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Abstract

We present a framework for specifying spatiotemporal
objects using spatial and temporal objects, and a para-
metric geometric transformation. We define a number
of classes of spatiotemporal objects and summarize their
closure properties under set-theoretic operations.

1 Introduction

Many natural or man-made phenomena have both a spa-
tial and a temporal extent. Consider for example, a
forest fire or property histories in a city. To store infor-
mation about such phenomena in a database one needs
appropriate data modeling constructs. We claim that a
new concept, spatiotemporal object, is necessary. In this
paper, we present a very general framework for specify-
ing spatiotemporal objects. To define a spatiotemporal
object we need a spatial object, a temporal object, and
a continuous geometric transformation (specified using
a parametric representation) that determines the image
of the spatial object at different time instants belonging
to the temporal object. In this framework, a number of
classes of spatiotemporal objects arise quite naturally.
We summarize the results about the closure of those
classes under set-theoretic operations and sketch how
spatiotemporal objects can be implemented using exist-
ing database technology. The framework presented here
was first proposed in [4]. The closure results are from
[4, 10, 17].
To appreciate the need for applying set-theoretic oper-
ators to spatiotemporal objects, consider the following
scenario. Let two spatial objects represent the extents
of the safe areas around two different ships. Taking into
account the movement of ships, the extents of the safe
areas over a period of time can be represented as two
spatiotemporal objects. To avoid collisions, one needs
to be able to determine the intersection of those objects.
The substantial literature on spatial and temporal
databases does not provide much guidance in dealing
with spatiotemporal phenomena. Spatial databases [18]

deal with spatial objects (e.g., rectangles or polygons)
and temporal databases [16] with temporal ones (e.g.,
time intervals). Their combination can handle dis-
crete change [17] but not continuous change, which is
required by applications dealing with phenomena like
movement, natural disasters, or the growth of urban ar-
eas. In the latter applications, the temporal and spatial
aspects cannot be conveniently separated.

2 Basic notions

2.1 Objects

Definition 2.1 A spatial object of dimension d is a sub-
set of Rd. A temporal object is a subset of R (we assume
a single temporal dimension). A spatiotemporal object
of dimension d is a subset of Rd+1.
These definitions are very general. We will later study
restricted classes of spatial and temporal objects that
are important from a practical point of view and have
simple representations. Such classes have been identified
in the course of spatial and temporal database research.
However, it is much less clear what are the “natural”
spatiotemporal objects and how to represent them. The
geometric approach that we present here postulates that
a spatiotemporal object be defined as a spatial object to-
gether with a continuous transformation that produces
an image of this object for every time instant. In the
following, let R be the field of real numbers.

Definition 2.2 An atomic geometric object o of dimen-
sion d is a quadruple (V, v, I, f) where:

• V is a spatial object, called the reference spatial
object of o,

• v is a time instant, called the reference time of o,

• I is subset of R, called the time domain of o (v ∈ I),

• f is a function from Rd ×R to Rd called the trans-
formation function of o.



The semantics of o is given by the corresponding spa-
tiotemporal object so defined as follows:

so = {(ȳ, z) : ∃x̄ ∈ Rd. x̄ ∈ V ∧ z ∈ I ∧ ȳ = f(x̄, z − v).

Notice that the transformation function is defined using
the time relative to the reference time. We will use t to
refer to this time. It can be negative.
A transformation function f has to satisfy at least the
following consistency requirement for every x̄ ∈ V :

f(x̄, 0) = x̄.

This means that the snapshot of the spatiotemporal ob-
ject for t = 0 (absolute time equal to the reference in-
stant) is the reference spatial object. In addition, the
function f can satisfy two natural continuity properties:

• temporal continuity: for every x̄ ∈ V , the function
fx̄(t) = f(x̄, t) is continuous;

• spatial continuity: for every t ∈ I, the function
ft(x̄) = f(x̄, t) is continuous.

Intuitively, temporal continuity is violated if for some t0
there is a jump or a gap at fx̄(t0). Spatial continuity is
violated if there are holes in a snapshot of a spatiotem-
poral object.

Definition 2.3 A molecular geometric object o of di-
mension d is a finite set of atomic geometric objects of
dimension d whose time domains are disjoint.
Discrete change is modeled using molecular geometric
objects consisting of atomic objects whose transforma-
tion functions are identities. Thus discrete change is a
special case of continuous change.

2.2 Classes of geometric objects

Special classes of geometric objects are defined using
restrictions on their reference spatial objects, time do-
mains, or transformation functions. We use the notation
AS,T ,F to refer to the class of atomic geometric objects
whose reference spatial objects belong to the class S of
spatial objects, time domains to the class T of subsets
of R, and transformation functions to the class F of
functions. Similarly, we’ll denote BS,T ,F to refer to the
class of molecular geometric objects consisting entirely
of AS,T ,F atomic objects and (BS,T ,F )∗ –to the class of
finite unions of BS,T ,F molecular objects.
For the purpose of this paper we fix the number of spa-
tial dimensions d = 2. We consider now classes of con-
crete temporal objects, spatial objects and functions.
In this way we obtain classes of concrete spatiotemporal
objects. For T , we consider only intervals. For S, we
consider Rect (rectangles with all sides parallel to the
axes) and Polygons (convex polygons).
There are many more choices for F . In this paper we
consider the following classes of parametric transforma-
tions:

1. Aff : affinities defined by a pair (A, B) where A

is a d × d-matrix (whose elements are functions of
t) and B is a d-vector of functions of t (called the
displacement vector). Then

f(x̄, t0) = At0 x̄ + Bt0

where At0 (resp. Bt0) is obtained by substituting
t in A (resp. B) by t0. We specialize Aff to sub-
classes obtained by fixing the class of functions of
t allowed in A and B. We have: AffRat (ratio-
nal functions which are quotients of polynomials),
AffPoly (polynomials), and AffLin (polynomials
of degree 1).

2. Sc: a subclass of Aff where the matrix A is of the
form

[

f1(t) 0
0 f2(t)

]

(this corresponds to (x, y)-scaling and translation).
Similarly to Aff , we define the subclasses ScRat,
ScPoly, and ScLin.

3. Trans: translations – a subclass of Sc where the
defining pair (A, B) is such that A is the diago-
nal matrix (this corresponds to translations only).
Again, we also have TransRat, TransPoly, and
TransLin.

4. I d: a subclass of Trans where B is the zero vector.

Using our framework, one can represent various kinds
of continuous change: movement, growth, or shrinking.
Also, discrete change can be modeled adequately. For
example appearance/disappearance can be modeled by
having a molecular spatiotemporal object with several
separate atomic spatiotemporal objects, each represent-
ing a different incarnation.
Notation: to simplify the notation we will write (S,F)
for (BS,T ,F)∗, as we consider only temporal intervals
and molecular objects.

3 Examples

Example 1: Suppose we are given an object o1 which
is a moving rectangle. At the reference time the rectan-
gle has left-lower corner (9, 10) and right-upper corner
(19, 20). Suppose that during the next five units of time
the rectangle is moving left with a speed of one unit
decrease in x for each unit of time.
The object o1 can be represented by a quadruple
(V1, v1, I1, f1) where V1 is the set of points {(x, y) : 9 ≤
x ≤ 19, 10 ≤ y ≤ 20}, v1 is 0, I1 is 0 ≤ t ≤ 5, and f1 is
a transformation function that is composed of a matrix
A1:

[

1 0
0 1

]

and displacement vector B1:



[

−t

0

]

Example 2: Suppose we are given an object o2 which
is a moving rectangle. At the reference time the rectan-
gle has left-lower corner (15, 8) and right-upper corner
(25, 17). Suppose that during the next five units of time
the rectangle is moving left with a speed of two units
decrease in x for each unit of time.
The object o2 can be represented by a quadruple
(V2, v2, I2, f2) where V2 is the set of points {(x, y) : 15 ≤
x ≤ 25, 8 ≤ y ≤ 17}, v2 is 0, I2 is 0 ≤ t ≤ 5, and f2 is
a transformation function that is composed of a matrix
A2:

[

1 0
0 1

]

and displacement vector B2:
[

−2t

0

]

Figure 1 shows the snapshots of o1 and o2 at t = 0 (thick
black lines) and t = 5 (thin gray lines). The filled areas
represent the intersection of o1 and o2 at t = 0 (black)
and t = 5 (gray).
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Figure 1: Rectangle intersection

The intersection of o1 and o2 can be represented by a
new object o3 which is a quadruple (V3, v3, I3, f3) where
V3 is the set of points {(x, y) : 15 ≤ x ≤ 19, 10 ≤ y ≤
17}, v3 is 0, I3 is 0 ≤ t ≤ 5, and f3 is a transformation
function that is composed of a matrix A3:

[

1
4 t + 1 0

0 1

]

and displacement vector B3:
[

− 23
4 t

0

]

The function f3 is a ScLin transformation function and
the intersection itself is a (Rect,ScLin) object. So al-
though the objects o1 and o2 are represented using trans-
lations, a more general geometric transformation – scal-
ing – is necessary to represent their intersection.

4 Closure

Closure under set-theoretic operations (intersection,
union, set difference) is essential for the spatiotempo-
ral objects to be usable in the context of query lan-
guages. For example, intersection is required by the
spatiotemporal equijoin. Notice that the spatial and
temporal objects considered separately are closed under
such operations, so the challenge is to consider space
and time together in a single spatiotemporal object. For
spatiotemporal objects representing discrete change spa-
tiotemporal intersection reduces to spatial and temporal
intersection. However, for more general spatiotemporal
objects this is not the case.
In general, the result of applying a set-theoretic operator
to two spatiotemporal objects of a given class may fail to
be an object of this class. It would then be essential to
determine the smallest possible class containing such a
result. Thus, in the study of closure, we have two kinds
of results: positive and negative. For positive results,
one shows that applying a set-theoretic operator to any
objects of class C1 always results in an object of class
C2 (if C1 = C2 in this case, then C1 is closed under the
operator). For negative results, one shows that there
are objects of class C1 that the result of a set-theoretic
operator applied to those objects is not an object of class
C2 (if C1 = C2 in this case, then C1 is not closed under
the operator).
It is easy to see that the closure of the classes of
spatiotemporal objects under union is immediately ob-
tained. Also, the behavior of those classes under set dif-
ference is identical to that under intersection, so in the
following we only present the results about intersection.
The papers [4, 10, 17] provide a complete characteriza-
tion of the closure under intersection. We summarize
those results here, elaborating on some special cases.
The general picture is that in most cases we obtain clo-
sure for spatiotemporal objects based on rectangles but
not for those that are based on arbitrary polygons.
We start by formulating in our framework a result of
Worboys. Worboys’ framework [17] is capable of repre-
senting only discrete change.

Theorem 4.1 [17] (Polygons, I d) is closed under in-
tersection.

The following results deal with classes of spatiotemporal
objects that can represent continuous change.

Theorem 4.2 [4] (Rect,ScLin) is closed under inter-
section .

Proof: It is obvious that two sets of rectangular objects
are closed under any of the above operators if any two



arbitrary rectangular objects are closed under the above
operators.
Let us assume that o1 is a (Rect,ScLin) object repre-
sented by a quadruple (V1, v1, I1, f1) where V1 is the
set of points {(x, y) : ex

1θxθkx
1 , e

y
1θyθk

y
1}, v1 is t0, I1 is

g1θtθh1, where θ is either < or ≤, and f1 is a transfor-
mation function that is composed of a matrix A1:

[

αx
1t + γx

1 0
0 α

y
1t + γ

y
1

]

and displacement vector B1:
[

βx
1 t + δx

1

β
y
1 t + δ

y
1

]

Similarly, let us assume that o2 is another (Rect,ScLin)
object similar to o1 except that each parameter is rep-
resented with superscript 2 in o2 and v2 = v1.
Then the intersection of o1 and o2 can be represented
by a new object o3 which is a quadruple (V3, v3, I3, f3)
where V3 is the set of points in the intersection of V1

and V2, v3 = v2 = v1, I3 is the intersection of I1 and I2,
and f3 is a transformation function that is composed of
a matrix A3:

[

αx
3t + γx

3 0
0 α

y
3t + γ

y
3

]

and displacement vector B3:
[

βx
3 t + δx

3

β
y
3 t + δ

y
3

]

To define the necessary parameters, we first for any t

and z either x or y,
P z(t)− = max((αz

1t + γz
1 )ez

1 + (βz
1 t + δz

1), (αz
2t + γz

2)ez
2 +

(βz
2 t + δz

2))
P z(t)+ = min((αz

1t + γz
1 )kz

1 + (βz
1 t + δz

1), (αz
2t + γz

2 )kz
2 +

(βz
2 t + δz

2))
∆z(t) = P z(t)+ − P z(t)−

In the above P z(t) is the interval that is the projection
of the spatiotemporal object o3 onto the z axis at time
t. The superscript − and + after P z(t) means the left
or right end point of this interval and ∆z(t) means the
length of the interval.
We assume that ∆z(0) 6= 0. Since the reference time of
any object can be changed to another value, it is possible
to find a reference time where this condition holds for
any pair of non-degenerate objects with a non-empty
intersection. This we do as follows.
At t = 1 we have for coefficients a1 = αx

3 + γx
3 and

b1 = βx
3 + δx

3 ,
P x(1)− = a1P

x(0)− + b1

P x(1)+ = a1P
x(0)+ + b1

Hence a1 = ∆x(1)
∆x(0) and

b1 = P x(1)− − ∆x(1)
∆x(0)P

x(0)−

Similarly, for t = 2 we have for coefficients a2 = 2αx
3+γx

3

and b2 = 2βx
3 + δx

3 ,

P x(2)− = a2P
x(0)− + b2

P x(2)+ = a2P
x(0)+ + b2

where a2 = ∆x(2)
∆x(0) and

b2 = P x(2)− − ∆x(2)
∆x(0)P

x(0)−

Solving for the coefficients, we have:
αx

3 = a2 − a1

βx
3 = b2 − b1

γx
3 = 2a1 − a2

δx
3 = 2b1 − b2

Substituting we get the following equations for both
when z is x and similarly when z is y.

αz
3 = ∆z(2)−∆z(1)

∆z(0)

γz
3 = 2∆z(1)−∆z(2)

∆z(0)

βz
3 = −P z(0)−αz

3 − P z(1)− + P z(2)−

δz
3 = −P z(0)−γz

3 + 2P z(1)− − P z(2)−

✷

Theorem 4.3 [10] (Rect,ScL) is closed under intersec-
tion for L ∈ {Poly,Rat}.

Theorem 4.4 [4] (Polygons,ScL) is not closed under
intersection for L ∈ {Lin,Poly}.

Proof: Consider a spatiotemporal object o1 =
(V1, v1, I1, f1) where V1 is a right-angled triangle with
vertices (0, 0), (0, 1), (1, 0), v1 = 0, I1 = [0, 5] and f1 is
given as the matrix

[

1 0
0 t + 1

]

together with a zero displacement vector, and a spa-
tiotemporal object o2 = (V2, v2, I2, f2) where V2 is
a right-angled triangle with vertices (0, 0), (1, 0), (1, 1),
v2 = 0, I2 = I1 and f2 is given as the matrix

[

1 0
0 2t + 1

]

together with a zero displacement vector. The intersec-
tion of those two triangles is another triangle with the
vertices (0, 0), (1, 0), (xt, yt). It is easy to see that

xt =
yt

2t + 1

and
1 − xt =

yt

t + 1
.

Thus

xt =
t + 1

3t + 2

and

yt =
(t + 1)(2t + 1)

3t + 2
.

Figure 1 shows the snapshots of o1 and o2 at t = 0
(thick black lines) and t = 2 (thin gray lines). The
filled areas represent the intersection of o1 and o2 at
t = 0 (black) and t = 2 (gray). The intersection of o1

and o2 can be represented as two spatiotemporal objects



o3 = (V3, v3, I3, f3) and o4 = (V4, v4, I4, f4). For the
object o3, V3 is a right-angled triangle with the vertices
(0, 0), (1

2 , 0), (1
2 , 1

2 ), v3 = 0, I3 = I1, and f3 is given as

[

2(t+1)
3t+2 0

0 2(t+1)(2t+1)
3t+2

]

For the object o4, V4 is a right-angled triangle with the
vertices (1

2 , 0), (1, 0), (1
2 , 1

2 ), v4 = 0, I4 = I1, and f4 =
f3. It is clear that o3 and o4 cannot be expressed using
scaling which is linear, or even polynomial, in t. ✷
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Figure 2: Triangle intersection

In [4], we conjectured that (Polygons,ScRat) is closed
under intersection but Haesevoets and Kuijpers [10]
showed that it is not the case.

Theorem 4.5 [10] (Polygons,ScRat) is not closed un-
der intersection.

Haesevoets and Kuijpers [10] established also a number
of results about affinities and translations.

Theorem 4.6 [10] (C ,AffRat) is closed under inter-
section for C ∈ {Rect,Polygons}. (Polygons,AffL)
is not closed under intersection for L ∈ {Lin,Poly}.

Theorem 4.7 [10] (C ,TransL) is not closed under
intersection for C ∈ {Rect,Polygons} and L ∈
{Lin,Poly,Rat}.

They also considered spatial objects that are triangles or
triangles with the sides parallel to the coordinate axes.
The closure results for the classes of spatiotemporal ob-
jects based on those two classes parallel the above results
about polygon-based classes.

5 Implementation issues

To implement our approach, it is sufficient to be able to
represent in a database the following:

• spatial objects (a solved problem for many classes
of such objects),

• temporal objects (again a solved problem),

• function objects (lambda terms).

Although to our knowledge none of the currently avail-
able DBMS provides the last option, we believe that
the object-relational (or object-oriented) technology will
soon make it feasible. In fact, one of the earliest object-
relational DBMS, Postgres [15], allowed storing func-
tions as tuple components. Also, some object-oriented
data models, e.g., OODAPLEX [19], permit functions
as first-class objects.
Moreover, storing functions themselves is sometimes not
necessary. If the transformation functions are polyno-
mials or rational functions, they can be represented as
lists of coefficients. For linear polynomials, such lists
are of fixed length, opening the possibility of represent-
ing the corresponding spatiotemporal objects using the
standard relational data model.

6 Related work

Spatiotemporal data models and query languages are a
topic of growing interest.
The paper [17], mentioned in Section 4, presents one
of the first such models. However, it is only capable of
modeling discrete change.
In [6] the authors define in an abstract way moving
points and regions. Apart from moving points, no other
classes of concrete, database-representable spatiotempo-
ral objects are defined. In that approach continuous
movement (but not growth or shrinking) can be mod-
eled using linear interpolation functions. In the sub-
sequent paper [7], the authors discuss moving, growing
and shrinking regions, imposing an additional require-
ment that the resulting spatiotemporal object be a poly-
hedron. This guarantees closure but eliminates the pos-
sibility of representing scaling (see Figure 2) and more
general transformations.
In [8] the authors propose a formal spatiotemporal data
model based on constraints in which, like in [17], only



discrete change can be modeled. An SQL-based query
language is also presented.
We have proposed elsewhere [5] a spatiotemporal data
model based on parametric polygons: polygons whose
vertices are defined using linear functions of time. This
model is also capable of modeling continuous change
but is not closed under intersection. A variation of this
model restricted to rectangles but extended with peri-
odic functions is given in [2]. The latter model is closed
under set theoretic operators, enabling the definition of
an extended relational algebra query language, for which
query evaluation can be done in PTIME in the size of the
input spatiotemporal database. The closure properties
for [5] and [2] seem analoguous to the closure proper-
ties of the framework presented in this paper, especially
Theorems 4.4 and 4.2, respectively, but the relationships
among these frameworks needs to be further explored.
Both discrete and continuous change can be represented
using constraint databases [12]. Compared to the latter
technology, our approach seems more constructive and
amenable to implementation using standard database
techniques as outlined in Section 5. On the other hand,
constraint databases do not suffer from the lack of clo-
sure under intersection. To some degree, it is due to
the fact that the intersection of two generalized tuples
in constraint databases need not immediately computed
but rather the tuples may be only conjoined together. In
most implementations of constraint databases [1, 9, 14]
the “real” computation of the intersection occurs dur-
ing projection or the presentation of the query result
to the user. It is unclear whether such a strategy of-
fers any computational advantages over the approach in
which the intersections are computed immediately. In
fact, recent work on spatial constraint databases [13]
proposes extensions to relational algebra that require
immediate computations of spatial object intersections.
Also, our approach is potentially more general than
constraint databases. For example, by moving beyond
rational functions (but keeping the same basic frame-
work) we can represent rotations with a fixed center.
Finally, in our model it is easy to obtain any snapshot
of a spatiotemporal object, making tasks like anima-
tion straightforward. It is not so in constraint databases
where geometric representations of snapshots have to be
explicitly constructed from constraints [3].

7 Conclusions and Future Work

We have presented a formal framework for specifying a
broad spectrum of spatiotemporal objects. We believe
the framework is quite practical. Within this frame-
work, we have formulated the issue of closure of spa-
tiotemporal objects under set-theoretic operations. The
mostly negative results about closure presented here in-
dicate that a richer representation for spatiotemporal
objects may be necessary to support queries like spa-
tiotemporal join that require intersecting such objects.
Perhaps, similarly to Constructive Solid Geometry [11],

one should consider objects that are AND-OR-NOT
trees with leaves corresponding to atomic objects. For
such objects closure will be much easier to obtain. On
the other hand, the content of such objects will be less
explicit, which will make their processing during display
or animation less computationally efficient.
A common limitation for each of the parametric data
models considered in this and earlier papers is their in-
ability of representing more complex motions such as
rotation with a moving center. One possible approach
here is to represent such rotations with an extra time-
parametric function θ(t) and two extra rotation center
functions xr(t) and yr(t) where (xr(t), yr(t)) is the cen-
ter of rotation at any time t. That is, the object that
would be normally placed at a certain position is ro-
tated θ(t) degrees around (xr(t), yr(t)) (the center of
rotation). Consider for example a triangle with corner
vertices (0, 0), (1, 0) and (0, 1). Suppose that the cen-
ter of rotation is always (t, t) and the degree of rotation
is always πt degrees. Then for example at t = 1, the
object would be another triangle with corner vertices
(2, 2), (2, 1) and (1, 2).
There are a number of interesting issues for each para-
metric spatiotemporal model. First, we need to com-
pare the expressive power of the various data models.
Second, we need to study closure under set operators.
For example, is the above representation closed under
intersection? Third, we need to study the query ex-
pressiveness and interoperability. Fourth, what is the
complexity of query evaluation assuming that a query
language can be defined under which the data model
has a closed-form? Fifth, we need to look at implemen-
tation issues, for example query optimization if a query
language exists. Finally, as a long-term goal, we would
like to look at actual implementations of several para-
metric data models.
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