
An Algorithm for Constructing Hypothetical Evolutionary
Trees Using Common Mutations Similarity Matrices

Peter Z. Revesz
Department of Computer Science and

Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588
1 571 201 5639

revesz@cse.unl.edu

ABSTRACT

In this paper, we introduce a new evolutionary tree algorithm that

is based on common mutations similarity matrices instead of

distance matrices.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and Networks.

F.2.2 [Nonnumerical Algorithms and Problems]: Computations

on Discrete Structures.

General Terms

Algorithms, Measurement, Performance, Theory.

Keywords

Common mutations similarity matrix, data structure, distance

matrix, evolutionary tree, phylogenetic tree.

1. INTRODUCTION
Constructing hypothetical evolutionary trees for a set of

genetically related DNA strings, a set of proteins within a protein

family, or other related identifiers is a particular clustering or

classification problem that occurs frequently in computational

biology in various forms [1, 2, 3, 4, 5, 6]. The reconstruction of

the evolutionary trees is commonly based on some kind of

distance matrix [1].

For example, consider the following seven DNA sequences,

S1…S7, each with a length fifteen nucleotides displayed by groups

of five nucleotides per column in table below:

S1 AGCTA CTAGT AATCA

S2 AGCTA CGAGT AATCA

S3 ATCCA CTAGT ACACT

S4 ATCCA CTAGT ATACT

S5 CGGTA TTTGT AAGCT

S6 CGGTT CATCA AATGC

S7 AGGTA CTTGA AATCC

Let Si[k] denote the kth nucleotide of Si. The Hamming distance

between two DNA sequences Si and Sj each with length n, denoted

δ(Si,Sj), is defined as the number of corresponding nucleotide pairs

that are different, that is, Σ1 ≤ k ≤ n Si [k] ≠ Sj[k].

Copyright is held by author/owner(s)

BCB ’13, September 22 - 25, 2013, Washington, DC, USA

ACM 978-1-4503-2434-2/13/09.

For example, δ(S1,S2) = 1 because S1[7] = T while S2[7] = G. For

the above set of DNA sequences the following distance matrix,

denoted D, can be generated using Hamming distances:

 S1 S2 S3 S4 S5 S6 S7

S1 0 1 5 5 6 9 4

S2 1 0 6 6 7 8 5

S3 5 6 0 1 8 13 8

S4 5 6 1 0 8 13 8

S5 6 7 8 8 0 8 5

S6 9 8 13 13 8 0 5

S7 4 5 8 5 5 5 0

Evolutionary tree construction algorithms generally start from

such a matrix to recursive combine pairs of sequences (rows and

columns) until only a single combined sequence remains. For

example, the UPGMA (unweighted pair group method with

arithmetic mean) [6] method would always search for the closest

pairs to combine. When several pairs are equally distant, then an

arbitrary choice is made. In this case, the closest pairs are S1 and

S2 and S3 and S4 because δ(S1,S2) = 1 and δ(S3,S4) = 1.

Combining the first pair gives:

 S12 S3 S4 S5 S6 S7

S12 0 5.5 5.5 6.5 8.5 4.5

S3 5.5 0 1 8 13 8

S4 5.5 1 0 8 13 8

S5 6.5 8 8 0 8 5

S6 8.5 13 13 8 0 5

S7 4.5 8 5 5 5 0

Then combining the second pair gives:

 S12 S34 S5 S6 S7

S12 0 5.5 6.5 8.5 4.5

S34 5.5 0 8 13 6.5

S5 6.5 8 0 8 5

S6 8.5 13 8 0 5

S7 4.5 6.5 5 5 0

Next S12 and S7 would be combined because they are the closest

pair of sequences according to the distance matrix. The neighbor-

joining method is a more sophisticated and commonly used

method that is also based on distance matrices [5].

2. EVOLUTIONARY TREE ALGORITHM

2.1 Common Mutations Similarity Matrix
As a departure from distance matrices, we introduce a common

mutations similarity matrix. The motivation behind looking for

common mutations is that in practice rare but shared features,

such as rare mutations, are often provide useful marker of

similarity among a set of closely related items. Moreover, if

mutations are rare, then it may be more efficient to count their

occurrences than finding the Hamming distances for long

sequences. Assuming that the seven DNA sequences are related,

we can find the most likely common ancestor sequence, denoted

µ, as the mode of each column. If there is no most frequent

nucleotide in each column, then we arbitrarily chose one of the

most frequent.

S1 AGCTA CTAGT AATCA

S2 AGCTA CGAGT AATCA

S3 ATCCA CTAGT ACACT

S4 ATCCA CTAGT ATACT

S5 CGGTA TTTGT AAGCT

S6 CGGTT CATCA AATGC

S7 AGGTA CTTGA AATCC

µ AGCTA CTAGT AATCT

It can be assumed that in each sequence Si those nucleotides that

do not match the corresponding nucleotide in µ were mutated at

some point during evolution. These nucleotides are underscored

in the above table. Intuitively, the more common mutations two

sequences Si and Sj share, the closer they are likely to be in an

evolutionary tree. For the above set of sequences, the common

mutations matrix is the following:

 S1 S2 S3 S4 S5 S6 S7

S1 0 1 0 0 0 0 0

S2 1 0 0 0 0 0 0

S3 0 0 0 3 0 0 0

S4 0 0 3 0 0 0 0

S5 0 0 0 0 0 3 2

S6 0 0 0 0 3 0 4

S7 0 0 0 0 2 4 0

According to the common similarity matric the closest pair of

sequences is S6 and S7. Hence these will be merged. When we

merge two sequences Si and Sj, in the merged sequence the kth

element will be equal to the nucleotide in the two sequences if

Si[k] = Sj[k] and will be equal µ[k] otherwise. Hence the matrix of

sequences will be updated as follows:

S1 AGCTA CTAGT AATCA

S2 AGCTA CGAGT AATCA

S3 ATCCA CTAGT ACACT

S4 ATCCA CTAGT ATACT

S5 CGGTA TTTGT AAGCT

S67 AGGTA CTTGA AATCC

µ AGCTA CTAGT AATCT

2.2 A New Evolutionary Tree Algorithm
Our new evolutionary tree algorithm based on common mutations

similarity matrices CMSM is described as follows.

 ALGORITHM CMSM(S1…Sn, n)

 1 Form n clusters of sequences, each with a single sequence.

 2 Find the putative common ancestor µ of the sequences.

 3 Construct a graph T with a node for each n cluster and for µ.

 4 While (there is more than one cluster)

 5 Find the common mutations similarity matrix.

 6 If (common mutations similarity matrix has non-0 entry)

 7 Merge a closest pair Si and Sj into a new cluster Sij

 8 and create a node for Sij.

 9 Connect the nodes for Si and Sj with parent node Sij.

10 Else

11 Connect the remaining clusters’ nodes to parent µ.

11 Return T.

12 Return T.

2.3 Example
Let us consider now the algorithm for the example that we started

above. After merging S6 and S7 into a cluster, in the next iteration

of the while loop, the algorithm updates the common mutations

matrix as follows:

 S1 S2 S3 S4 S5 S67

S1 0 1 0 0 0 0

S2 1 0 0 0 0 0

S3 0 0 0 3 0 0

S4 0 0 3 0 0 0

S5 0 0 0 0 0 2

S67 0 0 0 0 2 0

Next merging the closest pair, S3 and S4, yields:

S1 AGCTA CTAGT AATCA

S2 AGCTA CGAGT AATCA

S34 ATCCA CTAGT AAACT

S5 CGGTA TTTGT AAGCT

S67 AGGTA CTTGA AATCC

µ AGCTA CTAGT AATCT

The updated common mutations matrix will be:

 S1 S2 S34 S5 S67

S1 0 1 0 0 0

S2 1 0 0 0 0

S34 0 0 0 0 0

S5 0 0 0 0 2

S67 0 0 0 2 0

Next merging the closest pair, S5 and S67, yields:

S1 AGCTA CTAGT AATCA

S2 AGCTA CGAGT AATCA

S34 ATCCA CTAGT AAACT

S567 AGGTA CTTGT AATCT

µ AGCTA CTAGT AATCT

The updated common mutations matrix will be:

 S1 S2 S34 S567

S1 0 1 0 0

S2 1 0 0 0

S34 0 0 0 0

S567 0 0 0 0

Next merging the closest pair, S1 and S2, yields:

S12 AGCTA CTAGT AATCA

S34 ATCCA CTAGT AAACT

S567 AGGTA CTTGT AATCT

µ AGCTA CTAGT AATCT

The updated common mutations matrix will be:

 S12 S34 S567

S12 0 0 0

S34 0 0 0

S567 0 0 0

Finally, these can be interpreted as being separate branches all

descendent from the common ancestor sequence µ. Hence in the

else clause, the new algorithm connects the remaining clusters’s

nodes to µ and generates the following hypothetical evolutionary

tree:

1 2 3 4 5 6 7

|____| |____| | |____|

 12 34 |_______67

 |_________|__________567

 |

 µ

Note that this tree is different from the tree that would be

generated by the UPGMA algorithm.

2.4 Computational Complexity
The computational complexity of the algorithm can be kept low if

we set up a data structure that keeps a list of all mutations for each

cluster. Then when merging clusters, then we need to compute

only the intersection of the lists associated with the two child

clusters.

3. ACKNOWLEDGMENTS
Peter Z. Revesz is currently on leave from the University of

Nebraska-Lincoln and is an AAAS Science & Technology Policy

Fellow and serves as a Program Manager in the U.S. Air Force

Office of Scientific Research (AFOSR), a basic research funding

agency of the federal government. The current work was not

supported by AFOSR, and the views and opinions expressed in

this publication are those of the author and do not necessarily

reflect the official policy or positionof the U.S. government.

4. REFERENCES
[1] Revesz, P. Z. 2010. Introduction to Databases: From

Biological to Spatio-Temporal, Springer.

[2] Revesz, P. Z. and Assi, C. J.-L. 2013. Data mining the

functional characterizations of proteins to predict their

cancer relatedness. International Journal of Biology and

Biomedical Engineering, 7 (1), 7-14.

[3] Revesz, P. Z. and Triplet, T. 2010. Classification integration

and reclassification using constraint databases. Artificial

Intelligence in Medicine, 49 (2), 79-91.

[4] Revesz P. Z. and Triplet, T. 2011.Temporal data

classification using linear classifiers, Information Systems,

36 (1), 30-41.

[5] Saitou, N. and Nei, M. 1987. The neighbor-joining method:

A new method for reconstructing phylogenetic trees.

Molecular Biological Evolution, 4, 406-425.

[6] Sokal, R. R. and Michener, C. D. 1958. A statistical method

for evaluating systematic relationships. University of Kansas

Science Bulletin, 38, 1409-1438.

