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ABSTRACT 

In this paper, we introduce a new evolutionary tree algorithm that 

is based on common mutations similarity matrices instead of 

distance matrices. 

Categories and Subject Descriptors 

E.1 [Data Structures]: Graphs and Networks. 

F.2.2  [Nonnumerical Algorithms and Problems]: Computations 

on Discrete Structures. 

General Terms 

Algorithms, Measurement, Performance, Theory. 

Keywords 

Common mutations similarity matrix, data structure, distance 

matrix, evolutionary tree, phylogenetic tree. 

1. INTRODUCTION 
Constructing hypothetical evolutionary trees for a set of 

genetically related DNA strings, a set of proteins within a protein 

family, or other related identifiers is a particular clustering or 

classification problem that occurs frequently in computational 

biology in various forms [1, 2, 3, 4, 5, 6]. The reconstruction of 

the evolutionary trees is commonly based on some kind of 

distance matrix [1].  

For example, consider the following seven DNA sequences, 

S1…S7, each with a length fifteen nucleotides displayed by groups 

of five nucleotides per column in table below: 

S1 AGCTA CTAGT AATCA 

S2 AGCTA CGAGT AATCA 

S3 ATCCA CTAGT ACACT 

S4 ATCCA CTAGT ATACT 

S5 CGGTA TTTGT AAGCT 

S6 CGGTT CATCA AATGC 

S7 AGGTA CTTGA AATCC 

Let Si[k] denote the kth nucleotide of Si. The Hamming distance 

between two DNA sequences Si and Sj each with length n, denoted 

δ(Si,Sj), is defined as the number of corresponding nucleotide pairs 

that are different, that is, Σ1 ≤ k ≤ n Si [k] ≠ Sj[k]. 
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For example, δ(S1,S2) = 1 because S1[7] = T while S2[7] = G. For 

the above set of DNA sequences the following distance matrix, 

denoted D, can be generated using Hamming distances: 

 S1 S2 S3 S4 S5 S6 S7 

S1 0 1 5 5 6 9 4 

S2 1 0 6 6 7 8 5 

S3 5 6 0 1 8 13 8 

S4 5 6 1 0 8 13 8 

S5 6 7 8 8 0 8 5 

S6 9 8 13 13 8 0 5 

S7 4 5 8 5 5 5 0 

Evolutionary tree construction algorithms generally start from 

such a matrix to recursive combine pairs of sequences (rows and 

columns) until only a single combined sequence remains. For 

example, the UPGMA (unweighted pair group method with 

arithmetic mean) [6] method would always search for the closest 

pairs to combine. When several pairs are equally distant, then an 

arbitrary choice is made. In this case, the closest pairs are S1 and 

S2 and S3 and S4 because δ(S1,S2) = 1 and δ(S3,S4) = 1. 

Combining the first pair gives: 

 S12 S3 S4 S5 S6 S7 

S12 0 5.5 5.5 6.5 8.5 4.5 

S3 5.5 0 1 8 13 8 

S4 5.5 1 0 8 13 8 

S5 6.5 8 8 0 8 5 

S6 8.5 13 13 8 0 5 

S7 4.5 8 5 5 5 0 

 

Then combining the second pair gives: 

 S12 S34 S5 S6 S7 

S12 0 5.5 6.5 8.5 4.5 

S34 5.5 0 8 13 6.5 

S5 6.5 8 0 8 5 

S6 8.5 13 8 0 5 

S7 4.5 6.5 5 5 0 



Next S12 and S7 would be combined because they are the closest 

pair of sequences according to the distance matrix. The neighbor-

joining method is a more sophisticated and commonly used 

method that is also based on distance matrices [5].  

2. EVOLUTIONARY TREE ALGORITHM 

2.1 Common Mutations Similarity Matrix 
As a departure from distance matrices, we introduce a common 

mutations similarity matrix. The motivation behind looking for 

common mutations is that in practice rare but shared features, 

such as rare mutations, are often provide useful marker of 

similarity among a set of closely related items. Moreover, if 

mutations are rare, then it may be more efficient to count their 

occurrences than finding the Hamming distances for long 

sequences.  Assuming that the seven DNA sequences are related, 

we can find the most likely common ancestor sequence, denoted 

µ, as the mode of each column. If there is no most frequent 

nucleotide in each column, then we arbitrarily chose one of the 

most frequent.    

S1 AGCTA CTAGT AATCA 

S2 AGCTA CGAGT AATCA 

S3 ATCCA CTAGT ACACT 

S4 ATCCA CTAGT ATACT 

S5 CGGTA TTTGT AAGCT 

S6 CGGTT CATCA AATGC 

S7 AGGTA CTTGA AATCC 

µ AGCTA CTAGT AATCT 

It can be assumed that in each sequence Si those nucleotides that 

do not match the corresponding nucleotide in µ were mutated at 

some point during evolution. These nucleotides are underscored 

in the above table. Intuitively, the more common mutations two 

sequences Si and Sj share, the closer they are likely to be in an 

evolutionary tree. For the above set of sequences, the common 

mutations matrix is the following: 

 S1 S2 S3 S4 S5 S6 S7 

S1 0 1 0 0 0 0 0 

S2 1 0 0 0 0 0 0 

S3 0 0 0 3 0 0 0 

S4 0 0 3 0 0 0 0 

S5 0 0 0 0 0 3 2 

S6 0 0 0 0 3 0 4 

S7 0 0 0 0 2 4 0 

 

According to the common similarity matric the closest pair of 

sequences is S6 and S7. Hence these will be merged. When we 

merge two sequences Si and Sj, in the merged sequence the kth 

element will be equal to the nucleotide in the two sequences if 

Si[k] = Sj[k] and will be equal µ[k] otherwise. Hence the matrix of 

sequences will be updated as follows: 

S1 AGCTA CTAGT AATCA 

S2 AGCTA CGAGT AATCA 

S3 ATCCA CTAGT ACACT 

S4 ATCCA CTAGT ATACT 

S5 CGGTA TTTGT AAGCT 

S67 AGGTA CTTGA AATCC 

µ AGCTA CTAGT AATCT 

 

2.2 A New Evolutionary Tree Algorithm 
Our new evolutionary tree algorithm based on common mutations 

similarity matrices CMSM is described as follows.  

  ALGORITHM CMSM(S1…Sn, n) 

  1 Form n clusters of sequences, each with a single sequence. 

  2 Find the putative common ancestor µ of the sequences. 

  3 Construct a graph T with a node for each n cluster and for µ. 

  4 While (there is more than one cluster) 

  5            Find the common mutations similarity matrix. 

  6           If (common mutations similarity matrix has non-0 entry) 

  7        Merge a closest pair Si and Sj into a new cluster Sij 

  8                     and create a node for Sij. 

  9     Connect the nodes for Si and Sj with parent node Sij. 

10          Else 

11                Connect the remaining clusters’ nodes to parent µ. 

11                Return T. 

12 Return T. 

2.3 Example 
Let us consider now the algorithm for the example that we started 

above. After merging S6 and S7 into a cluster, in the next iteration 

of the while loop, the algorithm updates the common mutations 

matrix as follows: 

 S1 S2 S3 S4 S5 S67 

S1 0 1 0 0 0 0 

S2 1 0 0 0 0 0 

S3 0 0 0 3 0 0 

S4 0 0 3 0 0 0 

S5 0 0 0 0 0 2 

S67 0 0 0 0 2 0 

Next merging the closest pair, S3 and S4, yields: 

S1 AGCTA CTAGT AATCA 

S2 AGCTA CGAGT AATCA 

S34 ATCCA CTAGT AAACT 

S5 CGGTA TTTGT AAGCT 

S67 AGGTA CTTGA AATCC 

µ AGCTA CTAGT AATCT 

The updated common mutations matrix will be: 



 S1 S2 S34 S5 S67 

S1 0 1 0 0 0 

S2 1 0 0 0 0 

S34 0 0 0 0 0 

S5 0 0 0 0 2 

S67 0 0 0 2 0 

Next merging the closest pair, S5 and S67, yields: 

S1 AGCTA CTAGT AATCA 

S2 AGCTA CGAGT AATCA 

S34 ATCCA CTAGT AAACT 

S567 AGGTA CTTGT AATCT 

µ AGCTA CTAGT AATCT 

The updated common mutations matrix will be: 

 S1 S2 S34 S567 

S1 0 1 0 0 

S2 1 0 0 0 

S34 0 0 0 0 

S567 0 0 0 0 

Next merging the closest pair, S1 and S2, yields: 

S12 AGCTA CTAGT AATCA 

S34 ATCCA CTAGT AAACT 

S567 AGGTA CTTGT AATCT 

µ AGCTA CTAGT AATCT 

The updated common mutations matrix will be: 

 S12 S34 S567 

S12 0 0 0 

S34 0 0 0 

S567 0 0 0 

Finally, these can be interpreted as being separate branches all 

descendent from the common ancestor sequence µ. Hence in the 

else clause, the new algorithm connects the remaining clusters’s 

nodes to µ and generates the following hypothetical evolutionary 

tree: 

 

 

 

1      2       3      4        5         6      7 

|____|        |____|         |          |____| 

  12             34             |_______67 

   |_________|__________567 

                     | 

                     µ 

Note that this tree is different from the tree that would be 

generated by the UPGMA algorithm.  

2.4 Computational Complexity 
The computational complexity of the algorithm can be kept low if 

we set up a data structure that keeps a list of all mutations for each 

cluster. Then when merging clusters, then we need to compute 

only the intersection of the lists associated with the two child 

clusters. 
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