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Abstract

A robust image similarity measure is presented
for patterned triangles. A novel feature of the new
similarity measure is the reduction of the patterns
to a simple set of affine-invariant bar-codes.

1 Introduction

Different images of the same object areaffine-
invariant transformations of each other under the
so-calledweak perspective assumption[12]. Hence
recognizing that a new image and a stored image
show the same object requires anaffine-invariant
similarity measurebetween pairs of images.

Previously proposed affine-invariant similarity
measures consider the similarity between pairs of
points and contour lines, for example themin-
imum Hausdorff distance measure[3], the geo-
metric hashing[14] technique, and least squares
distance-based similarity measures [9], and in gen-
eral ignore the complex colored patterns that are
present in the pictures.

In line with these methods, in [8], we proposed
an affine triangulation method for spatial data that
is composed of a set of triangles. Our method is
based on the computation of barycentric points in
convex polygons obtained by the so-calledsketch
of the image. A spatial triangulation method is
calledaffine-invariant, if whenever it is applied to
two spatial figuresA andB that can be mapped to
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each other by an affinityα of the plane, also the re-
sulting triangulations can be mapped to each other
by that same affinityα.

Unfortunately, our computer experiments on a
set of over400 bird images led to poor results. It
appears that the colorful and richly patterned bird
images need to be considered in their entirety. The
images can be abstracted or reduced to a set of tri-
angles that are affine-invariant, but apparently too
much valuable information is lost in the process. In
fact, consider two objects whose overall shapes are
single triangles. If one ignores the patterns within
the triangles and only concentrates on their con-
tours, then one cannot say anything definite because
two black triangles are always affine-invariant to
each other.

The present paper is motivated by enriching the
method in [8] by considering the colorful patterns
within the individual triangles. Our goal is to
achieve a good recognition even if all objects have a
triangular shape. For complex objects that are com-
posed of several triangles, the the new method can
be easily combined with the earlier method in [8]
that considers the spatial relationships of the set
of affine-invariant triangles into which the pictures
can be decomposed.

The outline of this article is as follows. Section 2
discusses barcodes in patterned triangles. In this
section, Theorem 2.1 shows that the barcodes are
affine-invariant. Section 3 describes the barcode-
based similarity measure for patterned triangles and
presents some examples on various different types
of patterns. Section 4 presents ways of adding color
information to the barcode-based similarity mea-
sure.
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Figure 1. A striped triangle ABC (left) and its affine-transformation A′B′C ′ (right).

2 Barcode-based similarity measures

2.1 Barcodes in patterned triangles

Barcodes provide an inspiration for robust
affine-invariant similarity measures. Barcodes en-
code information in a robust machine-readable way
using sequences of dark and light bars with differ-
ent widths. The optical scanners which read bar-
codes are quite robust and already allow the presen-
tation of barcodes from slightly different angles.

Although natural objects do not have barcodes,
they have rich patterned and textured surfaces with
a variety of colors. For example, the feathers of
many birds have interesting patterns, such as the
feathers of the parrot shown in Figure??.

The surface of objects can be broken into a set of
triangles that each contain some interesting pattern.
Let us concentrate on just one triangular areaABC

with some unique pattern as shown on the left side
of Figure 1. TriangleABC is transformed by the
affine motion:
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into another triangleA′B′C ′ shown on the right
side of Figure 1. The shape of triangleABC be-
comes highly distorted. However, in triangleABC

one can identify the pointD as the midpoint on the
edgeCD. Similarly, one can identify also the cor-
responding midpointD′ on the edgeC ′D′.

Now let us consider scanning the line segment
AD from pointA to pointD. During the scan one
sees a series of lighter and darker areas. In particu-
lar, one sees in sequence 1 unit light area, 3 units
dark area, 1 unit light area, 2 units dark area, 2
units light area, and 1 unit dark area. Hence the
barcode of theAD segment can be represented as
(1,3, 1,2, 2,1), with the boldface numbers repre-
senting the dark areas.

Interestingly, when one scans the line segment
A′D′, one finds also a similar sequence of light
and dark areas. In particular, one sees 2 units light



area, 6 units dark area, 2 unit light area, 4 units
dark area, 4 units light area, and 2 units dark area.
Hence the barcode ofA′D′ can be represented as
(2,6, 2,4, 4,2).

The two barcodes are similar because they have
the same number of light and dark areas and those
have the same length ratios, which are equal to the
ratio of the lengths of the two line segments.

Let the length of a line segmentl be denoted
as length(l). The similarity of barcodes is a gen-
eral feature of affine transformations as expressed
in Theorem 2.1.

Theorem 2.1 Let (a1, . . . , an) and(b1, . . . , bm) be
the barcodes of two corresponding line segmentsl1
and l2 in two affine transformations of a patterned
triangle. Thenn = m and the following hold for
each1 ≤ i ≤ n:

ai

bi

=
length(l1)

length(l2)

Example 2.1 Consider again the barcodes ofAD

andA′D′ of the two affine transformations shows
in Figure 1. In this case the barcode ofAD is:

(a1, a2, a3, a4, a5, a6) = (1,3, 1,2, 2,1)

and the barcode ofA′D′ is:

(b1, b2, b3, b4, b5, b6) = (2,6, 2,4, 4,2)

We have that length(AD) = 10 and
length(A′D′) = 20. Further, as expected by
Theorem 2.1,

ai

bi

=
10

20
= 0.5 ∀ 1 ≤ i ≤ 6

3 Similarity measures for barcodes

Next we present a similarity measure for two
barcodes. Leta = (a1, . . . , an) and b =
(b1, . . . , bm) be the barcodes of two corresponding
line segmentsl1 and l2 in two affine transforma-
tions of a patterned triangle. Ifn 6= m, then we
simply say that the two barcodes are not similar.
Otherwise, let

d =
length(l1)

length(l2)

Equalize the total length of the two line seg-
ments by scalingl2 by the factord. After scaling
we obtain a barcodec = (c1, . . . , cn) where each
ci = bi × d for 1 ≤ i ≤ n.

Next comparea andc. If one is an affine trans-
formation of the other, then by Theorem 2.1 and the
choice of the scaling factord, the following holds:

ai

ci

=
ai

bi × d
=

length(l1)

length(l2) × d
= 1 ∀ 1 ≤ i ≤ n

In general, one cannot expect two barcodes to be
perfect affine transformations of each other, that is
to haveai = ci for each1 ≤ i ≤ n. Hence one
needs to consider how muchai andci deviate from
each other. One can use a root mean square error
measurement as follows:

E(a, c) =

√

√

√

√

√

√

N
∑

k=1

(ai − ci)
2

n
(1)

Example 3.1 Let a = (1,2.5, 1,2, 2.5,1) and
b = (2,5.5, 2,4.5, 4,2). Then length(a) = 10
and length(b) = 20 henced = 0.5 and c =
(1,2.75, 1,2.25, 2,1). Further,

E(a, c) =

√

02+(−.25)2+02+(−.25)2+.52+02

6

= 0.375

Since the root mean square error is small, the two
barcodes are quite similar.

3.1 Different patterns

The barcode-based similarity measure can ac-
commodate other patterns beside striped patterns.
For example, Figure 2 shows that if the triangles are
spotted with ovals instead of having stripes, then
the barcodes are still similar after the same affine
transformation.

Note that the barcodes in Figures 1 and 2 are
the same. That means that a single barcode for a
triangle is incapable of distinguishing between the
striped and the spotted patterns within the triangle.
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Figure 2. A spotted triangle ABC (left) and its affine-transformation A′B′C ′ (right).

However, one can improve the situation by consid-
ering not one but two or three barcodes for a sin-
gle triangle. Each barcode is scanned along the
line segment whose endpoints are a corner vertex
of the triangle and the midpoint vertex on the oppo-
site side of the triangle. Figure?? shows the three
line segmentsA′D′, B′E′ andC ′F ′ in the striped
and the spotted triangles.

4 Addition of color

In [8], we described two affine-invariant color
measures: theprimary color ratio measureand the
rainbow color ratio measure. The primary color
ratio measure finds the ratiosR

G
and B

G
for the total

amount ofR, G, andB in the triangles.
The rainbow color ratio measure uses9 different

colors: red, green, blue, yellow, turquoise, purple,
white, gray and black, which are defined precisely
in [8]. The areas colored with these are denoted
R,G,B, Y, T, P,W,Gr andBl, respectively. For
each image, we take out the background. LetI be
the total area of the picture without its background.
The rainbow color ratio vector of each image con-

sists of the ratiosR
I

, G

I
, B

I
, Y

I
, T

I
, P

I
, Gr

I
and Bl

I
.

The experiments in [8] showed that the primary
color ratio measure performs well with respect to
the rainbow color ratio measure under the same
lightning conditions.

There are other ways to add color to the barcode-
based similarity measure. For example, the barcode
can be enhanced with a sensor of the color (or av-
erage color) in each “bar” instead of sensing only
white and black. Assume that in Figure 1 non-white
stripes (shown as black) are from left to right red,
blue, and red. Then a barcode representation of the
striped triangle would be(1 − white, 3 − red, 1 −

white, 2 − blue, 2 − white, 1 − red). Such a col-
ored barcode representation would be distinguish-
able form another colored barcode representation
such as(1−white, 3−blue, 1−white, 2−red, 2−
white, 1 − blue) based purely on the color differ-
ences.
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Figure 3. Midpoints of a striped triangle ABC (left) and a spotted triangle A′B′C ′ (right).
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