
Constraint Database Solutions to the Genome

Map Assembly Problem

Viswanathan Ramanathan and Peter Revesz

Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

{ramanath, revesz}@cse.unl.edu

Abstract. Long DNA sequences have to be cut using restriction en-
zymes into small fragments whose lengths and/or nucleotide sequences
can be analyzed by currently available technology. Cutting multiple copies
of the same long DNA sequence using different restriction enzymes yields
many fragments with overlaps that allow the fragments to be assembled
into the order as they appear on the original DNA sequence. This basic
idea allows several NP-complete abstractions of the genome map assem-
bly problem. However, it is not obvious which variation is computation-
ally the best in practice. By extensive computer experiments, we show
that in the average case the running time of a constraint automata so-
lution of the big-bag matching abstraction increases linearly, while the
running time of a greedy search solution of the shortest common super-

string in an overlap multigraph abstraction increases exponentially with
the size of real genome input data. Hence the first abstraction is much
more efficient computationally for very large real genomes.

1 Introduction

Constraint databases can be useful in the area of genomics. In particular, we
can solve the genome map assembly problem, described in detail in Section 2,
very efficiently using constraint databases and the closely related concept of
constraint automata.

Not only is a solution possible in the constraint database framework, but
it turns out to be a much more efficient solution than earlier proposals based
on greedy search for a common shortest superstring in an overlap multigraph,
which is also described in Section 2.

In this paper we propose a modification of the big-bag matching abstraction,
which is then solved using a constraint automaton. The earlier constraint au-
tomaton solution was a pure fingerprints-based method. Our modification is to
disambiguate the fingerprint data during a search by comparing the nucleotide
sequences of the ambiguous data. Hence ours is a hybrid method between pure
fingerprinting and pure string comparison methods.

By extensive computer experiments we show that the running time of the
modified constraint automaton solution grows essentially linearly while the run-
ning time of the other solution grows approximately exponentially with the size

CATCGATCTCGGGAGGGATCCATTATCGATTCCCGGGCTCGGGGGATCCT
TCCATCGATGGGCCCGAGGCGGATCCCTACTATCGATCCCGGGGGGATCC
TTAATTCTCGAGAAGGCCTATCGATCAAGGATCCTATCGATCCCGAGTCC
CGGGAT

Fig. 1. A genome sequence part of Lambda bacterium.

of the input genome data. This is surprising, because both abstractions are
known to be NP-complete, hence the two algorithms were hard to distinguish
theoretically.

This paper is organized as follows. Section 2 describes some basic concepts
and related work. Section 3 explains the proposed modified constraint automaton
solution and its implementation. Section 4 presents the results and the statistical
analysis of the experiments conducted. Section 5 discusses the use of constraint
databases in this project. Finally, Section 6 gives some conclusions and directions
for future work.

2 Basic Concepts and Related Work

Unfortunately, there have been only few papers exploring the connection be-
tween genomics and constraint databases, because of the need to understand a
significant number of concepts in both areas. Hence we will start with a brief
review of the key definitions and related work.

Genome. The genome of an organism is its set of chromosomes, containing all
of its genes and the associated deoxyribonucleic acid (DNA) [4]. DNA is a double-
stranded helix consisting of nucleotides. Each nucleotide has three parts: a sugar
molecule (S), a phosphate group (P), and a structure called a nitrogenous base
(A, C, G, and T). The DNA is built on the repeating sugar-phosphate units. The
sugars are molecules of deoxyribose from which DNA receives its name. Joined
to each deoxyribose is one of the four possible nitrogenous bases: Adenine (A),
Cytosine (C), Guanine (G), and Thymine (T). These bases carry the genetic
information, so the words nucleotide and base are often used interchangeably.
Since the DNA is double-stranded, the bases on one strand are linked to the bases
on the other strand to form a base pair. Adenine always pairs with Thymine and
Guanine always pairs with Cytosine. The length of a DNA is measured in terms
of number of base pairs.

For example, Fig. 1 shows a part of one strand of the Lambda bacterium
DNA [5]. Its length is 156 base pairs.

Restriction Enzymes. Restriction enzymes are precise molecular scalpels that
allow a scientist to manipulate DNA segments. They recognize specific base
sequences in double-helical DNA and cut, at specific places, both strands of a
duplex containing the recognized sequences [1]. They are indispensable tools for
analyzing chromosome structure, sequencing very long DNA molecules, isolating
genes, and creating new DNA molecules that can be cloned.

Many restriction enzymes recognize specific sequences of four to eight base
pairs. Their names consist of a three-letter abbreviation (e.g., Eco for Escherichia

coli) followed by a strain designation (if needed) and a roman numeral (if more
than one restriction enzyme from the same strain has been identified) (eg.
EcoRI).

For example, we can apply the restriction enzyme ClaI, which always cuts
the genome at each site where AT∧CGAT appears with the wedge symbol showing
where the cut will take place. Then we obtain the subsequence shown in Fig. 2.

A1: CAT
A2: CGATCTCGGGAGGGATCCATTAT
A3: CGATTCCCGGGCTCGGGGGATCCTTCCAT
A4: CGATGGGCCCGAGGCGGATCCCTACTAT
A5: CGATCCCGGGGGGATCCTTAATTCTCGAGAAGGCCTAT
A6: CGATCAAGGATCCTAT
A7: CGATCCCGAGTCCCGGGAT

Fig. 2. Subsequences of the Lambda bacterium sequence.

If we use another restriction enzyme BamHI, which cuts at sites G∧GATCC,
then we obtain the subsequences shown in Fig. 3.

B1: CATCGATCTCGGGAGG
B2: GATCCATTATCGATTCCCGGGCTCGGGG
B3: GATCCTTCCATCGATGGGCCCGAGGCG
B4: GATCCCTACTATCGATCCCGGGGG
B5: GATCCTTAATTCTCGAGAAGGCCTATCGATCAAG
B6: GATCCTATCGATCCCGAGTCCCGGGAT

Fig. 3. Another set of subsequences of the same Lambda bacterium sequence.

Genome Sequencing and Mapping. Genome sequencing is the process of
finding the order of DNA nucleotides, or bases, in a genome [4]. On the other
hand, genome mapping is the process of finding the approximate position of
landmarks (specific subsequences, often genes) in a genome without getting into
the details of the actual sequence. A genome map is less detailed than a genome
sequence [4]. A sequence spells out the order of every nucleotide in the genome,
while a map simply identifies the order of the specified subsequences in the
genome. Nevertheless, the two are closely related concepts, because by sequenc-
ing each landmark of a genome map, we can get a genome sequence.

For example, suppose we consider each of the seven subsequences in Fig. 2
as a landmark. Then a genome map would be the following:

A1 A2 A3 A4 A5 A6 A7

Sometimes we can have only a partial genome map. Suppose that only A2 and
A5 are known landmarks. Then a partial genome map would be the following:

−A2 − −A5 − −

where the dashes are unknown regions on the genome map.

Genome Map Assembly Problem. DNA sequences are huge, having a length
of around 200-300 million base pairs for many animals and plants. But current
sequencing machines can not handle DNA sequences of length more than a cou-
ple of thousand base pairs. So the DNA sequences have to be cut into small
subsequences using restriction enzymes. After the application of a restriction
enzyme the subsequences obtained are floating a solution. Hence we no longer
know their original order. So, once the subsequences are sequenced and ana-
lyzed, they have to be arranged and assembled to obtain the original sequence.
This process is called Genome Map Assembly [8]. The problem of executing the
Genome Map Assembly process is called the Genome Map Assembly Problem

(GMAP) [20].

Overlap Multigraph The overlap multigraph method [25] is one way of doing
the genome map assembly. This method is usually illustrated by a graph in
which each node is one of the subsequences and each directed edge from node
A to node B has a label k ≥ 0 if and only if the last k nucleotides of A and the
first k nucleotides of B are the same.

For example, let F be the union of the As and Bs in Figs. 2 and 3. Then part
of the overlap multigraph of F is shown in Fig. 4. We only show the edges that
have positive labels and are incident on both an A and a B node. In general,
there are many edges possible between two nodes; hence it is called a multigraph.
For example, we have two directed edges, one labeled by 2 the other by 16, from
B3 to A4.

B1 B3 B4

A2

B6

A3 A4 A5 A6 A7A1

B2 B5

3

19

3

12

2
2

3

11

18

2 2

3

8

3

3

8

26

12

10

13

3
2

2

16

Fig. 4. The overlap multigraph for F .

It is well-known [25] that a Hamiltonian path in the overlap multigraph is a
shortest common superstring of the sequences in F . Therefore, it is a solution to
the genome sequencing problem.

For example, a Hamiltonian path is shown in Fig. 5. This Hamiltonian path
matches the original genome sequence in Fig. 1, and incidentally also gives a
genome map in terms of As on the top and in terms of Bs on the bottom.

B1

A1 A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

A7

3 13 10 18 11 16 12 12 26 8 8 19

Fig. 5. A Hamiltonian path in the overlap multigraph.

Unfortunately, such a Hamiltonian path is hard to find. A typical greedy
search of the graph would always choose to explore the edges with the highest
label. The greedy search would start at node A5 because it has the highest
label, namely 26, on one of its edges. However, A5 is a failure node. Then the
greedy search would explore B6 because it has the edge with the next highest
label, namely 19. Continuing this way, the last node that the greedy search will
explore is A1 or A7. Out of these only A1 is a success node. Figure 6 shows that
A7 is a failure node. It is clear that the greedy search on the overlap multigraph
is doing a huge amount of work.

Fingerprints. It is computationally hard to compare and match long nucleotide
sequences. Fingerprinting is a short-cut method that is often much faster. The
ideas is to get a “fingerprint” of each subsequence (like those in Figs. 2 and 3)
by applying one or more restriction enzymes and then measuring the lengths of
the resulting fragments [29]. The multiset or bag of fragment lengths are usually
unique to each subsequence.

For example, by applying the restriction enzymes BamHI (G∧GATCC) and
AvaI (C∧YCGRG), where Y means either C or T and R means either A or G,
on the subsequences in Fig. 2, we get the fragments and the bag of their lengths
shown in Fig. 7.

Revesz’ fingerprint data. Revesz [20] proposed the following procedure using
three restriction enzymes a, b, and c to obtain fingerprint data:

1. Take a copy of the DNA.

A4A2 A5 A6

B4

A5

B5

A6

B6

B5

B6

A6

B6

B3B1

A3

B2 B3

A4A3A2 A5 A6

B2

A3

B1

A2

B2

B4

B5

A6

B6

B5

A6

B6

B6

A5

A7

B5B4 B6

A5

B5

A6

B6

A6

B6
No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

No Solution

3

3

3
3

18

3 11

2 2
16

12

12

26

8

8

26

8

8

2

8

2
2 2

2
16

10

18

3

10

1213

26

8

8

8

8

2612 8
12

26

8

8

8

8

3

Fig. 6. Greedy search from node A7 of the overlap multigraph.

A1: CAT {3}
A2: CGATC TCGGGAGG GATCCATTAT {5,8,10}
A3: CGATTC CCGGGC TCGGGG GATCCTTCCAT {6,6,6,11}
A4: CGATGGGC CCGAGGCG GATCCCTACTAT {8,8,12}
A5: CGATC CCGGGGG GATCCTTAATTC TCGAGAAGGCCTAT {5,7,12,14}
A6: CGATCAAG GATCCTAT {8,8}
A7: CGATC CCGAGTC CCGGGAT {5,7,7}

Fig. 7. Fingerprints of the A subsequences.

2. Apply restriction enzyme a to the copy.
3. Separate the subsequences.
4. For each subsequence apply restriction enzyme b ∪ c, cutting the subsequence

into fragments.
5. Find the lengths of the fragments.
6. Repeat Steps (1–5) using b instead of a and a ∪ c instead of b ∪ c.

Each execution of Steps (1–5) is the generation of a big-bag. The subsequences
obtained in Step (3) are the bags of the big-bag, and the lenghts of of the
fragments obtained in Steps (4-5) are the elements of the bags. Once the DNA
sequence is cut into subsequences using the above procedure, all the information
about the original order is lost. After analyzing these subsequences, they have
to be arranged or assembled into a single set of sequences called a genome map.

For example, let a, b and c be the restriction enzymes ClaI, BamHI and AvaI,
respectively. Then after applying Step (1) we get the subsequences shown in
Fig. 2. After Steps (4-5) we get the bags shown in Fig. 7.

In Step (6) when we repeat Step (2) using b instead of a we get the sub-
sequences shown in Fig. 3. When we also repeat Steps (4-5) by applying the
restriction enzymes ClaI ∪ AvaI on the latter set of subsequences, we get the
fragments and the bag of their lengths shown in Fig. 8.

B1: CAT CGATC TCGGGAGG {3,5,8}
B2: GATCCATTAT CGATTC CCGGGC TCGGGG {10,6,6,6}
B3: GATCCTTCCAT CGATGGGC CCGAGGCG {11,8,8}
B4: GATCCCTACTAT CGATC CCGGGGG {12,5,7}
B5: GATCCTTAATTC TCGAGAAGGCCTAT CGATCAAG {12,14,8}
B6: GATCCTAT CGATC CCGAGTC CCGGGAT {8,5,7,7}

Fig. 8. Fingerprints of the B subsequences.

Note: In this method some care needs to be taken in the choice of the triplet
of restriction enzymes so that they can be applied in any order, that is, they are

compatible. We explain compatibility more precisely and give some examples in
Section 4.1.

Why is this fingerprint data useful? Note that regardless of whether we start
with the set of A or the set of B subsequences, after the triplet enzyme cuts
are finished we get exactly the same set of fragments. These fragments are just
grouped differently by the As and the Bs. Those As and Bs that that have
a significant fingerprint overlap will tend to have also a nucleotide sequence
overlap. Hence we can align or match the fragments in the As with the fragments
in the Bs to find a solution.

For example, Fig. 9 shows an alignment that corresponds to the Hamiltonian
path in Fig 5. In Fig. 9 each undirected edge is labeled with a set of values such
that there are fragments with those set of lengths in the fingerprints of both
incident nodes. The alignment requires that for each node the multiset union of
the labels on the edges incident on it is the same as its fingerprint. For example,
the multiset union of the labels {6, 6, 6} and {11} on the edges incident on A3
gives the fingerprint {6, 6, 6, 11} of A3.

A6

B6

A7

3 5, 8 10 6,6,6 11 8,8 12 5,7 12,14 8 8 5,7,7

B5B1

A1 A2

B2

A3

B3

A4

B4

A5

Fig. 9. A fingerprint overlap solution corresponding to the Hamiltonian path in Fig. 5.

We will see in Section 3 a way to find such fingerprint alignments using a
constraint automaton.

Constraint Automata. Constraint automata are used to control the operation
of systems based on conditions that are described using constraints on variables
(see Chapter 6 of [21]). A constraint automaton consists of a set of states, a set
of state variables, transitions between states, an initial state, and the domain
and initial values of the state variables. Each transition consists of a set of con-
straints, called the guard constraints, followed by a set of assignment statements.
The guard constraints are followed by question marks “?”, and the assignment
statements are shown using the symbol “:=”.

A constraint automaton can move from one state to another if there is a
transition whose guard constraints are satisfied by the current values of the state
variables. The transitions of a constraint automaton may contain variables in

addition to state variables. These variables are said to be existentially quantified
variables, which means that some values for these variables must be found such
that the guard constraints are satisfied and the transition can be applied.

GMAP using Constraint Automata. The Genome Map Assembly Problem
can be solved using a constraint automaton [20]. The constraint automaton uses
an abstraction of the GMAP called a Big-Bag Matching Problem, which is NP-
complete [23].

This paper implements the Genome Map Assembly automaton and empiri-
cally investigates whether the time complexity for the average case is linear or
exponential.

2.1 Related Work

The overlap multigraph method has several variations depending on how the
subsequences are generated. Random substrings are picked from the DNA in
Gillett et al. [6], Olsen et al. [18], Revesz [22], and Wong et al. [31] (which use
restriction enzymes) or in Green and Green [7] and Harley et al. [9] (which
use a technique called hybridization to test whether two substrings overlap).
Lander and Waterman [16] gives some estimates about the number of random
substrings of certain average size required to get a good coverage for a DNA of
a given size. Unfortunately, the random-substrings approach has the limitation
that there could be some gaps on the DNA, i.e., regions that are not covered by
any randomly picked substring.

Derrida and Fink [3], Venter et al. [28], and Weber and Myers [30] developed
the whole-genome shotgun sequencing method, which is another version of the
overlap multigraph method applied to the entire genome.

Veeramachaneni et al. [27] abstract the problem of aligning fragmented se-
quences as an optimization problem and show the problem to be MAX-SNP
hard. They also develop a polynomial time algorithm for their method. Kahveci
and Singh [11] consider the problem of interactive substring searching using two
different techniques: local statistics-based interactivity (LIS) and global statistics-

based interactivity (GIS). These techniques have only 75 % accuracy [12].
One other abstraction of the genome map assembly problem, called the

probed partial digestion problem, is considered in Tsur et al. [26]. Partial di-
gestion occurs when a restriction enzyme fails to cut all the sites specific to it.
Pop et al. [19] is a survey on the various genome sequence assembly algorithms.

Karp [14] shows several variations of the overlap multigraph problem to be
NP-complete. Revesz [23] shows that the Big-Bag Matching Problem abstraction
of the GMAP is also NP-complete.

3 Constraint Automata Solution

We now describe and illustrate the constraint automata solution of Revesz [20].
The original solution was a pure fingerprints-based method. The modification of

disambiguation by checking the actual nucleotide strings in case of ambiguity in
the fingerprint data during a search is a new idea we introduce in this paper.

Section 3.1 describes the constraint automata. The original automata was
described as a non-deterministic automaton, but we give a presentation that is
deterministic and uses the concept of “backtracking.” Section 3.2 describes the
implementation of the constraint automaton in the Perl programming language.

3.1 The Constraint Automata for GMAP

The working of the constraint automaton can be described easiest, if we first
abstract the GMAP as a Big-Bag Matching Problem.

A bag is a multiset, a generalization of a set in which each element can occur
multiple times [20]. A big-bag is a multiset whose elements are bags that can
occur multiple times [20]. For example all the As can be put into a bag. Then
when we replace each Ai by the bag describing its fingerprint, then we obtain a
big-bag. Similarly, we can obtain a big-bag corresponding to the set of Bs.

Each permutation of the bags and permutation of the elements of each bag
within a big-bag is called a presentation [20]. A big-bag can have several different
presentations. The big-bag matching decision problem (BBMD) is the problem of
deciding whether two big-bags match [20]. The big-bag matching problem (BBM)
is the problem of finding matching presentations for two given big-bags if they
match [20].

The following constraint automaton, shown in Fig. 10, uses “backtracking”
and can give all the possible solutions.

The automaton uses the constraints “⊆” (subset) and “–” (set difference).
It starts in the INIT state and ends in the HALT state. From the INIT state,
the automaton moves from left to right by adding either bag A or B. Each bag
represents a contiguity constraint for the elements it contains, i.e., any valid pre-
sentation must contain the elements within a bag next to each other. Therefore,
adding a new bag really adds a new contiguity constraint to a set of other such
constraints. Only if the set of constraints is solvable (and there could be several
solutions) is the automaton allowed to continue with the next transition.

At any point either the list of A bags will be ahead of the list of B bags
(“A ahead” state) or vice versa (“B ahead” state) or neither will be ahead, in
which case it goes to the INIT state. The automaton has the following states:
INIT, A ahead, B ahead, HALT and Backtrack. The state variables are: UA

and UB indicating the set of unused A and B bags, respectively, S indicating the
set of elements by which either the A or the B list is currently ahead, Choices

indicating the set of options from which the next bag can be chosen, SelBag

indicating the bag that was selected from Choices as the next bag, and Cflag

indicating whether Choices is empty or not (if empty then it is set to “0”, else
it is set to “1”). The value of each state variable is saved after each transition.

_

U_

U

U

/U

/S SelBag ?
S ? andSelBag

Read (State)
State = B_ahead ?

U

/U

/S SelBag ?
S ? andSelBag

 Read (State)
State = A_ahead ?

=/UA { } ?
=/UB { } ?

S = { } ?
=/UA { } ?
=/UB { } ?

S = { } ?

_

U

_

U

_

U_

U

_

U

_

U

S = { } ?
UA = { } ?
UB = { } ?

Add Solution

Backtrack

CFlag = { } ?

Read (State)

INIT

SelBag := Leftmost Choices
Choices := UB

Choices := Choices − {’SelBag’}

Set Cflag

Choices := Choices − {’SelBag’}
S := Elements of SelBag

SelBag := Leftmost Choices
Choices := UA

S := Elements of SelBag

Set Cflag
Seq(SelBag)

SelBag
UA := UA − {’SelBag’} UB := UB − {’SelBag’}

State = INIT ?

HALT

A_ahead B_ahead

No More Solutions

UA := UA − {’SelBag’}
S := S − SelBag

Seq(SelBag) ?, S := SelBag − S, UA := UA − {’SelBag’}S SelBag ?, Seq(S)

Seq(SelBag) ?, S := SelBag − S, UB := UB − {’SelBag’}SelBag ?, Seq(S)S

S = { } ?
UA = { } ?
UB = { } ?

Add Solution

Seq(S) ?

UB := UB − {’SelBag’}

S ?
Seq(SelBag)

SelBag

S := S − SelBag

S ?
Seq(S) ?

Fig. 10. Constraint Automata Solution

The automaton can be executed in ONE mode to find the first solution or
ALL mode to find all the possible solutions. The working of the automaton is
explained below.

1. The automaton is in the “INIT” state. The next bag is chosen from the list
that has the lesser number of bags. If the next bag to be chosen is from
the list of A bags then Choices will contain UA, else it will contain UB. The
leftmost bag of Choices is removed from Choices and set to SelBag, the Cflag

is set to “0” if Choices is empty or “1” if it is not empty, the elements of
SelBag is set to S, and the automaton moves to either the “A ahead” or the
“B ahead” state.

2. The set of options from which the next bag can be chosen is found by de-
termining the bags which are either a subset or a superset of S. Choices

contains this set of options.

3. If the automaton is in the “A ahead” state, then the set of options is de-
termined by UB. SelBag is the leftmost bag in Choices. We now need a
disambiguation step to cut down on the choices. The nucleotide sequence
corresponding to each element in S is compared with the nucleotide sequence
of the corresponding element in SelBag. If they do not match, then the au-
tomaton moves to the “Backtrack” state. If the sequences of all the elements
match, then

(a) if SelBag ⊆ S, then the automaton remains in the “A ahead” state and
S := S - SelBag.

(b) if S ⊆ SelBag, then the automaton moves to the “B ahead” state and
S := SelBag - S.

In both cases, the elements of S and SelBag are matched as far as possible.

4. If the automaton is in the “B ahead” state, then the set of options is deter-
mined from UA and the process followed is similar to that in Step 3.

5. If, in Steps 3 and 4, the difference of the values of SelBag and S is an empty
set and UA and UB are not empty, then the automaton moves to the “INIT”
state. If the difference is an empty set and UA and UB are also empty, then a
solution has been found for the problem. If the execution of the automaton is
in ONE mode then it moves to the “HALT” state and stops. If it is executed
in ALL mode then the solution is saved and the automaton moves to the
“Backtrack” state.

6. If, in Steps 3 and 4, SelBag is neither a subset nor a superset of S, then the
automaton moves to the “Backtrack” state. In this state, the automaton will
check for the last node whose Cflag has the value “1”. The automaton then
backtracks to this node and the information saved at this node is retrieved.
Based on this information, the automaton will move to one of the states. If
none of the nodes have their corresponding Cflag set to “1”, then there is
no more solution possible for the problem and the automaton moves to the
“HALT” state and stops.

3.2 Implementation

The working of the automaton is similar to a pre-order traversal of a tree. Every
node in the tree is a bag of either of the two big-bags. The two big-bags shown
in Figs. 7 and 8 are used to explain the working of the automaton. The corre-
sponding search tree is shown in Fig. 11. The dashed lines are part of the search
tree only if we skip the disambiguation test. In the following we assume that we
skip disambiguation. A partial pre-order traversal of the tree is shown step-wise
in Table 1.

The execution starts at the origin (Node 0), which is the initial state (INIT).
The set S is empty. The various options from which the automaton can choose
a starting bag are all the bags in UA. Hence, the set Options contain all the
bags of UA. A7 is taken as the starting bag (SelBag) and the remaining bags
(A1...A6) are put into Choices. Since Choices is not empty, the flag Cflag for
that node is set to “1”. This means that there is another branch possible from
this node.

The selected bag, A7, is then the node 1 of the tree and the current bag
(CurrBag). S now contains the elements of bag A7. UB contains all the bags of
big-bag B and UA contains all the bags of big-bag A except A7, which has been
used. Since S contains the elements by which big-bag A is ahead of big-bag B,
the automaton is in the “A ahead” state. The next bag to be chosen is from UB,
which contains the unused B bags. There is only one possible choice: B6. So we
select bag B6. Choices is now empty, so we set Cflag to “0”. Since the elements
of S are contained in B6, we subtract the elements of S from the elements of
B6. The resulting S will contain the elements by which big-bag B is ahead. So
the automaton will move to the “B ahead” state. Bag B6 is then removed from
UB.

The execution continues in a similar fashion until it reaches node 6. At this
node S is empty and there are no possible solutions. So the automaton moves to
the “Backtrack” state. From the table we can see that the last node to have its
CFlag set to “1” is node 2. So the automaton backtracks to that node. The bag
in Choices is set to SelBag. Now Choices is empty, so Cflag is set to “0”. The
execution then continues as explained above.

At node 13, S, UA and UB are empty. Hence a solution is found. If the
automaton is executed in ONE mode then it moves into the “HALT” state and
the execution stops. If the execution is in ALL mode, then the solution is saved

B6

A7

B4

A5

A4

B5

A6

B4

A5

B5

B3

A3

B2

A2

B1

A1

A4

B3

5, 7, 7

12, 14

5, 7

12

8, 8

11

6, 6, 6

10

5, 8

3

5, 7, 12

14

8, 12

No Solution

No Solution

8 8

8 8

Solution found

Fig. 11. The constraint automaton search tree from node A7.

Table 1. Step-wise partial pre-order traversal of the tree in Fig. 11

Node CurrBag S UA UB State Options SelBag Choices Cflag

0 - {} A1,A2,A3,A4,A5,A6,A7 B1,B2,B3,B4,B5,B6 INIT A1,...,A7 A7 A1,...,A6 1
1 A7 {5,7,7} A1,A2,A3,A4,A5,A6 B1,B2,B3,B4,B5,B6 A ahead B6 B6 {} 0
2 B6 {8} A1,A2,A3,A4,A5,A6 B1,B2,B3,B4,B5 B ahead A4,A6 A4 {A6} 1
3 A4 {8,12} A1,A2,A3,A5,A6 B1,B2,B3,B4,B5 A ahead B5 B5 {} 0
4 B5 {14} A1,A2,A3,A5,A6 B1,B2,B3,B4 B ahead A5 A5 {} 0
5 A5 {5,7,12} A1,A2,A3,A6 B1,B2,B3,B4 A ahead B4 B4 {} 0
6 B4 {} A1,A2,A3,A6 B1,B2,B3,B4 Backtrack - - - -

Cflag != 0; Backtrack to Node 2

2 B6 {8} A1,A2,A3,A4,A5,A6 B1,B2,B3,B4,B5 B ahead A6 A6 {} 0
3 A6 {8} A1,A2,A3,A4,A5 B1,B2,B3,B4,B5 A ahead B3,B5 B3 {B5} 1
4 B3 {8,11} A1,A2,A3,A4,A5 B1,B2,B4,B5 Backtrack - - - -

Cflag != 0; Backtrack to Node 3

3 A6 {8} A1,A2,A3,A4,A5 B1,B2,B3,B4,B5 A ahead B5 B5 {} 0
4 B5 {12,14} A1,A2,A3,A4,A5 B1,B2,B3,B4 B ahead A5 A5 {} 0
5 A5 {5,7} A1,A2,A3,A4 B1,B2,B3,B4 A ahead B4 B4 {} 0
6 B4 {12} A1,A2,A3,A4 B1,B2,B3 B ahead A4 A4 {} 0
7 A4 {8,8} A1,A2,A3 B1,B2,B3 A ahead B3 B3 {} 0
8 B3 {11} A1,A2,A3 B1,B2 B ahead A3 A3 {} 0
9 A3 {6,6,6} A1,A2 B1,B2 A ahead B2 B2 {} 0
10 B2 {10} A1,A2 B1 B ahead A2 A2 {} 0
11 A2 {5,8} A1 B1 A ahead B1 B1 {} 0
12 B1 {3} A1 {} B ahead A1 A1 {} 0
13 A1 {} {} {} Backtrack - - - -

Cflag != 0; Backtrack to Node 1

and the automaton moves into the “Backtrack” state. The last node to have its
Cflag set to “1” is found and the automaton backtracks to that node.

Note that the search tree in Fig. 11 is much smaller than the search tree in
Fig. 6, although both start from the same node A7. The search tree of Fig. 11
is even smaller, with the dashed lines deleted, if we use the disambiguation test.
In general the constraint automaton will be smaller than the greedy search tree
in the overlap multigraph for each starting node with a few exceptions.

There is also an interesting difference in the outcomes of the search when
starting from node A7. The overlap multigraph method fails as shown in Fig 6.
However, the constraint automaton search succeeds and returns the following
sequence of A nodes:

A7 A6 A5 A4 A3 A2 A1

which is exactly the reverse order that was input. Like in nature, the informa-
tion about left-to-right or right-to-left ordering is lost after restriction enzyme
cuts. In general, the constraint automaton search can succeed starting from two
nodes instead of only one in the overlap multigraph method. That also helps to
increases the relative speed of the constraint automaton.

4 Results and Analysis

All experiments were carried out on an Athlon XP 1800+ desktop with 512 MB
RAM and running the Windows XP Professional operating system. Perl v5.8.0
was used to implement the generation of input and the constraint automaton.
The programs were executed in Cygwin v1.5.5-1, a Linux-like environment for
Windows.

The input generation Perl program is executed on 70 sequences of the first
four chromosomes of the mouse genome along with five sets of non-overlapping
restriction enzyme triples [24], to generate the input big-bags. The lengths of
the 70 sequences varied from 1.2 million to 36.8 million base pairs. The Perl
implementation of the constraint automata takes these inputs and can be set by
the user to find either only one or all possible solutions. The running times were
measured for finding one solution.

4.1 Generation of Data and Results

The DNA sequences for generating the input for the Constraint Automata were
taken from the Mouse Genome Resources website of the National Center for
Biotechnology Information (NCBI) [17]. These sequences are various parts of the
chromosomes of the mouse DNA. These sequences are subjected to restriction
enzymes that are compatible with each other, that is, the recognition sequences
of the enzymes do not overlap. For example, the three restriction enzymes ClaI
(AT∧CGAT), BamHI (G∧GATCC), and AvaI (C∧YCGRG) are compatible.

An example of a non-compatible restriction enzyme triple is EcoRV (GAT∧ATC),
ClaI (AT∧CGAT) and BamHI (G∧GATCC). That is non-compatible because the
recognition sequence of EcoRV overlaps with the recognition sequence of ClaI.
One overlap is that ATC is both the ending sequence of EcoRV and the starting
sequence of ClaI. Another overlap is that GAT is both the ending of sequence of
ClaI and the starting sequence of EcoRV.

If we use more than three restriction enzymes, there will be a large number
of fragments. On the other hand, if we use less than three restriction enzymes,
the number of fragments will be too small, resulting in huge fragment lengths.
So we use three restriction enzymes to obtain a normal number of fragments,
with a normal length.

The 70 sequences are subjected to the following five sets of non-overlapping
restriction enzyme triples, which were carefully selected from a restriction en-
zyme database [24], to give us the input big-bags for the constraint automaton.

1. HindIII, AccI, AceI
2. AauI, HindII, CacBI

3. BclI, AhyI, TaaI

4. PsiI, PciI, HhaII
5. PdiI, SurI, SspI

The Perl implementation of the constraint automaton is then run using the
input bags generated for each of the 70 sequences and the CPU time taken to find
the first solution is calculated. This time is noted as the execution time. Further,
the series of execution times is used as an indication of the time complexity of
the constraint automata.

4.2 Data Analysis and Charts

Execution time data was subject to preliminary data cleaning procedures, which
included checking for outliers and normality of distribution (i.e., skew) as per
Hoaglin et al. [10] recommendations. Windsorizing procedures [10] were used
for outlier analysis. Thus “too extreme” values were replaced with the “most
extreme acceptable value”. This has the advantage of not losing any data.

To investigate if the time complexity of the constraint automata solution
is linear or exponential, we examined the relationship between the input for
the constraint automata solution (number of bags) and the execution time. Us-
ing curve estimation regression modeling in SPSS, execution time was regressed
onto the number of bags for each restriction enzyme triple. Thus five regression
models were constructed, one for each restriction enzyme triple. Linear and ex-
ponential functions were plotted for each regression model and goodness of fit
was determined by variance (R2) estimates (Table 2) and by visual inspection
of the charts (Figs. 12, 14, 16, 18, 20).

As seen in Table 2, a linear function provides a better fit (higher variance
or R2) than either a quadratic or an exponential function for all the restriction
enzyme triples. A visual inspection of the charts in Figs. 12, 14, 16, 18, 20 also
shows that the linear function is the best fit.

Table 2. R
2 values for the regression of execution time on number of bags

Rest. Enz. Constraint Automata Solution Overlap Multigraph

Triple Linear Quadratic Exponential Linear Quadratic Exponential

1 0.897 0.872 0.814 0.869 0.931 0.959
2 0.908 0.869 0.804 0.875 0.860 0.936
3 0.976 0.846 0.825 0.904 0.868 0.942
4 0.963 0.902 0.865 0.874 0.925 0.956
5 0.909 0.848 0.819 0.887 0.877 0.937

Avg R
2 0.925 0.867 0.825 0.882 0.892 0.946

The corresponding model for the overlap multigraph is shown in the charts
in Figs. 13, 15, 17, 19, 21. From these charts we see that an exponential function
provides the best fit for all the restriction enzyme triples.

5 Relation to Constraint Databases

It is well-known that a constraint automaton can be translated into a Data-
log query on a constraint database [13, 15, 21] that contains the input data. In
our case the Datalog query needs only Boolean algebra equality, inequality and
precedence constraints, where the particular Boolean algebra used is the one
whose elements are finite subsets of the natural numbers and whose operators
are interpreted as the set union, intersection and complement with respect to
the set of natural numbers.

The latest version of the DISCO constraint database system [2] implements
constraints over the Boolean algebra of the powerset of natural numbers. Hence
we could have also implemented the constraint automaton in the DISCO system,
although the solution would have been slower, and we could not have modified
it as we liked to control backtracking. We chose Perl for the implementation of
the constraint automaton, because it allowed us to control backtracking, includ-
ing the occasional look-up of the nucleotide sequence for disambiguation, and
because it is currently a standard language for genomics implementations.

Although our choice may disappoint some constraint database purists, they
may take heart in the fact that constraint databases were useful in the discovery
of the algorithm. It is by attempting to describe the GMAP in a Boolean algebra
of sets, that the abstraction of the entire problem as a Big-Bag Matching Problem
was discovered. After that the constraint automaton solution was a easy and
natural step. Further, early prototyping in the DISCO system convinced us that
the algorithm may be practical in practice and led to the present paper. Hence
constraint databases played an essential part in the discovery of the algorithm.

Our experience illustrates a general principle that fewer tools are often bet-
ter. A general purpose programming language provides too many tools for a

Number of Bags

70006000500040003000200010000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

1000

800

600

400

200

0

Observed

Linear

Quadratic

Exponential

Fig. 12. Regression model for RE triple 1 for constraint automata.

Number of Bags

70006000500040003000200010000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

Observed

Linear

Quadratic

Exponential

Fig. 13. Regression model for RE triple 1 for overlap multigraph.

Number of Bags

3000200010000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

1000

800

600

400

200

0

Observed

Linear

Quadratic

Exponential

Fig. 14. Regression model for RE triple 2 for constraint automata.

Number of Bags

3000200010000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

Observed

Linear

Quadratic

Exponential

Fig. 15. Regression model for RE triple 2 for overlap multigraph.

Number of Bags

40003500300025002000150010005000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

400

300

200

100

0

Observed

Linear

Quadratic

Exponential

Fig. 16. Regression model for RE triple 3 for constraint automata.

Number of Bags

40003500300025002000150010005000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

-500

Observed

Linear

Quadratic

Exponential

Fig. 17. Regression model for RE triple 3 for overlap multigraph.

Number of Bags

500040003000200010000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

800

700

600

500

400

300

200

100

0

Observed

Linear

Quadratic

Exponential

Fig. 18. Regression model for RE triple 4 for constraint automata.

Number of Bags

500040003000200010000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

Observed

Linear

Quadratic

Exponential

Fig. 19. Regression model for RE triple 4 for overlap multigraph.

Number of Bags

3500300025002000150010005000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

Observed

Linear

Quadratic

Exponential

Fig. 20. Regression model for RE triple 5 for constraint automata.

Number of Bags

3500300025002000150010005000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

Observed

Linear

Quadratic

Exponential

Fig. 21. Regression model for RE triple 5 for overlap multigraph.

programmer to work with. That is not always as helpful as it may seem at first
glance, because one is lost in the enormous number of options, the endless num-
ber of possible data structures to implement and the also endless number of
possible functions to implement on them. With a constraint language, one is not
so lost. The programmer has the tool of the constraint language itself and is
hence forced to express the problem using a high-level constraint abstraction.

This process either works or does not. As the old saying goes, if you have a
hammer every problem starts to look like a nail. If the problem is indeed like
a nail, then everything is fine. If it is not, then a new tool, in this case a new
programming language, is needed. But that does not mean that starting with a
hammer was a bad thing. For without the hammer we may not start to see even
nail-like problems as such. The GMAP is a problem that can be expressed using
Boolean algebra constraints and a simple automaton. This is a useful abstraction
that one who only works with Perl may not discover so easily. Hence the process
worked in the case of GMAP.

6 Conclusions and Future Work

We examined the relationship between the input for the constraint automata
solution (number of bags) and the execution time using curve estimation re-
gression modeling. This was done for five compatible restriction enzyme triples.
Both variance estimates (R2) and a visual inspection of the charts indicate that
a linear function provides the best fit for the constraint automaton and an expo-
nential provides the best fit for the overlap multigraph solution for the GMAP.
The experimental results provide strong support for the earlier hypothesis that
the constraint automaton solution is better than the overlap multigraph solution
for large genomes.

In the future, we still need to evaluate the applicability of the constraint
automaton solution to genome mapping in real biochemical laboratories. The
constraint automaton can be further adapted to incorporate error tolerance as
the actual DNA fragments and their length measures are not necessarily error-
free. For example, if a fingerprint is {97, 120, 355} and another fingerprint is
{96, 121, 357}, then the two can be matched with an error tolerance of 2. The
time complexity function for the error-prone data can then be compared with the
time complexity for the error-free data. As the error tolerance value increases, the
choices in the search increase slowing down the execution time of the constraint
automaton. However, it is hypothesized that the constraint automaton with error
tolerance will also show a linear time complexity on average.

We also discussed the advantages of trying to attack a problem using multiple
programming languages. The more different are the programming languages, the
greater is the potential benefit in trying each of them. The constraint automaton
solution was discovered with ease after trying Datalog with Boolean algebra
constraints. We hope that others will also experience with delight the ease of
solving problems in constraint databases.

References

1. J.M. Berg, J.L. Tymoczko, and L. Stryer. Biochemistry, 5 ed. W.H. Freeman, New
York, 2002.

2. J. Byon and P. Revesz. DISCO: A Constraint Database with Sets. Proc. Workshop

on Constraint Databases and Applications, Springer LNCS 1034, pp. 68-83, 1995.

3. B. Derrida and T.M.A. Fink. Sequence determination from overlapping fragments:
A simple model of whole-genome shotgun sequencing. In Physical Review Letters,
88(6):068106, 2003.

4. S.E. DeWeerdt. What’s a Genome? The Center for Advanced Genomics, 2003.

5. Entrez Database. http://www.ncbi.nlm.nih.gov/entrez/

6. W. Gillett, L. Hanks, G.K-S. Wong, J. Yu, R. Lim, and M.V. Olsen. Assembly of
high-resolution restriction maps based on multiple complete digests of a redundant
set of overlapping clones. Genomics, 33:389-408, 1996.

7. E.D. Green and P. Green. Sequence-tagged site (STS) content mapping of human
chromosomes: Theoretical considerations and early experiences. PCR Methods and

Applications, 1:77-90, 1991.

8. E. Harley and A.J. Bonner. A flexible approach to genome map assembly. In Proc.

International Symposium on Intelligent Systems for Molecular Biology, pages 161-
69. AAAI Press, 1994.

9. E. Harley, A.J. Bonner, and N. Goodman. Good maps are straight. In Proc. 4th

International Conference on Intelligent Systems for Molecular Biology, pages 88-97,
1994.

10. D.C. Hoaglin, F. Mosteller, and J.W. Tukey. Understanding Robust and Ex-

ploratory Data Analysis. John Wiley, New York, 1983.

11. T. Kahveci and A.K. Singh. Genome on demand: Interactive substring searching.
In Proceedings of the Computational Systems Bioinformatics. IEEE Computer
Society, 2003.

12. T. Kahveci and A.K. Singh. An interactive search technique for string databases.
Technical Report 10, UCSB, 2003.

13. P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of

Computer and System Sciences, 51:26-52, 1995.

14. R.M. Karp. Mapping the genome: Some combinatorial problems arising in molecu-
lar biology. In Proc. 25th ACM Symposium on Theory of Computing, pages 278-85.
ACM Press, 1993.

15. G. Kuper, L. Libkin and J. Paredaens: Constraint Databases, Springer, 2000.

16. E.S. Lander and M.S. Waterman. Genomic mapping by fingerprinting random
clones: A mathematical analysis. Genomics, 2:231-9, 1988.

17. Mouse Genome Resources. http://www.ncbi.nlm.nih.gov/genome/guide/mouse/

18. M.V. Olson, J.E. Dutchik, M.Y. Graham, G.M. Brodeur, C. Helms, M. Frank,
M. MacCollin, R. Scheinman, and T. Frank. Random-clone strategy for genomic
restriction mapping in yeast. Genomics, 83:7826-30, 1986.

19. M. Pop, S.L. Salzberg, and M. Shumway. Genome Sequence Assembly: Algorithms
and Issues. Computer, pages 47-54, July 2002.

20. P. Revesz. Bioinformatics. In Introduction to Constraint Databases, pages 351-60.
Springer, New York, 2002.

21. P. Revesz. Introduction to Constraint Databases, Springer, New York, 2002.

22. P. Revesz. Refining restriction enzyme genome maps. Constraints, 2(3-4):361-75,
1997.

23. P. Revesz. The dominating cycle problem in 2-connected graphs and the matching
problem for bag of bags are NP-complete. In Proc. International Conference on

Paul Erdos and His Mathematics, pages 221-5, 1999.
24. R. J. Roberts. REBASE: The Restriction Enzyme Database. New England Biolabs,

http://rebase.neb.com/rebase/rebase.html, 2003.
25. J. Setubal and J Meidanis. Fragment Assembly of DNA. In Introduction to Com-

putational Molecular Biology pages 118-24, PWS Publishing, Boston, 1997.
26. S. Tsur, F. Olken, and D. Naor. Deductive databases for genome mapping. In Proc.

NACLP Workshop on Deductive Databases, 1993.
27. V. Veeramachaneni, P. Berman, and W. Miller. Aligning Two Fragmented Se-

quences. Discrete Applied Mathematics, 127(1):119-43, 2003.
28. J.C. Venter, M.D. Adams, G.G. Sutton, A.R. Kerlavage, H.O. Smith, and M.

Hunkapiller. Shotgun sequencing of the human genome. Science, 280:1540-2, 1998.
29. D. Voet and J. Voet. Biochemistry, 3 ed., Vol. 1. John Wiley, New York, 2003.
30. J.L. Weber and E.W. Myers. Human whole-genome shotgun sequencing. Genome

Research, 7(5):401-9, 1997.
31. G.K-S. Wong, J. Yu, E.C. Thayer, and M.V. Olson. Multiple-complete-digest re-

striction fragment mapping: Generating sequence-ready maps for large-scale DNA
sequencing. In Proc. National Academy of Sciences, USA, 94(10):5225-30, 1997.

