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Abstract. This paper describes general approaches to solving two classes
of problems using the DISCO constraint database system. The first class
of problems occurs when distinct values from a subset of the integers
must be assigned to the variables of a constraint satisfaction problem.
The second occurs when a group of items must be selected from a subset
of the integers such that each of a set of constraints holds.

1 Introduction

DISCO [1] is a constraint database system with a unique combination of two
features: (1) it can accept (integer and set) constraint databases as inputs and
(2) it can find a (constraint) database representation of the whole fixpoint model
of each program on any given input database. No other system can do both.
Constraint logic programming systems with sets like CLPS [7], Conjuncto [4],
ECLIPSE [3], and {log} [2] can do (1) but cannot do (2). Database systems like
CORAL [9] and LDL [15] can do (2) but cannot do (1).

The unique combination of achieving both (1) and (2) in DISCO is based
on a bottom-up evaluation with existential quantifier-elimination over set and
integer variables [10, 11, 14]. This paper gives examples that demonstrate that
this method can be practical.

We look at two broad classes of problems: first, constraint satisfaction prob-
lems in which all of n variables 1, ..., z, must be assigned distinct values from
a subset of the integers D, and second grouping problems in which we need to
select a group of values from a subset of the integers D such that each of a set
of constraints holds. We also consider various subcases of these problems.

The paper is organized as follows. First, we review the DISCO constraint
database system in Section 2. We discuss all distinct values constraint satisfac-
tion problems in Section 3, and grouping problems in Section 4, and give some
conclusions and future work in Section 5.

* This work was supported in part by NSF grants IRI-9625055 and IRI-9632871.
This work appears in Proc. Workshop on Constraint Databases and Applications,
Springer-Verlag LNCS 1191, pp. 302-315, Delphi, Greece, January 1997.



2 The DISCO Query Language

The syntax of the query language of DISCO [1], denoted Datalog<z'<P= | is that
of traditional Datalog (Horn clauses without function symbols) where the bodies
of rules can also contain a conjunction of integer or set order constraints. That
is, each program is a finite set of rules of the form: Ry :— Ry, Rs, ..., R;. The ex-
pression Ry (the rule head) must be an atomic formula of the form p(vy, ... ,v,),
and the expressions Ry, ..., R; (the rule body) must be atomic formulas of one
of the following forms:

1. p(v1,...,v,) where p is some predicate symbol.

2. vBu where v and u are integer variables or constants and 6 is a relational
operator =, #, <, <, >, >, <, where g is any natural number. For each g the
atomic constraint v <, u is used as shorthand for the expression v + g < u.

3. VCUorV =U where V and U are set variables or constants.

4. ¢ € U or ¢ € U where c is an integer constant and U is a set variable or
constant.

Atomic formulas of the form (2) above are called gap-order constraints and
of the form (3-4) are called set order constraints. In this paper we will always
use small case letters for integer variables and capital letters for set variables.
Set variables always stand for a finite or infinite set of integers.

Let M be the set of all possible ground tuples over the integers and sets of
integers. Let P be a Datalog<?>“P® program and d be a constraint database.
Let D be the set of ground tuples implied by d. Let us define the function Tp
from and into M as follows.

Tp(D) = {t € M : thereis arule Ry :— Ry, ..., Ry in P and an instantiation
/ such that Ry/ = ¢, and R;/ holds if R; is a constraint and R;/ € D otherwise
foreach 1 <i<k. }

The fixpoint model of a DISCO program P with input database D can be
defined as D U Tp(D) U Tp(Tp(D)) U .... It is shown in [1] that for
Datalog<?><P® queries the fixpoint model coincides with the least model and
that the data complexity of DISCO queries is DEXPTIME-complete. (That
means that we can express with a fixed DISCO program and variable input
database of size n any problem that can be computed on a deterministic Turing
machine in 2P(") time where p(n) is some polynomial function of n.)

DISCO uses a bottom-up set-at-a-time semi-naive evaluation based on quan-
tifier elimination over the above set of constraints. This guarantees to find all
solutions. This is different from the top-down evaluation that is provided in
constraint logic programming systems with set constraints. DISCO also allows
infinite subsets of the integers, which usually systems with set constraints do
not allow. (See [1] for more discussion and comparison among systems with set
constraints.)

There are no special built-in relations in DISCO. However, in many problems
that we will see the pick relation will be important. In DISCO, we can define the



pick relation pick(c, A, A") which will be true if and only if ¢ € A and A" C A\{c}
where c is any integer constant. We define the pick relation by expressing for each
¢ in the active domain (the set of constants that occur in the input database)
the following input database tuple:

pick(c,A,A") —cg A',A' C A ce A

The following is a simple example of using the pick relation. Suppose that
a set of people S is invited to a party. Find all possible set of people who may
attend the party given that the second person and the seventh person cannot
come. The solution using the pick relation would be the following.

attend(S") :— invited(S), pick(2, S, S"), pick(7,5',S").

Assuming 2 and 7 are in S, the above defines the set of people attending the
party to be S C S\ {2, 7} which is what we need. The DISCO evaluation will
yield a single constraint tuple with a conjunction of set order constraints that is
equivalent to the above constraint. For example, if invited({1,2,3,4,5,6,7,8,9})
describes the set of people invited, then DISCO first makes the proper substitu-
tions which yields the constraint tuple:

attend(S") +— S = {1,2,3,4,5,6,7,8,9},2¢ §',5' C S,2€ S,7¢ S",S" CS,T€ S

Then DISCO simplifies the above using the set constraint solving method
in [11] to:

attend(S") :— S" C {1,3,4,5,6,8,9}.

This is the correct solution because any subset of the people in {1, 3,4, 5,6, 8,9}
may or may not attend the party. Note that the DISCO solution is much more
efficient than simply enumerating the set of possible subsets of S'\ {2, 7} which
may be needed if we do not allow constraint tuples in the EDB (input) and IDB
(defined) relations.

3 All Distinct Values Constraint Satisfaction Problems

In this section we describe general approaches to solving a class of constraint
satisfaction problems in which all of n variables zi,...,z, must be assigned
distinct values from a subset of the integers D.



3.1 First Approach Using Inequality Constraints

The first general approach is to use the following skeleton query:

assign(xy,...,T,) — range(xy),...,range(x,),
neq(x1,T2),- - .,neq(tn—1,Tn),
values(z1), . .. ,values(zy).

The idea is to use a relation with n variables. Each variable is declared
using the range relation to be an element of D. The range relation is described
by constraints, typically by an upper and a lower bound constraint if D is a
subsequence of the integers. Then an inequality constraint is declared between
each pair of variables z;, z; for 1 <4 < j < n. Finally, each variable z; is declared
to be an integer in D using the relation values. The values relation is described
using regular relational database tuples. In this skeleton solution we left out the
constraints that are specific to each problem.

The range relation together with the other constraints is used to test whether
there is any solution and to derive a constraint solution. If we leave out the values
line, then DISCO will return the constraint solution as a set of constraint tuples.
The values relation is needed only if we want to have a ground solution, i.e. a
solution without any variables.

Example 3.1 There are seven cars a,b,c,d,e,f,g parking next to each other in
some unknown order on one side of a street. We know that a and g do not park
next to each other, that e parks in front of ¢ with at least three cars between
them, ¢ parks behind b with at least two cars between them, f parks ahead of g
with at least four cars between them, and b and f park next to each other. Write
a query that finds all possible orders in which the seven cars may be parking.

In DISCO we can solve the above problem using the following query:

park(a,b,c,d,e, f,qg) — gap(a,g),e <3 a,b<s ¢, f <4 g,adj(b, f),
mnge(a),mnge( ), range(c), range(d),
(f

(c
range(e), range(f), range(g),
neq(a,b),neq(a, c),neq(a, d), neq(a, ), neq(a, f), neq(a, ),
neq(b, c),neq(b, d), neq(b, e), neq(b, f),neq(d, g),neq(c, d)
neq(c, e),neq(c, f), neq(c, g), neq(d, e), neq(d, f),neq(d, g),
neq(e f),neq(e 9),neq(f,9),

pos(a), pos(b), pos(c), pos(d), pos(e), pos(f), pos(g).

In the above rule, the skeleton query was used with the addition of the first line
which expresses the constraints that are special to this problem. The car in front
of all other cars will be said to park in place 1 and the car at the end will be
said to to park in place 7. We need to express the relations adj and gap which
will be true if and only if the two cars do or do not park next to each other,
respectively. The EDB (input) constraint database will be as follows:



succ(1,2).

succ(6,7).

adj(x,y) -— succ(z,y).-
adj(z,y) — succ(y, ).

gap(z,y) — x <1 y.
gap(z,y) —y <1 =.

range(z) — 0 < z,z < 8.

neq(z,y) :—z < y.
neq(z,y) :—y < x.

pos(1).

pos(7).

This problem was solved in less than 5 seconds on a SUN sparc 2 workstation.
The solution was park(a,b,c,d,e, f,g) —a=5,b=3,c=6,d=4,e=1,f =
2,g="7.0

Remark: Some database systems allow constraint checking but not constraint
solving. An example is CORAL [9], which would accept the above query as syn-
tactically correct. However, CORAL would give a system error message “com-
paring two non-numbers” when gap(a, g) is calculated. One thing that could be
done in CORAL is to put the pos line first instead of last. But that would be
extremely slow. This is because CORAL would take the cross-product of the pos
relation with itself seven times before starting to check the constraints. Before
the constraint checking starts, there would be 77 = 823, 543 number of tuples. In
contrast, DISCO at first calculates a selection condition by constraint solving.
The selection constraint is applied as early as possible keeping the size of the
intermediate relations small. Hence, even if the same problem can be expressed
in DISCO and other systems that allow constraint checking but not constraint
solving, the DISCO solution will be often faster.

A variation of the all distinct values constraint satisfaction problem occurs
when all distinct values from several sets A1, . .., A have to be matched together.

Example 3.2 A computer science department consists of six professors: Ander-
son, Brown, Clark, Davis, Edwards, and Fisher. The professors’ office numbers
are 101, 102, 103, 104, 105, and 106. Each professor has a separate office. Each
professor is teaching exactly one course this semester. The courses offered are
artificial intelligence, databases, graphics, hardware, software, and theory. We
know the following information.

1. Anderson’s office is 102 and Fisher’s is 105.



2. The professor who teaches hardware has office 104.
3. Clark teaches software and his office is not 102.

4. Brown’s office is 103 and she teaches databases.

5. Davis teaches theory.

Find the office numbers and the subjects taught by each professor.

In the following DISCO solution, let’s assume that ai = 1,databases =
2, graphics = 3,hardware = 4,software = 5,theory = 6. We also number
the professors in alphabetical order and refer to offices by the last digit of their
numbers. Let the variables zo and xt denote the office number and the topic
for professor z. In this problem we use these 12 variables as arguments of the
output relation.

profs(ao,at,. .., fo, ft) :— ao = 2,bo = 3,bt = 2,neq(co,2),ct = 5,dt =6, fo=15,
pair(ao,at), .. ., pair(eo, et),
range(ao), . ..,range(fo),
range(at), ...,range(ft),
neq(ao, bo), . .., neq(eo, fo),
neq(at,bt), . .., neq(et, ft),

values(ao), . . . ,values(fo),
values(at), . .. ,values([t).
range(x) —0<z,z<T.
pair(z,y) a Ay A4
pair(4,4).
values(1).
values(6).

The complete program also includes the neq relation whose definition we
did not repeat here. The pair relation states that each professor is either in
office 104 and teaches hardware or is in some other office and teaches something
else. This is the expression of the second constraint. The other constraints are
straightforward and are shown in the first line. There are four different solutions
to this problem. The DISCO system found all four solutions in 33 seconds. O

3.2 Second Approach Using the Pick Relation

The first approach uses for n variables n x (n — 1)/2 inequality constraints and
at least 2n range constraints. As n gets larger, that may be too many constraints
to store and to solve.

Our second approach to the constraint satisfaction problem with all distinct
values takes advantage of the compact representation provided by sets and uses
the pick relation defined at the end of Section 2.



The main idea behind this approach is to represent for each subproblem the
yet unassigned values as a set A. Each time we assign to a new variable some
constant ¢, which must be present in A. After the assignment is made, ¢ must be
taken away from A. This representation only requires propagating the current
value of A to all subproblems. In many cases this propagation would result in
more efficient solutions. The skeleton solution would look like this:

assign(xy,...,T,) — domain(A),pick(z1, A, Ar),...,pick(xn, An_1,Ap).

Note that the above requires only O(n) instead of O(n?) constraints. We will
illustrate this approach in the following example.

Example 3.3 In the well-known SEND+MORE=MONEY problem we need to
give for each letter a different digit value from 0 to 9 such that the resulting
numbers satisfy the equality constraint. The skeleton query for this problem can
be written down as follows:

assign(s,e,n,d,m,o,r,y) :— domain(A), pick(m, A, Am), pick(o, Am, Ao),
pick(s, Ao, As), pick(e, As, Ae), pick(n, Ae, An),
pick(r, An, Ar), pick(d, Ar, Ad), pick(y, Ad, Ay).

In this problem there are some constraints that are specific to this problem.
These constraints are among the variables in each column of the summation. In
particular for each column with carry-in ¢;, input digits d; and ds, output digit
ds and carry-out ¢, we have the following constraint

column(c;,dy,ds,dz,co) —¢; +dy +dy =ds + 10 X ¢,

For the SEND+MORE=MONEY problem we have the following summation
with the carry-in and carry-out variables also shown.

cl c2 c3 c4
S E N D
M 0 R E

M 0 N E Y
cl c2 c3 c4

From this it is easy to see that the SEND+MORE=MONEY problem can
be expressed as the set of column constraints:

cl =m

2+s+m=0+10xcl

c3+e+o =n+10xc2

cA+n+r =e+10xc3

d+e =y+10xc4

It is easy to see that the values of the three variables on the left hand side
uniquely determine the values of the two variables on the right hand side, i.e.,
the functional dependency ¢;,di,das — ds,c, holds. Since ¢; is either 0 or 1



and d; and dy must be digits from 0 to 9, there are only 200 possible columns
in this problem. Since DISCO currently does not allow linear constraints, we
represented the column relation as a set of 200 ground tuples. We also used
domain({0,1,2,3,4,5,6,7,8,9}) as an input relation.

Now to solve the problem, we need to constrain the variables as early as
possible by the column relation. Implicit in this problem is that no number
starts with a 0 digit, hence m which is the carry-out in the leftmost column
must be 1. We also have to note that in the rightmost column the carry-in must
be 0. Hence the refined query would be the following:

assign(s,e,n,d,m,o,r,y) — cl = 1,m = 1, column(c2, s,m, o, c1), domain(A),
pick(m, A, Am), pick(o, Am, Ao), pick(s, Ao, As),
column(c3, e,0,n, c2), pick(e, As, Ae),
pick(n, Ae, An), pick(r, An, Ar),
column(cd,n,r, e, c3), column(0,d, e,y,r4),
pick(d, Ar, Ad), pick(y, Ad, Ay).

This query was evaluated in DISCO on a SUN sparc 2 workstation in 186
CPU seconds. A nice thing about DISCO is that it evaluates all solutions by
using a semi-naive bottom-up evalution technique. Hence we can be sure that
the only solution is assign(9,5,6,7,1,0,8,2), which was returned by DISCO. O

Remark: A similar word puzzle was solved using linear rational constraints
in the ECLIPSE constraint logic programming system [8].

3.3 A Recursive Solution

In many problems we have to order a set of items enumerated from 1 to n, such

that the ordering satisfies a single relation constraint(yi, - . ., yx) that tells which
k items can be acceptable subsequences. This is a more restrictive case of the
general problem of assignment from D because here D = {1,...,n} and because

we only need to consider k adjacent items at a time. This allows a recursive
solution, which is convenient when we want to write a fixed query that can be
evaluated on several different input databases where n varies. In these cases the
skeleton solution would look like this:

h(A) — assign(xy,. .., Tk, A,n),novars(n).

assign(xa, ..., Tpe1, A',1") :— assign(xy,. .., xk, A, 1), constraint(xa, . .., Tgt1),
suce(i, i), pick(xgi1, A, A').

assign(xy, ...,z A k) —init(A), constraint(zy, .. ., xy),
pick(ml, A, Al), e ,pz'ck(a:k, Ak—la Ak)

Here the relation assign(yi,---,yk,A,7) is true if and only if there is an
ordering such that the first 4 items are z1,...,2z; and yp_p = 2;_, for 0 <p < k
and constraint(z;y1,...,%j4k) is true for each 1 < j < (4 — k).



Here the last rule defines the base case when i = k, and in that rule A must
be the set of items to be ordered. The intuition is that the items in A are picked
in some order. The second rule defines an extension of the ordering by one such
that the extension satisfies the constraint. The topmost rule defines the goal
state, which occurs when the ordering extends to all n items. The topmost rule
also assumes that the number of items is given as an input database fact.

Example 3.4 For example, testing whether an undirected graph has a hamilto-
nian cycle can be done using the above skeleton algorithm. A hamiltonian cycle
is a path that starts and ends with the same vertex and goes through each vertex
exactly once. Here the constraint is simply the edge relation edge(z1, ) which
is true if and only if there is an undirected edge between vertices z; and z5. To
solve this problem, we try to find a path always going from the last vertex seen
to an unvisited vertex. We keep always in A the set of vertices not yet visited
on the path from the start vertex to the last vertex seen.

hamiltonian_cycle(n) — path(z1, A, n), start(z2), edge(z1, x2), no_vars(n).
path(zo, A',i") — path(z1, A, 1), edge(x1, x2), succ(i, i), pick(za, A, A").
path(zy, A',1) — vertices(A), start(z), pick(zy, A, A").

Let A be the set of vertices of the input graph, and let n be the number of
vertices. Here the third rule is the initialization, saying that we start from some
start vertex specified in an input relation start. The relation path(zq, A,i) will
be true if and only if between the start vertex and vertex x; there is a path
that traverses i vertices but not those vertices which are in A. The second rule
says that if we can visit ¢ vertices from the start vertex such that the last vertex
visited is 1 and there is an edge from vertex x; to x> and z2 was not yet visited,
then path(xs, A',i+ 1) will be true where A’ is a subset of the previsouly known
unvisited vertices A and does not contain zy. Here the successor relation is an
input relation that expresses the successor relation from 1 to n. Hence it has
only n — 1 tuples.

Note that this problem requires an assignment of a distinct integer number
between 1 to n to each vertex. This is done in the path relation. Here each proof
tree of the hamiltonian_cycle relation will contain n tuples for the path relation.
These n tuples will define a one-to-one mapping between the vertices and the
time order in which they will be visited.

We could run the hamiltonian cycle query on various undirected graphs with
upto 30 nodes. The running times ranged from 2 CPU seconds for a graph with
5 vertices to 316 CPU seconds for a graph with 30 vertices on a SUN sparc 2
workstation. O



4 Grouping Problems

In another class of problems, we need to select a group of items from a subset
of the integers D such that a set of constraints all hold. We can express the
skeleton solution for this class of problems as follows.

select(S) — satisfy(k, S),last(k).

satisfy(j,S) :— satisfy(i, S), succ(i, j), constraint(j, S).

satisfy(0,S) :— S C D,domain(D).

In this skeleton program the EDB relations are domain (D), succ(i, §), last(k),
and constraint(j, S), while the IDB relations are satisfy(j,S) and select(S).
Here satisfy(j,S) is true if and only if S is a subset of D that satisfies the
conjunction of the first j constraints on S. The following example illustrates the
use of this skeleton query.

Example 4.1 A department needs to select a team of students to participate
in a programming contest. The students eligible to participate are Jenny, David,
Pat, Mark, Tom. Lilly, and Bob. The selection must satisfy the following require-
ments. If Bob is selected, then David must be selected. If both David and Pat
are selected, then Mark cannot be selected. If both Tom and Jenny are selected,
then Bob cannot be selected. If Pat is selected, then either Tom or Lilly must
be selected; but Tom and Lilly cannot both be selected. Either Jenny or Lilly
must be selected, but Jenny and Lilly cannot be both selected. Find all possible
teams that may be sent to the programming contest.

In this solution let the numbers 1,...,7 be the id numbers of Jenny, David,
Pat, Mark, Tom, Lilly, and Bob in order. A DISCO solution would use the above
skeleton query with the following EDB database:

constraint(1,S) :— 7€ 5,2 € S.

constraint(1,5) :— 7 ¢ S.

constraint(2,5):—2¢€ 5,3€ 5,4 ¢ S.
constraint(2,5) :— 2 ¢ S.
constraint(2,5) :— 3 ¢ S.

S):

S):

S):
constraint(3,5) :—5€ S5,1€ S,7¢ S.
constraint(3,5) :— 5 ¢ S.
constraint(3,5) :— 1 & S.

S):

S):

S):

constraint(4,5) —3 € 5,5€ 5,6 ¢ S.
constraint(4,5):—3 € S,5¢ 5,6 € S.
constraint(4,5) :— 3 ¢ S.

):—1€S5,6¢ 8.
):—1¢S,6€S.

constraint(h,
constraint(h,

n »n



domain({1,2,3,4,5,6,7}).

last(5).

succ(0,1).

succ(4,5).

In this solution each of the five sentences is translated to a five groups of
constraints. For example, the first sentence is translated to the two constraints
shown in the first group. From each group one of the constraints must be true.
For example, for the first group this means that either both Bob and David is
in S (first constraint in group 1), or Bob is not in S (second constraint in group
1). 0

A second example of using the skeleton query is the solution given in [1] for
the problem of testing the satisfiability of a propositional formula in conjunctive
normal form. In fact, there the skeleton query is used twice, once for assigning
the variables, and second in testing whether each clause is satisfied. The reader
is encouraged to look at the reference for further details.

A third example from [11] occurs in the problem of finding in an inheritance
hierarchy the tightest upper and lower bounds on the elements of each class.
This variation is interesting because here we deal with not a chain but a tree.
We have to ensure that the set of elements S in each class s satisfies all upper
and lower bound constraints on each path from the root to a leaf on which s lies.

4.1 A Second Approach Using the Pick Relation

A second approach to the grouping problem is to use the pick relation that was
discussed before. The skeleton solution would be the following:

select(S) — satisfy(S, C, k), last(k).
satisfy(S,C1, ) :— satisfy(S, C, 1), succ(i, ), pick(c, C, C1), constraint(c, S).
satisfy(S,C,0) :— S C D,domain(D), constraints(C).

This skeleton query puts the id numbers of all constraints into a set C, which
is given as an EDB relation constraints. At each application of the second rule,
an element c is picked from C and it is checked whether the cth constraint holds.
Hence it is easy to see that at all times satisfy(S, C,7) is true if and only if the
set S is a subset of D and S satisfies j number of constraints (or constraint
groups) from C.

4.2 Combining All Distinct Values and Grouping Problems

If we want to enforce a set of constraints on a single set, then the order of
constraints chosen does not matter. However, that is not the case if we need to
enforce a set of constraints on the ordering of a set of elements. Previously, we



could enforce only a single constraint on the ordering. Using the above idea, we
can write the following skeleton query that combines the recursive approach to
ordering and grouping:

h(A) — assign(z1,- .., Tk, 4,n,C,m), novars(n),
no_constraints(m).

assign(xa,...,rpt1,A",1',C,5) — assign(z1,...,zx, A,1,C, %),
succ(i, i), pick(zge1, A, A).

assign(xa, ..., tpr1, A1, C", ') — assign(z, . .., Tk, A1),
SUCC(j, jl)apiCk(ca Ca Cl)a
constraint(c, Ta, .. ., Tk+1)s
succ(i, i), pick(zp41, A, A').

assign(z1,..., x5, A, k,C,0) :— init(A), constraints(C),
pz'ck(;vl, A, Al), e ,pick(a:k, Ak—l; Ak)

The skeleton query combines ideas from both Section 3.3 and Section 4. We
have like in all-distinct values constraint satisfaction problems a set A of values
that have to be assigned to the variables, and we also have like in grouping
problems a set of constraints C. We use these two sets in parallel decreasing A
once we picked a value from it and assigned that value to some variable, and
decrease C' as we satisfy more and more elements of it.

More precisely, in this skeleton query, the second rule extends the assignment
and decreases A but leaves C' unchanged. The third rule extends the assignment
and decreases A and also verifies that a constraint ¢ which was not shown to
be satisfied yet is satisfied. The goal relation h is reached only if the assignment
can be extended to all n variables and all the constraints are satisfied.

Intuitively, when extending an assignment the third rule should be applied
instead of the second rule whenever possible. This can be often enfored by adding
extra constraints to the two rules. Without that the efficiency of the algorithm
would be bad because the second rule would generate all possible assignments.

Example 4.2 An example of applying the above skeleton query occurs in genome
mapping. In this problem we decide whether there is an ordering for n genes on
a string of genes that satisfies each of m different adjacency constraints among
the genes. In this case, it is easy to see that we have to apply rule three m times
and rule two d = n—m times. We create an EDB relation limit(d) that contains
the value of d. The solution can be expressed as follows.



has_seq(x1) :— assign(x1, A,n,C,m,d),no_genes(n),
no_constraints(m).

assign(xa, A1,i1,C, j,d1) :— assign(z1,A,i,C,j,d),d > 0, suce(dl,d),
succ(i,il), pick(z2, A, A1).

assign(zs, Al,il1,C1,j1,d) — assign(z1, A, 1, C, j,d), pick(za, A, Al),
adjacent(s, x1,x2), pick(s,C,C1),
succ(i,i1), suce(f, 51).

assign(zy,A1,1,C,0,d) — items(A), first(zy), pick(zy, A, A1),
constraints(C), limit(d).

For seven genes and six adjacency constraints, we could run in DISCO on
a SUN sparc 2 workstation within 112 CPU seconds the above algorithm. The
above algorithm can be also extended to cases where contiguity constraints are
given among three or more genes. A contiguity constraint on k genes means that
these k genes must form a subsequence of the entire genome. O

5 Conclusions and Future Work

In future versions of DISCO we plan to add more optimization methods. We also
plan to add a limited form of negation that allows the computation of the whole
perfect model of a program on a constraint database input [12]. This would allow
more types of problems to be expressed in DISCO.

We also look for new problems. Admittedly, the SEND+MORE=MONEY
problem is not a great argument for DISCO because linear constraints are quite
natural here and because it has only one solution. When there is only one so-
lution, then in general computing the solution by CLP systems will be faster.
It is like a lake with a single fish. You could better catch that fish with a hook
than with a net. We must look for lakes that teem with fish. Recently we in-
vestigated a genomic database application where the advantage of DISCO over
other systems is clearer [13].
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