Kanjamala, P.Z. Revesz, and Y. Wang.

MLPQ/GIS: A GIS using linear constraint databases.
In C. S. R. Prabhu, editor, Proceedings of the 9th
COMAD International Conference on Management of
Data, pages 389–393. Tata McGraw Hill, 1998.

[15] G. Kollios, D. Gunopulos, and V.J. Tsotras. On
indexing mobile objects. In Proc. ACM Symposium on
Principles of Database Systems, pages 261–272, 1999.

[16] S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A.
Lopez. Indexing the positions of continuously moving
objects. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 331–342,
2000.

[17] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[18] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: A dynamic index for multi-dimensional
objects. In Proc. IEEE International Conf. on Very
Large Databases, pages 507–518, 1987.

[19] A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In Proceedings
of the 13th IEEE International Conference on Data
Engineering, pages 422–432, 1997.

[20] J. Tayeb, O. Ulusoy, and O. Wolfson. A
quadtree-based dynamic attribute indexing method.
The Computer Journal, 41:3:185–200, 1998.

