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Abstract. We present for the first-order theory of atomic Boolean al-
gebras of sets with linear cardinality constraints a quantifier elimination
algorithm. In the case of atomic Boolean algebras of sets, this is a new
generalization of Boole’s well-known variable elimination method for con-
junctions of Boolean equality constraints. We also explain the connec-
tion of this new logical result with the evaluation of relational calculus
queries on constraint databases that contain Boolean linear cardinality
constraints.

1 Introduction

Constraint relations, usually in the form of semi-algebraic or semi-linear sets,
provide a natural description of data in many problems. What programming
language could be designed to incorporate such constraint relations? Jaffar and
Lassez [27] proposed in a landmark paper constraint logic programming, with the
idea of extending Prolog, and its usual top-down evaluation style, with constraint
solving (which replaces unification in Prolog). That is, in each rule application
after the substitution of subgoals by constraint tuples, the evaluation needs
to test the satisfiability of the constraints, and proceed forward or backtrack
according to the result.

As an alternative way of incorporating constraint relations, in a database
framework, Kanellakis, Kuper, and Revesz [29, 30] proposed constraint query
languages as an extension of relational calculus with the basic insight that the
evaluation of relational calculus queries on X-type constraint relations reduces
to a quantifier elimination [15, 16] in the first-order theory of X.1 As an example
from [29, 30], if the constraint relations are semi-algebraic relations, then the

? This work was supported in part by USA National Science Foundation grant EIA-
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1 They also considered various bottom-up methods of evaluating Datalog queries and
the computational complexity and expressive power of constraint queries. Since rela-
tional calculus is closely tied with practical query languages like SQL, it has captured
the most attention in the database area.



quantifier elimination for real closed fields [2, 3, 12, 13, 40, 54] can be used to
evaluate queries.

There are advantages and disadvantages of both styles of program/query eval-
uations. Constraint logic programs have the advantage that their implementation
can be based on only constraint satisfiability testing, which is usually easier and
faster than quantifier elimination required by constraint relational calculus. On
the other hand, the termination of constraint logic programs is not guaranteed,
except in cases with a limited expressive power. For example, for negation-free
Datalog queries with integer (gap)-order constraints the termination of both the
tuple-recognition problem [14] and the least fixed point query evaluation [41,
42] can be guaranteed. When either negation or addition constraints are also
allowed, then termination cannot be guaranteed. In contrast, the evaluation of
constraint relational calculus queries have a guaranteed termination, provided
there is a suitable effective quantifier elimination method.

While many other comparisons can be made (see the surveys [28, 43] and
the books [31, 33, 47]), these seem to be the most important. Their importance
becomes clear when we consider the expected users. Professional programmers
can write any software in any programming language and everything could be
neatly hidden (usually under some kind of options menu) from the users. In
contrast, database systems provide for the users not ready-made programs but
a easy-to-use high-level programming language, in which they can write their
own simple programs. It is unthinkable that this programming language not
terminate, and, in fact, run efficiently. Therefore constraint database research
focused on the efficient evaluation of simple non-recursive query languages.2

The constraint database field made initially a rapid progress by taking off-
the-shelf some quantifier elimination methods. Semi-linear sets as constraint re-
lations are allowed in several prototype constraint database systems [8, 21, 24, 25,
48, 49] that use Fourier-Motzkin quantifier elimination for linear inequality con-
straints [18]. The latest version of the DISCO system [9, 50] implements Boolean
equality constraints using Boole’s existential quantifier elimination method for
conjunctions of Boolean equality constraints.

Relational algebra queries were considered in [20, 42, 46]. As in relational
databases, the algebraic operators are essential for the efficient evaluation of
queries. In fact, in the above systems logical expressions in the form of relational
calculus, SQL, and Datalog rules are translated into relational algebra.

There were also deep and interesting questions about the relative expressive
power and computational complexity of relational versus constraint query lan-
guages. Some results in this area include [4, 23, 37, 45] and a nice survey of these
can be found in Chapters 3 and 4 of [31].

2 Of course, many database-based products also provide menus to the users. However,
the users of database-based products are only indirect users of database systems.
The direct users of database systems are application developers, who routinely embed
SQL expressions into their programs. Thanks to today’s database systems, they need
to worry less about termination, efficiency, and many other issues than yesterday’s
programmers needed while developing software products.



After these initial successes, it became clear that further progress may be
possible only by extending the quantifier elimination methods. Hence researchers
who happily got their hands dirty doing implementations found themselves back
at the mathematical drawing table.

The limitations of quantifier elimination seemed to be most poignant for
Boolean algebras. It turns out that for conjunctions of Boolean equality and
inequality constraints (which seems to require just a slight extension of Boole’s
method) no quantifier elimination is possible. Let us see an example, phrased as
a lemma.

Lemma 1. There is no quantifier-free formula of Boolean equality and inequal-
ity constraints that is equivalent in every Boolean algebra to the following for-
mula:

∃d (d u g 6= ⊥) ∧ (d u g 6= ⊥)

where d and g are variables and ⊥ is the zero element of the Boolean algebra. ut

Consider the Boolean algebra of sets, with the one element being the names of
all persons, the zero element being the empty set, the domain being the powerset
(set of all subset of the one element).

In the formula variable d may be the set of students who took a database
systems class, variable g may be the set of students who graduate this semester.
Then the formula expresses the statement that “some graduating student took
a database systems class, and some graduating student did not take a database
systems class.” This formula implies that g has at least two elements, that is,
the cardinality of g is at least two, denoted as:

|g| ≥ 2

But this fact can not be expressed by any quantifier-free formula with Boolean
equality and inequality constraints and g as the only variable.

Lemma 1 implies that there is no general quantifier elimination method for
formulas of Boolean equality and inequality constraints. This negative result was
noted by several researchers, who then advocated approximations. For example,
Helm et al. [26] approximate the result by a formula of Boolean equality and
inequality constraints. Can we do better than just an approximation?

The only hopeful development in the quantifier elimination area was by Mar-
riott and Odersky [32] who showed that formulas with equality and inequality
constraints admit quantifier elimination for the special case of atomless Boolean
algebras. However, many Boolean algebras are not atomless but atomic. How
can we deal with those Boolean algebras? Could any subset of atomic Boolean
algebras also admit quantifier elimination? In this paper we show that the atomic
Boolean algebras of sets, i.e., Boolean algebras where the Boolean algebra op-
erators are interpreted as the usual set operators of union, intersection and
complement with respect to the one element, also admit quantifier elimination,
in spite of the pessimistic looking result of Lemma 1.



Let us take a closer look at the Lemma. Surprisingly, the condition |g| ≥ 2
is not only necessary, but it is also sufficient. That is, for any Boolean algebra
of sets if G is any set with at least two elements, then we can find a set D such
that the above formula holds. Therefore, |g| ≥ 2 is exactly the quantifier-free
formula that we would like to have as a result of the quantifier elimination.
However, quantifier elimination techniques are normally required to give back
equivalent quantifier-free formulas with the same type of constraints as the input.
This condition is commonly called being closed under the set of constraints. This
raises the interesting question of what happens if we allow cardinality constraints
in our formulas.

While cardinality constraints on sets are considered by many authors, and
interesting algorithms are developed for testing the satisfiability of a conjunction
of cardinality constraints, there were, to our knowledge, no algorithms given
for quantifier elimination for atomic Boolean algebras of sets with cardinality
constraints.

Calvanese and Lenzerini [11, 10] study cardinality constraints that occur in
ER-diagrams and ISA hierarchies. They give a method to test the satisfiability
of a schema. This is a special case of cardinality constraints, because the ER-
diagrams do not contain inequality constraints.

Ohlbach and Koehler [35, 36] consider a simple description logic with cardi-
nality constraints. They give methods to test subsumption and satisfiability of
their formulas, but they do not consider quantifier elimination.

Seipel and Geske [51] use constraint logic programming to solve conjunctions
of cardinality constraints. Their set of constraint logic programming [27] rules is
sound but incomplete.

Surprisingly, in this paper, we show that the augmented formulas, called
Boolean linear cardinality constraint formulas, admit quantifier elimination. It
is surprising that by adding to the set of atomic constraints, the problem of
quantifier elimination becomes easier, not harder. Indeed, the end result, which
is our quantifier elimination method described in this paper, may strike the
reader as simple. But the finding of the trick of adding cardinality constraints
for the sake of performing quantifier elimination is not obvious as shown by the
following history summarized in Figure 1. In the figure the arrows point from less
to more expressive Boolean constraint theories, but the labels on them indicate
that the Boolean algebra needs to be of a certain type. Let’s describe Figure 1
in some detail (please see Section 2 for definitions of unfamiliar terms).

Precedence between variables: A naive elimination of variables from a
set of Boolean precedence constraints between variables or constants (in the case
of algebras of sets set containment constraints between sets) occurs in syllogistic
reasoning. Namely, the syllogistic rule if all x are y, and all y are z, then all x
are z yields a simple elimination of the y variable. Such syllogisms were described
already by Aristotle and developed further in medieval times and can be used
as the basis of eliminating variables. Srivastava, Ramakrishnan, and Revesz [52]
gave an existential quantifier elimination method for a special subset of the
Boolean algebra of sets. They considered existentially quantified formulas with
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Fig. 1. Quantifier elimination methods for Boolean theories.

the quantifier-free part being only a conjunction of atomic constraints of the
form v ⊆ w, where v and w are constants or variables ranging over the elements
of a Boolean algebra of sets. Gervet [19] independently derived a similar method
about the same time. This shows that the problem of quantifier elimination for
sets arises naturally in different contexts.

Boolean equality: The quantifier elimination procedure for Boolean for-
mulas with equality constraints was given by George Boole in 1856. His method
allows the elimination of only existentially quantified variables.

Boolean order: Revesz [44, 47] shows that Boolean order constraints allow
existential quantifier elimination. Boolean order constraints (see Section 2.2) are
equality constraints of the form x u t′mon = ⊥ and inequality constraints of the
form tmon 6= ⊥ where x is a variable and t is a monotone Boolean term, that is, a
term that contains only the u and t operators. In Boolean algebras of sets, the
first of these constraints can be written as tmon ⊇ x. This is clearly a general-
ization of precedence constraints between variables. However, it is incomparable
with Boolean equalities. This theory contains some inequality constraints (which
cannot be expressed by equality constraints), namely when the left hand side
is a monotone term, but it cannot express all kinds of equality constraints, but
only those that have the form t′mon ∧ x = ⊥.

Boolean equality and inequality: Marriott and Odersky [32] show that
atomless Boolean algebras admit both existential and universal quantifier elim-



ination. Clearly, their method is a generalization of Boole’s method in the case
of atomless Boolean algebras.

Boolean linear cardinality: The quantifier elimination for this is intro-
duced in this paper. In the case of atomic Boolean algebras of sets, the new
linear cardinality constraints quantifier elimination is another generalization of
the quantifier elimination considered by Boole as shown by Lemma 3.

The outline of this paper is as follows. Section 2 gives some basic defini-
tions regarding Boolean algebras, constraints, and theories. Section 3 describes
a new quantifier elimination method for conjunctions of Boolean cardinality con-
straints. Section 4 uses the quantifier elimination method for the evaluation of
relational calculus queries. Finally, Section 5 gives some conclusions and direc-
tions for further research.

2 Basic Definitions

We define Boolean algebras in Section 2.1, Boolean constraints in Section 2.2,
and Boolean theories in Section 2.3.

2.1 Boolean Algebras

Definition 1. A Boolean algebra B is a tuple 〈δ,u,t,′ ,⊥,>〉, where δ is a
non-empty set called the domain; u, t are binary functions from δ × δ to δ; ′ is
a unary function from δ to δ; and ⊥, > are two specific elements of δ (called the
zero element and the one element, respectively) such that for any elements x, y,
and z in δ the following axioms hold:

x t y = y t x x u y = y u x
x t (y u z) = (x t y) u (x t z) x u (y t z) = (x u y) t (x u z)

x t x′ = > x u x′ = ⊥
x t ⊥ = x x u > = x

⊥ 6= >

For Boolean algebras we define the precedence relation, denoted as w, by the
following identity:

x w y means x′ ∧ y = ⊥

We also write the above as y v x and say that y precedes x.

The above gives a formal definition of a Boolean algebra. It can be considered its
syntax. The semantics of a Boolean algebra is given through interpretations for
the elements of its structure. Without going into deep details about the numerous
possible interpretations, we give one common interpretation of the domain and
operators.



Definition 2. A Boolean algebra of sets is any Boolean algebra, where:
δ is a set of sets,
t is interpreted as set union, denoted as ∪,
u is interpreted as set intersection, denoted as ∩,
′ is interpreted as set complement with respect to >, denoted as , and
v (or w) is interpreted as set containment, denoted as ⊆ (or ⊇).

Note: We call two Boolean algebras isomorphic if there is between them a
bijection which preserves their respective Boolean operations. By Stone’s repre-
sentation theorem, any Boolean algebra is isomorphic to a Boolean algebra of
sets [53]. Hence restricting our attention in this paper to Boolean algebras of
sets is without any significant loss of generality.

An atom of a Boolean algebra is an element x 6= ⊥ such that there is no
other element y 6= ⊥ with y v x. It can happen that there are no atoms at all in
a Boolean algebra. In that case, we call the Boolean algebra atomless; otherwise
we call it atomic.

Let N denote the set of non-negative integer, Z denote the set of integer,
and Q denote the set of rational numbers.

Example 1.

BZ = 〈Powerset(Z),∩,∪, , ∅,Z〉

is a Boolean algebra of sets. In this algebra for each i ∈ Z the singleton set {i}
is an atom. This algebra is atomic. ut

Example 2. Let H be the set of all finite unions of half-open intervals of the
form [a, b) over the rational numbers, where [a, b) means all rational numbers
that are greater than or equal to a and less than b, where a is a rational number
or −∞ and b is a rational number. Then:

BH = 〈H,∩,∪, , ∅,Q〉

is another Boolean algebra of sets. This algebra is atomless. ut

2.2 Boolean Constraints

In the following we consider only atomic Boolean algebras of sets with either a
finite or a countably infinite number of atoms. For example, the Boolean algebra
BZ has a countably infinite number of atoms. We also assume that we can take
the union or the intersection of an infinite number of elements of the Boolean
algebra, i.e., our Boolean algebras are complete.

Cardinality can be defined as follows.



Definition 3. Let x be any element of an atomic Boolean algebra of sets with
a finite or countably infinite number of atoms. If x can be written as the finite
union of n ∈ N number of distinct atoms, then the cardinality of x, denoted |x|,
is n. Otherwise the cardinality of x is infinite, which is denoted as +∞.

The following lemma shows that the cardinality is a well-defined function
from elements of an atomic Boolean algebra to N ∪ {+∞}.

Lemma 2. Let x be any element of an atomic Boolean algebra of sets with
a finite or countably infinite number of atoms. Then x can be written as the
union of some n ∈ N or +∞ number of distinct atoms in the Boolean algebra.
Moreover, there is no other set of atoms whose union is equivalent to x. ut

For example, in the Boolean algebra BZ we can write {1, 2} as {1} ∪ {2} or
as {2} ∪ {1}. In either way, we use the same two distinct atoms, i.e., {1} and
{2}. It follows from Lemma 2 that it is enough to allow only atomic constant
symbols in Boolean terms and Boolean constraints, which we define as follows.

Definition 4. Let B = 〈δ,∩,∪, ,⊥,>〉 be an atomic Boolean algebra of sets. A
Boolean term over B is an expression built from variables ranging over δ, atomic
constants denoting particular atoms of B, ⊥ denoting the zero element, > denot-
ing the one element, and the operators for intersection, union, and complement.

A Boolean term is monotone if it is built without the use of the complement
operator.

Definition 5. Boolean constraints have the form:

Equality : t = ⊥
Inequality : t 6= ⊥
Order : tmon 6= ⊥ or tmon w x
Linear Cardinality : c1|t1| + . . .+ ck|tk| θ b

where t and each ti for 1 ≤ i ≤ k is a Boolean term, tmon is a monotone Boolean
term, x is a Boolean variable, each ci for 1 ≤ i ≤ k and b is an integer constant
and θ is:

= for the equality relation,
≥ for the greater than or equal comparison operator,
≤ for the less than or equal comparison operator, or
≡n for the congruence relation modulus some positive integer constant n.

2.3 Boolean Theories

A formula of Boolean algebras of sets is a formula that is built in the usual way
from the existential quantifier ∃, the universal quantifier ∀, the logical connec-
tives ∧ for and ∨ for or, the apostrophe ′ for negation, and one of the above
types of Boolean algebra constraints.

A solution or model of a Boolean algebra constraint (or formula) is an as-
signment of the (free) variables by elements of the Boolean algebra such that
the constraint (or formula) is satisfied. A constraint (or formula) is true if every
possible assignment is a solution.



Example 3. Consider the Boolean algebra BZ of Example 1. Then the Boolean
linear cardinality constraint:

3|x ∩ y| − 2|z| = 4

has many solutions. For example x = {3, 6, 9} and y = {3, 4, 5, 6} and z = {1}
is a solution. The Boolean linear cardinality constraint:

|x ∪ {1} ∪ {2}| ≥ 2

is true, because every assignment to x is a solution. ut

Example 4. Suppose that we know the following facts about a company:

1. The number of salespersons is a multiple of 6.
2. The number of engineers is a multiple of 9.
3. There are seven employees who are both salespersons and engineers but not

managers.
4. There are twice as many managers who are salespersons than managers who

are engineers.
5. Each manager is either a salesperson or an engineer but not both.

Using variables x for managers, y for salespersons, and z for engineers, we
can express the above using the following Boolean cardinality formula S:

|y| ≡6 0 ∧
|z| ≡9 0 ∧

|x ∩ y ∩ z| = 7 ∧
|x ∩ y| − 2|x ∩ z| = 0 ∧

|x ∩ y ∩ z|+ |x ∩ y ∩ z| = 0

ut

Example 5. Suppose that we know the following additional fact about the com-
pany in Example 4:

6. Person a is both a manager and an engineer but not a salesperson.

Here a is a constant symbol that denotes a particular atom of the Boolean
algebra. We can express this by the following Boolean constraint:

|x ∩ y ∩ z ∩ a| = 1

ut

In any given Boolean algebra two formulas are equivalent if they have the
same set of models. The purpose of quantifier elimination is to rewrite a given
formula with quantifiers into an equivalent quantifier-free formula [16]. A quan-
tifier elimination method is closed or has a closed-form if the type of constraints
in the formula with quantifiers and the quantifier-free formula are the same. (It



is sometimes possible to eliminate quantifiers at the expense of introducing more
powerful constraints, but then the quantifier elimination will not be closed-form.)

In arithmetic theories quantifier elimination is a well-studied problem. A well-
known theorem due to Presburger ( [38] and improvements in [6, 7, 17, 55, 56])
is that a closed-form quantifier elimination is possible for formulas with linear
equations (including congruence equations modulus some fixed set of integers).
We will use this powerful theorem in this paper.

The following lemma shows in the case of atomic Boolean algebras of sets a
simple translation from formulas with only equality and inequality constraints
into formulas with only linear cardinality constraints.

Lemma 3. In any atomic Boolean algebra of sets, for every term t we have the
following:

t = ⊥ if and only if |t| = 0
t 6= ⊥ if and only if |t| ≥ 1

Moreover, using the above identities, any formula with only equality and in-
equality constraints can be written as a formula with only linear cardinality con-
straints. ut

Finally, we introduce some useful technical definitions related to Boolean
theories and formulas.

Let F be a formula that contains the variable and atomic constant symbols
z1, . . . , zn. Then the minterms of F , denoted Minterm(F ), are the set of ex-
pressions of the form ζ1 u . . . u ζn where each ζi is either zi or zi, that is, each
minterm must contain each variable and atomic constant symbol either posi-
tively or negatively. Note that there are exactly 2n minterms of F . We can order
the minterms in a lexicographic order assuming that positive literals precede
negative literals.

Example 6. Suppose that we use only the following variables and no constant
symbols in a formula: x, y, z. Then we can form from these variables the following
eight minterms in order:

x ∩ y ∩ z, x ∩ y ∩ z, x ∩ y ∩ z, x ∩ y ∩ z,
x ∩ y ∩ z, x ∩ y ∩ z, x ∩ y ∩ z, x ∩ y ∩ z

If we also use the atomic constant symbol a, then we can form the following
minterms:

x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a,
x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a,
x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a,
x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a, x ∩ y ∩ z ∩ a x ∩ y ∩ z ∩ a

ut



Note that any minterm that contains two or more atoms positively is equiv-
alent to ⊥. This allows some simplifications in certain cases.

Each Boolean cardinality constraint with n variables and atomic constants
can be put into the normal form:

c1|m1| + . . .+ c2n |m2n | θ b (1)

where b and each ci is an integer constant and each mi is a minterm of the
Boolean algebra for 1 ≤ i ≤ 2n, and θ is as in Definition 5.

Example 7. We rewrite S of Example 4 into the following normal form (omitting
minterms with zero coefficients and the ∧ symbol at the end of lines):

|x ∩ y ∩ z|+ |x ∩ y ∩ z| + |x ∩ y ∩ z| + |x ∩ y ∩ z| ≡6 0
|x ∩ y ∩ z|+ |x ∩ y ∩ z| + |x ∩ y ∩ z| + |x ∩ y ∩ z| ≡9 0
|x ∩ y ∩ z|+ |x ∩ y ∩ z| = 7
|x ∩ y ∩ z| − |x ∩ y ∩ z| + 2|x ∩ y ∩ z| = 0
|x ∩ y ∩ z|+ |x ∩ y ∩ z| = 0

The constraint in Example 5 is already in normal form.

3 Quantifier Elimination Method

We give below a quantifier elimination algorithm for Boolean linear cardinality
constraint formulas in atomic Boolean algebras of sets.

Theorem 1. [constant-free case] Existentially quantified variables can be elim-
inated from Boolean linear cardinality constraint formulas. The quantifier elim-
ination is closed, that is, yields a quantifier-free Boolean linear cardinality con-
straint formula. ut

Example 8. Let S be the Boolean cardinality formula in Example 4. A quantifier
elimination problem would be to find a quantifier-free formula that is logically
equivalent to the following:

∃x S

First we put S into a normal form as shown in Example 7. Then let S∗ be the
conjunction of the normal form and the following:

|y ∩ z| − |x ∩ y ∩ z| − |x ∩ y ∩ z| = 0
|y ∩ z| − |x ∩ y ∩ z| − |x ∩ y ∩ z| = 0
|y ∩ z| − |x ∩ y ∩ z| − |x ∩ y ∩ z| = 0
|y ∩ z| − |x ∩ y ∩ z| − |x ∩ y ∩ z| = 0

Second, we consider each expression that is the cardinality of a minterm (over
x, y, z or over y, z) as an integer variable. Then by integer linear constraint



variable elimination we get:

|y ∩ z| + |y ∩ z| ≡6 0
|y ∩ z| + |y ∩ z| ≡9 0
|y ∩ z| = 7

By Theorem 1, the above is equivalent to ∃x S. For instance, the following
is one solution for the above:

|y ∩ z| = 7
|y ∩ z| = 5
|y ∩ z| = 2
|y ∩ z| = 0

Corresponding to this we can find the solution:

|x ∩ y ∩ z| = 0 |x ∩ y ∩ z| = 7
|x ∩ y ∩ z| = 2 |x ∩ y ∩ z| = 3
|x ∩ y ∩ z| = 1 |x ∩ y ∩ z| = 1
|x ∩ y ∩ z| = 0 |x ∩ y ∩ z| = 0

Finally, given any assignment of sets to y and z such that the first group of
equalities holds, then we can find an assignment to x such that the second set of
equalities also holds. While this cannot be illustrated for all possible assignments,
consider just one assignment shown in Figure 2 where each dot represents a
distinct person. Given the sets y and z (shown with solid lines), we can find a set
x (shown in Figure 2 with a dashed line) that satisfies the required constraints.

y z

x

Fig. 2. Venn diagram for the employee example.

ut



In the constant-free case, once we know the cardinality of each minterm, any
assignment of the required number of arbitrary distinct atoms to the minterms
yields an assignment to the variables that satisfies the Boolean formula.

Of course, when the minterms contain atoms, we cannot assign arbitrary
atoms. We have to assign to a minterm that contains an atom a positively either
the atom that a denotes or the bottom element ⊥. There is no other choice that
can be allowed.

We handle atomic constants as follows. We consider them as additional
Boolean algebra variables that have cardinality one and the cardinality of their
intersection is zero. That is, if we have atomic constants a1, . . . , ac in a formula,
then we add to system (3) the following for each 1 ≤ i ≤ c:

|ai| = 1

and also for each 1 ≤ i, j ≤ c and i 6= j:

|ai ∩ aj | = 0

Of course, both of the above conditions have to be put into a normal form
before adding them to system (3). Then we solve these as in Theorem 1. Now
we can prove the following.

Theorem 2. [with atomic constants] Existentially quantified variables can
be eliminated from Boolean linear cardinality constraint formulas. The quantifier
elimination is closed, that is, yields a quantifier-free Boolean linear cardinality
constraint formula. ut

Example 9. Let S be the Boolean cardinality formula that is the conjunction
of the formula in Example 4 and the constraint in Example 5. A quantifier
elimination problem would be to find a quantifier-free formula that is logically
equivalent to the following:

∃x S

First we put S into a normal form. Then let S∗ be the conjunction of the normal
form and the following:

|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0
|y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| − |x ∩ y ∩ z ∩ a| = 0

We also add the constraint |a| = 1 expressed using minterms as:

|x ∩ y ∩ z ∩ a| +|x ∩ y ∩ z ∩ a| +|x ∩ y ∩ z ∩ a| +|x ∩ y ∩ z ∩ a|
+|x ∩ y ∩ z ∩ a| +|x ∩ y ∩ z ∩ a| +|x ∩ y ∩ z ∩ a| +|x ∩ y ∩ z ∩ a| = 1



Second, we consider each expression that is the cardinality of a minterm (over
x, y, z, a or over y, z, a) as an integer variable. Then by integer linear constraint
variable elimination we get:

|y ∩ z ∩ a| + |y ∩ z ∩ a| + |y ∩ z ∩ a| + |y ∩ z ∩ a| ≡6 0
|y ∩ z ∩ a| + |y ∩ z ∩ a| + |y ∩ z ∩ a| + |y ∩ z ∩ a| ≡9 0
|y ∩ z ∩ a| + |y ∩ z ∩ a| = 7
|y ∩ z ∩ a| = 1

The last linear cardinality constraint comes from the constraint in Example 5
and the constraint that |a| = 1. By Theorem 2, the above is equivalent to ∃x S.
For instance, the following is one solution for the above:

|y ∩ z ∩ a| = 0
|y ∩ z ∩ a| = 7
|y ∩ z ∩ a| = 0
|y ∩ z ∩ a| = 5
|y ∩ z ∩ a| = 1
|y ∩ z ∩ a| = 1
|y ∩ z ∩ a| = 0
|y ∩ z ∩ a| = 0

Corresponding to this we can find the solution:

|x ∩ y ∩ z ∩ a| = 0 |x ∩ y ∩ z ∩ a| = 0
|x ∩ y ∩ z ∩ a| = 0 |x ∩ y ∩ z ∩ a| = 7
|x ∩ y ∩ z ∩ a| = 0 |x ∩ y ∩ z ∩ a| = 0
|x ∩ y ∩ z ∩ a| = 2 |x ∩ y ∩ z ∩ a| = 3
|x ∩ y ∩ z ∩ a| = 1 |x ∩ y ∩ z ∩ a| = 0
|x ∩ y ∩ z ∩ a| = 0 |x ∩ y ∩ z ∩ a| = 1
|x ∩ y ∩ z ∩ a| = 0 |x ∩ y ∩ z ∩ a| = 0
|x ∩ y ∩ z ∩ a| = 0 |x ∩ y ∩ z ∩ a| = 0

Finally, given any assignment of sets to y, z, and a such that the first group
of equalities holds and the correct atom is assigned to a, then we can find an
assignment to x such that the second set of equalities also holds. Again, consider
just one assignment shown in Figure 3 where each dot represents a distinct
person. Given the sets y, z, and a (shown with solid lines), we can find a set x
(shown in Figure 3 with a dashed line) that satisfies the required constraints.

It is interesting to compare the above with Example 8. There we could choose
for x an arbitrary atom of the set y ∩ z, but here we must choose the atom a.
More precisely, we can choose an arbitrary atom of the set y ∩ z ∩ a, which, of
course, is the same. ut

Theorem 3. Universally quantified variables can be eliminated from Boolean
linear cardinality constraint formulas. The quantifier elimination is closed, that
is, yields a quantifier-free Boolean linear cardinality constraint formula. ut
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Fig. 3. Venn diagram for Example 9.

Given any formula, it can be decided whether it is true by successively elimi-
nating all variables from it. Then it becomes easy to test whether the variable-free
formula is true or false. Hence, this also shows that:

Corollary 1. It can be decided whether a Boolean linear cardinality constraint
formula is true or false. ut

4 Query Evaluation

It is well-known that several practical query languages, such as SQL without
aggregation operators, can be translated into relational calculus [1, 39]. Hence
while relational calculus is not used directly in major database systems, many
theoretical results are stated in terms of it with clear implications for the more
practical query languages. Hence we will do the same here.

A relational calculus formula is built from relation symbols Ri with variable
and constant symbol arguments, the connectives ∧ for and, ∨ for or, → for
implication, and overline for negation, and the quantifiers ∃ and ∀ in the usual
way. Each relation has a fixed arity or number of arguments. If Ri is a k-arity
relation, then it always occurs in the formula in the form Ri(z1, . . . , zk), where
each zj for 1 ≤ j ≤ k is a variable or constant symbol.

A general framework for using constraint databases is presented in [29, 30].
The following three definitions are from that paper.

1. A generalized k-tuple is a quantifier-free conjunction of constraints on k or-
dered variables ranging over a domain δ. Each generalized k tuple represents
in a finite way a possibly infinite set of regular k-tuples.

2. A generalized relation of arity k is a finite set of generalized k-tuples, with
each k-tuple over the same variables.

3. A generalized database is a finite set of generalized relations.



Let ri be the generalized relation assigned to Ri. We associate with each
ri a formula Fri

that is the disjunction of the set of generalized k-tuples of ri.
According to the above definition, Fri

is a quantifier-free disjunctive normal form
(DNF) formula. This is not absolutely necessary, and other researchers allow
non-DNF formulas too. The above the generalization is from finite relations
found in relational database systems to finitely representable (via constraints)
but possibly infinite relations.

Let φ be any relational calculus formula. Satisfaction with respect to a do-
main δ and database d, denoted < δ, d > |=, is defined recursively as follows:

< δ, d > |= Ri(a1, . . . , ak) iff Fri
(a1, . . . , ak) is true (2)

< δ, d > |= φ ∧ ψ iff < δ, d > |= φ and < δ, d > |= ψ (3)

< δ, d > |= φ ∨ ψ iff < δ, d > |= φ or < δ, d > |= ψ (4)

< δ, d > |= φ→ ψ iff not < δ, d > |= φ or < δ, d > |= ψ (5)

< δ, d > |= φ↔ ψ iff < δ, d > |= φ→ ψ and < δ, d > |= ψ → φ (6)

< δ, d > |= φ iff not < δ, d > |= φ (7)

< δ, d > |= ∃xiφ iff < δ, d > |= φ[xi/aj ] for some aj ∈ δ (8)

< δ, d > |= ∀xiφ iff < δ, d > |= φ[xi/aj ] for each aj ∈ δ (9)

where [xi/aj ] means the instantiation of the free variable xi by aj .

The above semantics does not immediately suggest a query evaluation method.3

In relational databases, the above would suggest a query evaluation, because in
the last two rules we clearly need to consider a finite number of cases, but we
cannot rely on this finiteness in constraint databases. However, the following
alternative semantics, that is equivalent to the above, is discussed in [29, 30]:

Let φ(x1, . . . , xm) be a relational calculus formula with free variables x1, . . . , xm.
Let relation symbolsR1,. . . ,Rn in φ be assigned the generalized relations r1, . . . , rn
respectively. Let φ1 = φ[R1/Fr1

, . . . , Rn/Frn
] be the formula that is obtained by

replacing in φ each relation symbol Ri(z1, . . . , zk) by the formula

Fri
[x1/z1, . . . , xk/zk]

where Fri
(x1, . . . , xk) is the formula associated with ri. Note that φ1 is a simple

first order formula of constraints, that is, it does not have any of the relation
symbols Ri in it, hence d is no longer relevant in checking the satisfaction of φ1.
The output database of φ on input database r1, . . . , rn is the relation

rout = {(a1, . . . , am) : < δ > |= φ1(a1, . . . , am)}.

The above is a possibly infinite relation that needs to be also finitely represented.

3 This semantic definition closely follows the usual definition of the semantics of rela-
tional calculus queries on relational databases. Indeed, the only difference is that in
rule (4) the usual statement is that (a1, . . . , ak) is a tuple in the relation or “a row
in the table” instead of the tuple satisfying a formula.



Such a finite representation can be found by quantifier elimination. For the
goal of quantifier elimination is to find a quantifier-free formula F1 that has the
same models as φ1 has [16]. That is,

rout = {(a1, . . . , am) : < δ > |= F1(a1, . . . , am)}.

Hence the alternative semantic definition yields an effective method for query
evaluation based on quantifier elimination. Moreover, F1 can be put into a DNF
to preserve the representation of constraint relations.

The above general approach to query evaluation also applies when the input
relations are described by linear cardinality constraints in atomic Boolean alge-
bras of sets. In particular, the existential quantifier elimination in Theorem 2
and the universal quantifier elimination in Theorem 3 can be used to evaluate
relational calculus queries.

Theorem 4. Relational calculus queries on constraint relations that are de-
scribed using quantifier-free Boolean linear cardinality constraint formulas can
be evaluated in closed-form. ut

Example 10. Each strand of a DNA can be considered as a string of four letters:
A, C, G, and T . In bioinformatics, we often have a set of probes, which are
small already sequenced fragments from different already known parts of a long
DNA string. For example, one probe may be located from the first to the tenth
location on the long DNA strand and be the following:

C A T C G A T C T C

Another may be located between the eighth and 20th and be the following:

C T C G G G A G G G A T C

and so on.

Each of these probes can be represented inBZ as a tuple of sets (xA, xC , xG, xT ),
where xA, xC , xG, and xT are the positions where A, C, G, and T occur, re-
spectively. Hence the first probe can be represented by:

({2, 6}, {1, 4, 8, 10}, {5}, {3, 7, 9})

while the second probe can be represented by:

({14, 18}, {8, 10, 20}, {11, 12, 13, 15, 16, 17}, {9, 19})

Suppose we have a large number of probe data in a relation Probe(xA, xC , xG, xT ),
and we’d like to reconstruct the long DNA strand using the probe data. There
may be some errors in the sequencing information, for example, a letter A on
the DNA may be incorrectly indicated as C in the probe data. Suppose we are
satisfied with a 95 percent accuracy regarding the probe data. Suppose also,



that we know that the long DNA sequence contains between 5000 and 6000 let-
ters. The following relational calculus query finds possible long DNA sequences
(yA, yC , yG, yT ) that contain each probe with at least a 95 percent accuracy.

(|yA ∪ yC ∪ yG ∪ yT | − |yA| − |yC | − |yG| − |yT | = 0) ∧
(|yA ∪ yC ∪ yG ∪ yT | ≥ 5000) ∧
(|yA ∪ yC ∪ yG ∪ yT | ≤ 6000) ∧
(∀xA, xC , xG, xT (Probe(xA, xC , xG, xT ) →

|xA ∩ yA| + |xC ∩ yC | + |xG ∩ yG| + |xT ∩ yT | ≥ 0.95 |xA ∪ xC ∪ xG ∪ xT |))

In the above the solution is (yA, yC , yG, yT ), which we can get by eliminating
the universally quantified variables xA, xC , xG, xT . The first line ensures that
the four sets yA, yC , yG, yT are disjoint. If they are disjoint, then the length of
the solution is: |yA ∪ yC ∪ yG ∪ yT |, which is restricted to be between 5000 and
6000 letters in the second and third lines of the relational calculus query. The
fourth and fifth lines express that for each probe its overlap with the solution
(left hand side of the cardinality constraint) must be greater than or equal to 95
percent of the length of the probe (right hand side).

We also need to check that the solution is a continuous sequence, that is,
there are no gaps. We can do that by defining an input relation Order(x, z),
which will contain all tuples of the form ({i}, {j}) such that 1 ≤ i ≤ j ≤ 6000
and i, j ∈ N . Then the following relational calculus formula tests whether the
solution is a continuous sequence:

∃z ∀x Order(x, z) ↔ |x ∩ (yA ∪ yC ∪ yG yT )| = 1

The formula says that there must be a last element z in the solution, such that
any x is an element of the solution, if and only if it is less than or equal to z. ut

5 Conclusions and Future Work

Quantifier elimination from Boolean linear cardinality constraint formulas by
reduction to quantifier elimination in Presburger arithmetic is a new approach.
The complexity of the quantifier elimination needs to be investigated. Especially
the handling of (atomic) constants may be simplified.

It is also interesting to look at more complex cardinality constraints. For
example, one cannot express using only linear cardinality constraints that the
cardinality of set A is always the square of the cardinality of set B. We avoided
such constraints, because even existential quantifier elimination from integer
polynomial equations is unsolvable in general [34]. However, with restrictions on
the number of variables we may have an interesting solvable problem.

Example 10 shows that relational calculus with Boolean linear cardinality
constraints can handle some string problems. It is interesting to compare this in
expressive power and computation complexity with query languages for string
databases. Grahne et al. [22] proposed an extension of relational calculus with
alignment operators for string databases, but the evaluation of their query lan-
guage is unsolvable in general [22]. Benedikt et al [5] proposed several other



extensions of relational calculus with various string operators. They show that
the language Slen with only the prefix, the concatenation of a single character of
the alphabet (at the end of a string), and the test-of-equal-length operators on
strings does not admit quantifier elimination, although some weaker logics have
quantifier elimination.

Finally, there are many practical implementation questions, for example,
defining algebraic operators for query evaluation, data structures for represent-
ing the Boolean linear cardinality constraints, indexing for fast retrieval, and
other issues of query optimization.

Acknowledgment: I thank the conference organizers, especially András Benczur,
for encouraging submission of this paper.
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