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ABSTRACT 
The rapidly growing amount of ancient human genetic data 
enables the tracking of the spread of human populations over 
time. However, several challenges that need new solutions in 
order to most effectively mine the available data. We introduce an 
efficient algorithm that generates a last genetic contact tree for a 
set of populations. The computation complexity of the algorithm 
is shown to be 𝑂 𝑛!  where n is the number of populations. The 
algorithm requires a preprocessing time to set up a similarity 
matrix.  

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences – 
biology and genetics  

General Terms 
Algorithms;  theory. 

Keywords 
Clustering; last genetic contact; phylogenetic tree; population 
genetics; similarity matrix. 

 

1. INTRODUCTION 
Phylogenetic tree construction algorithms [1, 3, 4], including 
UPGMA [12], Neighbor Joining [10] and our CMSM (Common 
Mutations Similarity Matrix) [6] phylogenetic tree algorithm, are 
frequently used to analyze the evolutionary relationships among a 
set of genomes based on a growing number of gene and protein 
databases [2, 5, 11, 13].  However, these phylogenetic algorithms 
cannot be applied to cases when we need to consider the 
evolutionary relationship of a set of populations, where each 
population is a set of heterogeneous genomes. That is because in a 
phylogenetic tree the leaves are individual genomes instead of a 
set of genomes.  

It is tempting to try to reduce the problem of dealing with a set of 

populations to the problem of dealing with a set of genomes by 
simply selecting a single representative genome from each 
population. However, the task of finding representatives of 
different human populations is hard because human populations 
are genetically heterogeneous. 

Hence we cannot find a good representative for each population 
and then compare just those representatives to see the relatedness 
of the various populations. To efficiently analyze the evolutionary 
relationship among a set of heterogeneous populations requires a 
more sophistical algorithmic approach than the ones provided by 
the current phylogenetic tree generation algorithms. 

In a preliminary work on this subject, we proposed comparing 
mitochondrial DNA (mtDNA) population samples by taking the 
pairs that have the most number of matching level [14]. For 
example, H4a and H4b2 have two levels in common, that is, H4 is 
the common part. However, in this paper we use a more natural 
similarity of two haplogroups by considering the number of 
mutations that they share. In addition, we develop in this paper a 
novel last genetic contact algorithm that can generate a tree for a 
set of human populations. In this tree, each leaf represents a 
population, and closer leaves have had more recent genetic 
contact than leaves that are further apart.   

This paper is organized as follows. Section 2 describes the last-
genetic-contact algorithm and analyzes its computational 
complexity. Section 3 gives some conclusions and future work. 

2. THE LAST GENETIC CONTACT TREE 
GENERATION ALGORITHM  
Behind our algorithm the main intuition, which we explain by 
choosing mtDNAs, is the following. Suppose that some ancestor 
human population A at some point of time contains mtDNA 
haplogroups h1, h2, … , hn, and splits into two subpopulations B 
and C. Then populations B and C can be expected to originally 
contain the same set of haplogroups. However, these haplogroups 
will gradually diverge from each other due to random mutations 
and evolutionary change. The more time passes, the more distant 
even the closest pair of haplogroups in B and C become. This can 
be measured as follows. 
 
Let the Hamming Distance, or HD for short, be the number of 
mutations by which two mtDNA haplogroups differ.  These 
mutations can be random changes of nucleotides or deletions or 
insertions. Then we define the overall distance between two 
populations B and C as follows:  

𝐷𝑖𝑠𝑡 𝐵,𝐶 =  𝑀𝑖𝑛 {𝐻𝐷 ℎ! , ℎ! ∶   ℎ!  ∈ 𝐵,   ℎ! ∈ 𝐶} 
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where each hk is some mtDNA haplogroup of some sample.  
 
If B and C move to different areas, then they incorporate new 
haplogroups. We can expect these new haplogroups to pay no role 
in defining Dist(B,C) because the newly incorporated haplogroups 
are likely to be greatly different from each other.  
 
For example, suppose that the original population A is the British 
population of the past, population B is the present population of a 
former British colony in Africa, and population C is the present 
population of a former British colony in Asia. Then in any small 
sample of the populations, Dist(B, C) can be expected to depend 
on the closeness of some pair of British-origin genes in B and C 
rather than a pair of indigenous African and Asian genes. 
Moreover, Dist(B, C) gives an estimate when the colonization 
ended because since then relatively few people moved from the 
UK to the former colonial territories. Moreover, the relative 
percentage of the indigenous African and the indigenous Asian 
population to the percentage of British-origin population does not 
effect the Dist(B, C) measure as long as the samples of B and C 
contain enough British-origin genes.  
 
While distance matrices are used by UPGMA, our last genetic 
contact (LGC) algorithm uses instead a type of similarity matrix. 
We set up the similarity matrix as follows. Suppose we have a 
common origin for all mtDNA samples in all the populations that 
we consider. For instance, haplogroup N* may be the common 
origin of all the samples we use. We count from this common 
ancestor the number of mutations on which two mtDNA samples 
agree. For example, a K1b1a1 and a K1b1a2 haplogroup share the 
K1b1a haplogroup, which has 27 common mutations from the 
root N*. We denote this as ComMut(K1b1a1, K1b1a2) = 27. We 
define the similarity between two different populations B and C as 
follows: 

 
𝑆𝑖𝑚 𝐵,𝐶 =  𝑀𝑎𝑥 𝐶𝑜𝑚𝑀𝑢𝑡 ℎ! , ℎ! ∶   ℎ!  ∈ 𝐵,   ℎ! ∈ 𝐶  
 

Hence for each pair of populations we find the highest number of 
mutations on which any pair of haplogroup samples from both 
populations agrees. The algorithm takes as input S and a similarity 
matrix M, where 𝑀 𝑖, 𝑗 = 𝑆𝑖𝑚 𝑃! ,𝑃!  when 𝑖 ≠ 𝑗 and 
𝑀 𝑖, 𝑗 = 0 otherwise. The algorithm is as follows: 

ALGORITHM Last-Genetic-Contact(S, M) 
1 Create an independent node Ni for each population Si in S.. 
2 Let N = { Nk : 1 ≤ k ≤ n }. 
3 While (N is not empty) Do 
4        Find 𝑃! and 𝑃! in S such that 𝑆𝑖𝑚(𝑃!  ,𝑃!) is maximum.  
5        Merge the nodes 𝑁! and 𝑁! associated with 𝑃!  and 𝑃!,  
          creating a parent node 𝑁!" with children 𝑁! and 𝑁!.  

6       𝑁 = 𝑁 − 𝑁! ,𝑁!  ∪  𝑁!"  

7        Update the similarity matrix by deleting the rows and the 
columns associated with 𝑃!  and 𝑃! and creating new row for 𝑃!" 
and a new column for 𝑃!", which represent the merge of 𝑃!  and 𝑃!. 
Let the merged entry be in column c. Then for all remaining rows 
and columns indexed by k we have: 

𝑀 𝑐, 𝑘 =  𝑀𝑎𝑥(𝑀 𝑖, 𝑘 ,𝑀[𝑗, 𝑘])   and  

𝑀 𝑘, 𝑐 =  𝑀𝑎𝑥(𝑀 𝑘, 𝑖 ,𝑀 𝑘, 𝑗 ) 

8 End-While 
9 Return the tree generated 

Theorem 1 The Last-Genetic-Contact algorithm runs in O(n3) 
computational time complexity for an input matrix of size n × n 
with n number of populations that were sampled.  

3. CONCLUSIONS AND FUTURE WORK 
In the future we plan to apply our last genetic contact algorithm to 
the study of the spread of ancient human populations using 
samples in: http://www.ancestraljourneys.org/ancientdna.shtml. 
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