MLPQ/PReSTO Users' Manual

Peter Revesz
University of Nebraska-Lincoln

revesz@cse.unl.edu

November 18, 2004

The MLPQ/PReSTO system is a constraint database system developed at the University of
Nebraska-Lincoln. MLPQ stands for Management of Linear Programming Queries and PReSTO
stands for Parametric Rectangles Spatio-Temporal Objects. These were formerly two separate
systems that were combined into one system.

The executable file of the MLPQ/PReSTO system, running Microsoft 2000, and all the sample text
files listed in the appendix of this document are available free as down-loadable files from the
webpage: http: //www.cse.unl.edu/~revesz. The webpage also contains a list of publications
related to the MLPQ/PReSTO system.

The MLPQ/PReSTO system is a complex system that enables you to do a range of applications
from basic relational databases, to constraint databases, GIS databases, and web applications. The
Users' Manual is organized according to the following table of contents.

Acknowlegements: Partial funding for developing the MLPQ/PReSTO system was provided by
the United States National Science Foundation under grants IRI-9625055, IRI-9632871, and EIA-
0091530. The following students made major contributions to this project: Scot Anderson, Brian
Boon, Mengchu Cai, Rui Chen, Pradip Kanjamala, Yiming Li, Yugou Liu, Syed Mohiuddin, Tim
Perrin, Yonghui Wang, and Shasha Wu. Many other students in the database systems classes at
the University of Nebraska-Lincoln made additional contributions by noticing and/or debugging
particular features.

http://www.cse.unl.edu/~revesz
mailto:revesz@cse.unl.edu

CONTENTS

PART 1. RELATIONAL DATABASES 3
1.1 DATABASE DEFINITION TLANGUAGE ..ttt e e ee e e e e e e oot et e ettt et eeeeeeeeeeeeeeeeeeeeeeeeess 3
1.2 SOOI SYNTAX 1eteittittte ettt ettt ettt ettt eeeeeeenns 5

L.2.0 BASIC SQL oot ettt eeeeeines 6
1.2.2 SQL With AG@VOGAIION «oooooeviiiiiooiiiiiiiiiiiiiiiieeeeiieeeiieeeeeeeeenees 7
1.2.3 SQL With Set ODOYAIIONS wooooooooeeveiiiiiiieiiiiiiiiiiiiiiiiieeiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeiinnees 9
1.2.4 Nested SQL QUEFICSc..oooovviiieeiiiieiiiiieiiiieeiiieieiieeieiieeeeeee e ieeeeenes 10
1.2.5 ReCUTSIVE SQL .oovovooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeieeeeee oottt eiins 11

PART II. CONSTRAINT DATABASES 13
2.1 CONSTRAINT DATABASE DEFINITION LLANGUAGE eeiiiiiiiiiiiiiiiiiiiiiiiiiieens 13
2.2 SQL IN CONSTRAINT D ATABASES ..uuuuuteuteeteeeieiiieiiiiiiieieeeeeeeee ettt eeeeeeeteeeeeeeeeeeeeeeeeeeeereeeeeees 14
2.3 MILPQ OPERATORS L.vviiiiiiiiteeiiiiiiiiiteeeeeeieeeee ettt ettt ettt ettt ettt et ettt ettt ettt eeeeeeieeeeeeeeieeeeeeeeans 17

2.3.1 The Datalog Query [Dlog] Operator and Buffer[B] OPeratorccooeeeevieeeviieeiieeeieiiineeieeineeeenenen.. 17
2.3.2 The Intersection [n] Operator and Union [[]] OPEVrALOVcoovveieeeeeiieeeeiieeeiiieeiiieeiiieeeeiieennnn. 18
2.3.3 The [Max] Operator and [Min] Operator 19
2.3.4 ROCUISIVE QUEITOS +ovvvooiieeeviioiiiieeiiiiiiiieeeiiiiiieeeie oottt 20
2.3.5 Approximate OperQtor [ADX]......ooeeoeeeeeieeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiieeeieeeeeeeeeee ettt aeeeieiiiaaeaes 20
2.3.6 Delete RelQtions [DeL]........c..oooooooviieeiiiieiiiiieiiiieiiiiieiiieiiiiieiieieee e eeeeeiieeeeiieeeeans 20

PART II1. GIS/PRESTO 22

Bl GIS oo ettt 22
3.1.1 The [Line] Operator, [Rectangle] Operator and [Polygon] Operatorococeoeeeeeeeeeeeeeeiieeeeenne.... 22
3.1.2 The [Zoom In], [Z00m Qut] OPEYALOV ...oooovvooiieeoiiiiiiieeiiiiieiiiiiiiieiiieeeeieeeeeeeeeeeeeieeeeeeee e 23
3.1.3 The [AVeQ] ODEVAIOV wooovvvoieooiioveiiiiiiioiiieiiiieiiieeiieeeieeeeeeee e ieeeeeieeeeeeeeiieeeeiineeeines 23
3.1.4: The [Set] Operator and [Color Relation] Operator for Color Bands Displa
3.1.5 The 2D Animation 24
3.1.6 The Transformation from the TIN to Constraint Databasecoocoooooeeeeviiiieeeiiieeiiiieeeiiieeeeennn.... 26
3.1.7 The Transformation from Polygon File to Constraint DAtabaseocoovveeevevveeiiveeeiiiiveeeiiieeeeennne. 27
3.1.8 The [Similarity (S)] Operator for Similarity QUEFIESooooevvvviviiiiiieeiiiiiiiiieeeiiiiiiiieieiiiiiiieeeeiiiiiennee. 27
3.1.9 QUEPVING MADS oottt ttttettttreeaeees 27
3.1.10 The [Complement (C)] ODEYQLOYooooveevieeiiiieiiiiineiiiiiiiiiiiiiiiieeiiieeeeieeeeieeeeeeeeeieeeeeeeeiieeeeenenn 28

B2 PRESTO 1iiiiiiiiiiiiiiei ettt e e e iaeeen 28
3.2.1 The [Intersection (n)] Operator and [Union ([1)] OPerarOrcoovvvvvivivioevveeiiiiiieeeeeeiiiiieeeeeeeiinnnn... 30
3.2.2 The [AVeQ] ODOFATOV wovoooooeeviiiiiiiiiiiiiiiiiiieiiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeiieeeeeeeeeenees 31
3.2.3 The [Difference (=)] OPEVAIOVccooooovviieiiieeiiieiiiieiiiieiiiieiiiieiiieeiieeeeieeeieeee et eeeeeeeeeieeeieeiieeeeaeens 31
3.2.4 The [Complement (C)] ODOFQLOVc..oooooeeeiiieeeiiieiiiiiiiiiieiiiiieiiieeieiiieeeeieeeeieeeeeeeeeieeeieeeeiieeeeiineeeinns 31
3.2.5 The Datalog Query [DIOZ] ODEVAIOV w..ccwvuvooueoiieeeiioeiiiieiiiiiieiiiiieiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeenns 31
3.2.6 The [COllide (X)] ODEVALOV oo eeeeeeeeeeeeeeeieeeeeeenn 32
3.2.7 The [BIOCk (B)] ODOFQLOV ..ot eieeieeeeneens 32
3.28 The 2D ANIMIQLION (oooovoiioiiiieeiiiiiiiiiiiiiiiieeieieee oot eeeee e eeeeeeeeeeiieeeeiieeeeians 32
3.2.9 The ExponentiQl 2D ANIIIQIION «.ocouvvvveiiiiiieeiiiiiiiieeiiiiieeieieieeiaeeeenn 33
3.2.10 The RegreSSiOn ANIMIALION .ooooooocueeieiiiiineeiiiiiiiieeiiiiiiieeiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeieeeeeeeeiinees 33

PARTIV. WEB APPLICATION 34
4.1 SYSTEM INFRASTRUCTURE Leiiiiiiiiiiiiiiiiiiiei ettt ettt e eeee e et e oottt eeee e e eeeteeeeeeeeeeeeeeees 34
4.2 COMMUNICATION PROTOCOL 1uttveeeiiiusteeieeiieteeeeeeieeteeeeeeeetee e e eeeetteeeeeeeeteeeeeeeenteee et e eeaeeeeeeeeeeteeeeeeeeeeinteeeeeeeeentaseeeeeeans 35
4.3 SAMPLE APPLICATION teiiiiiiuuuuteeeiiiiteeeeeeeeeeteeeeeee ettt eeeeeee ettt et e ee ettt et eee ettt e eeeeeeeeeeeeeeeeeteeeeeeeeeeseeeeeeeiteaeeeeeeaans 37

APPENDIX: INPUT DATABASES 42

PART 1. Relational Databases

This part describes how to implement standard relational databases in MLPQ/PReSTO.

1.1 Database Definition Language

The following is an example relational database.

Painter
| 1D '~ NAME = PHONE |
| 123 ' Ross | 888-4567
| 126 ' Ttero o 345-1122
| 234 | Picasso | 456-3345
| 335 ' OKeefe . 567-8999 |
| 456 | Miro 7777777
Painting
PNUM I TITLE . PRICE	ID		
2345	Wild Waters	245.00	126
4536	Sea Storm I 8359.00	335	
6666	Wild Waters	6799.00	234
7878 ' High Tide . 98000.00 456			
6789	Paradise ' 590000.00	234	
7896	Faded Rose	145.00	123
9889	Sunset . 975000.00	234	
Gallery			
~ PNUM	OWNER		
2345 ' Johnson			
6666 ' Johnson			
4536 ' McCloud			
7878 ' McCloud			
6789 ' Palmer			
7896 ' Palmer			
9889 ' Palmer			

How we can enter such a relational database into the MLPQ system?

MLPQ/PReSTO accepts a ". txt" file as input. The input file can be opened by going to the {File}
menu, and selecting the {Open} dialog.

In the MLPQ/PReSTO system, each input file is a set of rules bracketed by the keywords begin
and end. It has the following structure:

begin %moduleName%
A
L,

L,
end %moduleName%

where each [; is a rule or a constraint tuple, and moduleName is a string. For example, the gallery
database in MLPQ has the following format:

begin %gallery%
painter(id, name, phone) :- id=123, name="Rose", phone="888-4567".

Painting(pnum, title, price, id) :- pnum=2345, title="Wild Waters", price=245.00, id=126.
Gallery(pnum, owner) :- pnum=2345, owner="Johnson".

end %gallery%

The complete data file can be found in gallery.txt which is included in the MLPQ/PReSTO system
library.

To view the data of any relation in MLPQ system, move the mouse to point the relation you want
to check and click right button. The data of the relation will display in a dialog window as follows:

gallery.txt

| painter [5 rows]
| | [painting [7 rows)
Bl Property

painting

P title price id COMNITRAT -

2345 Wild Waters 245 126 ﬁ_
4536 Sea Storm 8359 335

EGEG Wild Waters 5799 234

a=ara=] High Tide 98000 456

6759 Faradise 590000 Zgnk

7896 Faded Rose 145 123
Sunset 275000

To change the color of each relation, move your mouse to either of the two color rectangles to the
left of the relation name and right click your mouse. A color window will appear for color
selection. The first and second color rectangles represent start color and end color respectively, if
the relation has a time variable.

usmap_info, (xt

Scale [1 rows)

HMFEIFENEN
EFFEENEN
EfEEEEEN
EEEEEEEN

EEEENT N

Cuestom colors:
.
- -

1.2 SQL Syntax

The syntax of MLPQ SQL follows the standard of SQL with some restrictions that are explained in
the subsections below.

(Those who are already familiar with SQL in another system should read these restrictions
especially carefully.)
The SQL syntax will be illustrated using the gallery.txt database. Do the following:

1. Load the gallery.txt database
2. Click [SQL] to query the database in SQL.
3. Dialog box will appear which looks like this:

SQL QUERIES E3
saL-gasic |
SOL - AGGREGATION | SOL-NESTED |
SOL - SETS | SAL -Recusion |
| Cancel |

4. Select the type of query by clicking the appropriate button. Another dialog box will appear
accordingly.

Enter the query and click [OK].

The result will be displayed in the property window.

oW

1.2.1 Basic SQL

Syntax:

SELECT clause
o Input values by the format as relation_name.attribute name. (This dot notation is always
required in MLPQ SQL)
FROM clause
o Input values as relation names.
o Must use the "as" keyword in declaring tuple variables.
WHERE clause
o Only supports conjunctive multiple conditions, and those must be separated by "," instead
of "and".
o Does not support disjunctive conditions. (Note: Disjunctions can be realized by the
"UNION" in Set Operation.)
o String constant is marked by double quotation.
o Supports only the relational operators: "=", ">", "<" ">="_ "<="

Sample Queries:
Question 1: Find the name and phone number of the painter with id 123.

Answer:
SELECT painter.name, painter.phone

FROM painter
WHERE painter.id = 123

Question 2: Find the title of the paintings in Palmer's Gallery.
Answer:

SELECT p.title
FROM gallery as g, painting as p
WHERE g.pnum =p.pnum, g.owner = "Palmer"

Figure 1.2.1 showed how to answer Question 2 by basic SQL in MLPQ.

WHERE

g.phum = p.prum, g.owner = "Palmer"

BASIC SQL X
WVIEW NAME | CluestionZ
SELECT Ip.itle
FROkM |galler_l,l az g, painting az p

Ok, Cancel Save Load | Clear |

1.2.2 SQL with Aggregation

Syntax:

VIEW NAME clause

o View name must include the new relation name and its attributes as

view_name(attributel name, attribute2 name)
SELECT clause

o Input values as Rl.attributel, R2.attribute2, OP (Rl.attribute3). The attributes can be
numerical or string, R can be different relations.

o OPcanbe " min", "max", "sum", " avg", or "count".

o "min", "max" can work on variables defined by any linear equality or inequality
constraints with numeric values. It can also work for string values with only equality
constraints.

o '"sum", "avg" require variables that have equality constraints and numeric values in each
tuple.

o "count", "sum" and "avg" work on multi-sets (sets allow repetitions of elements).

FROM clause: The same as in Basic SQL

WHERE clause: The same as in Basic SQL
GROUP BY clause
o Input value as R.attributel, R.attribute2 .
o A group by clause is required for each aggregation operator. (Hence aggregation operators
do not apply to entire relations.)
HAVING clause
o Input as another WHERE clause which will be applied on the aggregation result set.

Sample Queries:

Question 5: List the painters with the average price of their listed paintings with the average price

higher than 8000.

Answer:
VIEW NAME Q6(pname, avgp)
SELECT p2.name, avg(pl.price)
FROM painting as p1, painter as p2
WHERE pl.id =p2.id
GROUP BY p2.name
HAVING avgp > 8000

SQL AGGREGATION X

WIEW NAME |B5(pname, avap)
SELECT |p2name, avglpl.price]

FROM |painting az pl, painter as p
"WHERE pl.id=pz.id

GROUPEY |PZ.name
HEVING |avap > 8000

] 4 | Cancel | Save | Load | Clear |

Question 7: Find Picasso's most expensive painting listed.

Answer:
VIEW NAME Q7(price)
SELECT max(pl.price)
FROM painting as p1l, painter as p2
WHERE pl.id = p2.id,

p2.name = "Picasso"

X

S50L AGGREGATION

WIEW MAME |E!T-"[ma:-:pri|:e]
SELECT |ma:-:[|:u'| price]

FROM |painting az pl, painter az p2
WHERE pl.id = p2id. p2.name = "Picassa"

GROUPEY |
HEVING |

4 | Cancel | Save | Load | Clear

1.2.3 SQL with Set Operations

MLPQ allows only the UNION and the INTERSECTION set operations.
These are illustrated below.

Sample Queries:

Question 3: Find all paintings that were painted by either Itero or Picasso.
Answer:
SELECT painting.title
FROM painting, painter
WHERE painter.id = painting.id,
painter.name = "OKeefe"
UNION
SELECT painting.title
FROM painting, painter
WHERE painter.id = painting.id,
painter.name = "Picasso"

Figure 1.2.2 showed how to answer Question 3 by Set SQL in MLPQ.

S0L SETS

X

WIEW NAME |04
SELECT |painting.title

FROM |painting, painter

WHERE painter.id = painting.id, painter.name = "OF.eefe"

RELATION |[UNION -l
SELECT |painting.title

FROM |painting, pairter

WwWHERE painter.id = painting.id, painter.name = "Ficasso”

]4 Cancel ‘ Save | Load | Clear |

Question 4: Find all the owners who are also painters.
Answer:

SELECT painter.name

FROM painter

INTERSECT

SELECT gallery.owner

FROM gallery

1.2.4 Nested SQL Queries

Syntax:
o Nesting can be done only through ONE attribute.
o Keywords used: "in", "not in", "">=all", "<=all", ">= some", "<= some".
o '">=all", "<=all" can not be used for string comparison.

Sample Queries:

Question 8: Find the title and price of the most expensive painting.

10

Answer:
SELECT p.title, p.price
FROM painting as p
WHERE p.price
>=all
SELECT p.price
FROM painting as p

NESTED SQL

X)

VIEW MAME |081

SELECT |plitle. p.price

FROk |painting azp

WHERE p.price

»=al «| SELECT |pprice
FROMM |painting azp
wHERE |l

(] | Cancel Save Load Clear

1.2.5 Recursive SQL

RECURSIVE View clause
o View name must include the new relation name and its attributes as
view_name(attributel name, attribute2 name)

BASIC RULE:
o A regular SQL query on existing relations

RECURSIVE RULE:
o A regular SQL query on existing relations as well as the newly generated view relations.

Sample Queries:
Question 9: Find all ancestors of every people.

Answer:

11

VIEW ancestor(anc,chd) AS
(SELECT r.parent, r.child
FROM relation as r)
UNION
(SELECT al.anc, a2.child
FROM ancestor as al, relation as a2
WHERE al.chd = a2.parent

SOL Recursion

RECURSIVE View | ancestor{anc,chd)

A5 (basic rule)
SELECT |r.|:uar|3nl:J r.child
FROM | relation A5 v
WHERE

LIMION {recursive rule)

SELECT | al.anc, az.child

FROM | ancestor A5 al, relation A5 a2

YWHERE al.chd = 52.parent

Ik | Cancel Save Load Clear

When the OK button is clicked, a dialog will appear to ask for approximation control, which is
used to specify the recursive execution level. If you are not sure about the termination of your
query, it can be used to achieve an approximate solution to problems that do not have a finite least
fixed point solution by placing a bound on the solution. Approximation helps guarantee a result
will be obtained in situations where recursive queries may otherwise be unsafe. But if you are
confident on the termination of your query and want to return all results, please uncheck the
“Approximation” choice.

Approximation Setup El

Llze Appoximation [+

Approximation Bound ISEI

k. I Cancel |

12

PART II. Constraint Databases

2.1 Constraint Database Definition Language

In MLPQ constraint databases can be entered similarly to relational databases using linear
constraint Datalog rules in the form of Equation (4.1) in Revesz (2002) with only linear
constraints (no relations) on the right hand side.

Each linear constraint must have the form:

alX1+32X2+.+aaneb

where each @; is a constant and each X; is a variable, and @; is a relational operator of the form =,
<, >, <=, or >= and b is a constant.

Example: Consider the constraint database "regions.txt", which is included in the
MLPQ/PReSTO database library. It consists of three relations.

country(id,x,y,t) describes the set of (x, y) locations of each country with identification
number id at each year ¢, (boundaries of countries change over time.)

location(c,x,y) which describes the set of (x,)) location of cities, and

growth(t,c,p) which describes for each year ¢ and for each city c, its population p in
thousands of persons.

A sample instance of this constraint database can be entered into MLPQ/PReSTO as shown
below:

begin%Regions%

country(id,x,y,t):-id=1,x>=0, x <=4, y >=5, y <= 15, t >= 1800, t <= 1950.
country(id,x,y,t):-id=1,x>=0, x <=8, y >=5,y <= 15, t >= 1950, t <= 2000.
country(id,x,y,t):-id =2, x > =4, x <= 12, y >=5, y <= 15, t >= 1800, t <= 1950.
country(id,x,y,t):-id =2, x > =8, x <= 12, y >=5, y <= 15, t >= 1950, t <= 2000.
country(id,x,y,t):-id =3, x >=0, x <= 12, y >=0, y <= 5, t >= 1800, t <= 2000.

location(c,x,y):-x =3, y=2, c=101.
location(c,x,y):-x =7, y=3, c=102.
location(c,x,y):-x =5, y=6, c=103.
location(c,x,y):- x =7, y =10, c = 104.
location(c,x,y):- x =10,y =8, ¢=105.
location(c,x,y):-x=1, y=7, c=106.

growth(t,c,p):- ¢ = 101, p = 10000, t >=1800, t <= 2000.

13

growth(t,c,p):- ¢ =102, p = 20000, t >=1800, t <= 2000.
growth(t,c,p):- ¢ =103, p = 10000, t >=1800, t <= 2000.
growth(t,c,p):- ¢ = 104, p = 30000, t >=1800, t <= 2000.
growth(t,c,p):- ¢ = 105, p = 40000, t >=1800, t <= 2000.
growth(t,c,p):- ¢ = 106, p = 35000, t >=1800, t <= 2000.
end%Regions%

Browse the MLPQ/PReSTO database library for other examples of constraint database
instances. You can find in the appendix of this document a complete list of the names of
the constraint databases in the MLPQ/PReSTO database library.

2.2 SQL in Constraint Databases

SQL queries can also be applied in constraint databases. The MLPQ/PReSTO SQL syntax
is the same as described above for relational databases.

Query: Find all cities that in 1900 belonged to the USA and had a population of over
10000.

Click [SQL], click SQL - Basic button
In View name field enter: "cityUSA1900"
In Select field enter: "growth.c"
In From field enter: "growth, location, country"
In Where field enter: "growth.c = location.c,
location.x = country.x,
location.y = country.y,
growth.t = 1900,
growth.p > 10000,
country.id = 1, country.t = 1900"

Vi o=

6. Click [OK]
Query: Find all cities that belonged to France before belonging to the USA.

Click [SQL], click SQL - Basic button

In View name field enter: "cities"

In Select field enter: "location.c"

In From field enter: "location, country as C1, country as C2"

In Where field enter: "location.x =Cl.x,Cl.x=C2x,
location.y =Cl.y,Cl.y=C2.y,
Clid=2,C2id=1,Clt<C2t"

Vi o=

6. Click [OK]

Query: Find the region, i.e., the (x,y) locations, that belonged to at least two different
countries.

14

Click [SQL], click SQL - Basic button

In View name field enter: "differentcountries"

In Select field enter: "C1.x, C1.y"

In From field enter: "country as C1, country as C2"

In Where field enter: "Cl.x = C2.x, Cl.y = C2.y, Cl.id < C2.id"

Vi W=

6. Click [OK]

Query: Find all cities that have a population over 10000 in 2000 and a location that never

belonged to France in the past.

Click [SQL], click SQL - Nested
In View name field enter: "population”
In first Select field enter: "growth.c"
In first From field enter: "growth"
In first Where field enter: "growth.p > 10000, growth.t =2000, growth.c"
In the field after first Where filed enter: "not in"
In second Select field enter: "location.c"
In second From field enter: "location, country"
In second Where field enter: "location.x = country.x,
location.y = country.y,country.id = 2"

CRXETo W=

10. Click [OK]
Query: Find the city that belonged to the most number of countries.

Break this query into two parts
Part 1: view name as citycountries(c,namecount)
select location.c, count(country.id)
from location, country
where location.x = country.x,
location.y = country.y
group by location.c ;
Part 2:select citycountries.c
from citycountries
where citycountries.namecount >= all
(select citycountries.namecount
from citycountries)
Click [SQL], click SQL - Aggregation
Input the first query
Click [OK] to execute first part.
Click [SQL], click SQL - Nested
Input the second query
Click [OK] to execute second part.

S =

Query: Find the countries population in year 2000.

1. Click [SQL], click SQL - Aggregation

15

Sk

7.

In View name field enter: "population2000(id, pop)"

In Select field enter: "country.id, sum(growth.p)"

In From field enter: "growth, location, country"

In Where field enter: "country.x = location.x, country.y = location.y,
growth.t = country.t, location.c = growth.c,
country.t = 2000"

In the Group by field enter: "country.id"

Click [OK]

Example 2: Recursive SQL queries

Query: Find the minimum traveling time between each pair of cities in go.txt database.

First, we use recursive query to find all possible traveling times between each pair of cities
as follows:

SOL Recursion x|

RECURSIVE Yigw I Trawel(x,y, k)

— a5 (hasic rule)
SELECT I g.cikwl, g.ciky2, g.k2

FROM I goasg

WHERE g.k1=0

—UMIOM (recursive rule)

SELECT | tlx, g.city2, a.t2

FRCIM I Travel astl, goas g

WHERE | tly=g.city1, tlt=g.t1

Ik Zancel | Save I Load Clear

Second, we use aggregation query to find the minimum possible traveling time bewteen
each pair of cities as follows:

16

SQL AGGREGATION X|

WIEW NAME |shartestpathis, v. t]
SELECT [t thy, minftlt]

FEOM ITraveI az tl
WHERE ﬂ

B o

GROUPBY [tx ty
HewiNG |

k. I Cancel | Save Load Clear

2.3 MLPQ Operators

The MLPQ/PReSTO graphical user interface shown in Figure 1 contains a list of iconic queries.

Intersecti Dran Li
Datalog Cuery mressian Area rew Hne Drravee Polygon

Difference :
L Collicle
S6L Query \Approxlma’[m Union/ Compleme Buffer Black Similarity Draw Rect
/

N

[A MU~ [c | =[] i B |x|s| | | |
D|&| 6ol »[+| =|m]| A | | » | I"\”I‘?I

LARALS
/ / / Arﬂéte Got\b StaN \ ot Ene
Toom Ot 7 Set Calars Plary Elac:k PIa'_.! D Start
Ha-,r

i Prewous Stef Cobo End
Delete Relstions Rect Foomin Coloring Play Mext Step P"’EWUUS st
T | Sﬂ&p /

Ragmssmn

Figure 1: MLPQ Graphical User Interface

Index:
Datalog and Buffer, n and [1, Max & Min, Recursive, Approximate, Delete.

2.3.1 The Datalog Query [Dlog] Operator and Buffer[B] Operator

We can use Datalog rules as described in Equation (4.1) and in Chapter 5 of Revesz (2002). In
Datalog with aggregation operators the aggregate operator has the form OP(f) where OP is one of

17

the following: max, min, MAX, MIN, sum max, or sum_min, and f is a linear function of the
variables in the Datalog rule. The Datalog with aggregation rule cannot have any string-type
attribute in either its head or body. The aggregate operators have the following meanings:

max - gets maximum value for each constraint tuple.

MAX - finds the maximum of the values returned by max.

sum_max - finds the sum of the values returned by max.

min, MIN and sum_min are defined similarly to the above.

o= MLPQ - [buffer] M [=] E3
Eile Edt Yiew Window Help -Iﬁlﬂ

v clxol &) nju| s]@|G e
D|E] 2= E|2] || alr|«|w|a]i]r]
5 3 B

garsst_Exit’ Aty 2
"Buf_Mearezt_Exit' A
Convenient_Haotel" A

(E07.092, 234.355) | | o

Figure 2: Buffer Example

Consider Figure 2 which shows a map of interstate highway 1-80, the location of hotels, the
locations of exits form the highway, and the current location of a car traveling from west to east on
the highway.

Query: Find a convenient hotel to stay for the night. This is done by finding the nearest exit east of
the current location of the car and then find the hotel within 50 miles from that exit.

Click [Dlog], input the query to get the nearest exit on the east.

Nearest(id, MIN(x), y) : - Current Pos(id2, x0, y0), Exit(id, x, y), x - x0 >= 0.

Select "Nearest" Relation, click [Buffer].

Input name "Buf Nearest", and the Distance "50".

Click [Q], input the query to get the convenient hotel away from at most 50 miles.

Convenient(id, x, y) : - Hotel(id, x, y), Buf Nearest(id1, x, y).

2.3.2 The Intersection [n] Operator and Union [0] Operator
1. Intersection: Calculate the intersection of two relations.

1. Select two relations from the left window which have the same attributes.

18

2. Click [n].
3. Input relation name "Intersect" which is the intersection of these two relations.

Note: For intersection, the system also matches the ids of the objects. So if two objects
have the different ids, then the intersection would be empty.

Hint: To make two relations R1(id, x, y) and R2(id, x, y) have the same id, insert the
following Datalog query ("New_ R1" and "New_ R2" will have the same id "1"):

New RI1(1, x,y): - RI1(d, x, y).
New R2(1, x,y) : - R2(id, x, y).

1. Union: Calculate the union of two relations.

1. Select two relations from the left window.
2. Click [].
3. Input the relation name "Union" which is the union of these two relations.

Note: for union, these two relations need not to have the same id since they are still in the
output even they have different ids.

2.3.3 The [Max] Operator and [Min] Operator
1. Max: Calculate the maximum value for a given evaluation function.

crops.txt: Calculate the maximum profit for the evaluation function: 300corn + 250rye +
100sunflower + 150wheat.
1. Select the relation "crops" from the left window.

2. Click [Max].

3. Input new relation name "max_profit", the evaluation function
"300corn+250rye+100sunflower+150wheat", and the constant value for the
evaluation function is "0".

4. Right click the relation "max_profit" to show the maximum profit.

2. Min: Calculate the minimum value for a given evaluation function.

1. Select one relation from the left window.

2. Click [Min].

3. Input new relation name "min_rel", the evaluation function, and the constant value
for the evaluation function.

4. Right click the relation "min_rel" to show the minimum value.

Note: The [Max] and [Min] operators only work for the evaluation function which will
return the positive maximum/minimum value.

19

2.3.4 Recursive Queries

1. houses.txt: the relation "can_build" is created by recursive Datalog query. See the
constraint tuples of the relation.

2. pollution.txt: the relation "oktobuy" is created by recursive Datalog query. See the
constraint tuples of the relation, not the display result.

3. powernew.txt: the relation "can_build" is created by recursive Datalog query. See the
constraint tuples of the relation, not the display result.

Note: For [Dlog] Operator, the recursive query only can be inserted into recursive database,
that is, the new recursive query could be inserted only when the current database is
recursive.

2.3.5 Approximate Operator [Apx]

Approximation can be used to achieve an over or under approximate solution to problems that do
not have a finite least fixed point solution by placing a bound on the solution. Approximation
helps guarantee a result will be obtained in situations where recursive queries may otherwise be
unsafe. Detailed discussion can be found in Chapter 9 of the textbook. By default the system does
not automatically enable approximation as true. You can change this bound by clicking [Apx]
button. To disable approximation enter 0 for the bound or uncheck the "Use Approximation" box.
This is a global setting; however, it will only apply to databases that have been opened or queries
executed after the bound has been set.

Consider the following example of a recursive Datalog query used to calculate the difference
relation:

D(x,y,z) :- X-y>=0, -x+y>=0, z>=0, -z>=0.
D(x,y,z) - D(x1,y,21), x-x1>=1, -x+x1>=-1, z-z1>=1, -z+z1>=-1.

This query will never terminate and is hence not safe without using appoximation. Refer to the

table on page 100 of the textbook. By setting approximate boundry, we can achieve an
approximate result in feasible time.

2.3.6 Delete Relations [Del]

Delete relation [Del] operator can delete any existing relations. It can be used to remove some
temporary results.

1. Select the relations you want to remove in the list box. You can select multiple relations
and delete them at the same time.

2. Click the [Del] button.

20

http://powernew.txt/
http://pollution.txt/
http://houses.txt/

3. Check the relation list again in the popup message box and click OK to execute the
operation if everything is correct.

21

PART III. GIS/PReSTO
3.1 GIS

Syntax

1. We sometimes restrict the head of the rules to be one of the following: r(id,x,y), or
r(idxy,t) or r(id,x,y,z) where id is the identification number of an object, and x,y are two
spatial variables, which could be augmented by a temporal variable ¢ or a third spatial
variable z. These cases of linear constraint databases allow us to do some extra operations
that are special to GIS objects.

2. GIS Database: The GIS database must use "GIS" as the module name; that is, the input
file must have the structure:

begin %GIS%
A

L

L,

end %GIS%

Operators

Similarity, Querying Maps, Complement.

3.1.1 The [Line] Operator, [Rectangle] Operator and [Polygon] Operator
1. Drawing Line:

1. Open a non-empty database (i.e., a database that already contains at least one
relation);

2. Left click the right window;

3. Left click [Line];

4. Left click the mouse to get one point, move mouse, then left click the mouse to get
another point;

5. Input the relation name "Linel" (any string) to get the line relation "Linel".

2. Drawing Rectangle:

1. Open a non-empty database (i.e., a database that already contains at least one
relation);

2. Left click the right window;

3. Left click [Rectangle];

4. Left click the mouse to get one point, move mouse, then left click the mouse to get
another point;

5. Input the relation name "Rectanglel" (any string) to get the rectangle relation
"Rectanglel".

22

3. Drawing Polygon:

1.
2
3.
4

5
6.

Open a non-empty database (i.e., a database that already contain at least one
relation);

. Left click the right window;

Left click [Polygon];

. Left click the mouse to get one point, continue to left click the mouse to get other

points;

. Double click to finish the drawing.

Input the relation name "Polygonl" (any string), and the Object ID "1" (any integer
number) to get the polygon relation "Polygon1".

4. Show Constraints: After operation 2, left click the relation "New relation" in the left
window, to get the dialog which shows the constraints of this relation.

3.1.2 The [Zoom In], [Zoom Out] Operator

1. To shrink the displayed object, click [Zoom Out].

2. To enlarge the displayed object, click [Zoom In], left push down the mouse, drag a
rectangle to include the area you want to enlarge, then release the button. The selected area
will be enlarged.

3.1.3 The [Area] Operator

1. Area: Calculate the area of relation "Buf Nearest".

1.
2.
3.

Select the Generated relation "Buf Nearest" in the left window.

Click [Area].

Input the MinX, MaxX, and Step Size of the area to be calculated. By referring the
coordinates of the window, input the number for MinX "0", and MaxX "400", and
the Step Size "400", then get the total area of the relation since it is in the region
totally.

Input the area relation name "Buf Nearest Area", left click it to show the area in
constraints.

Note: The step size is to get various aggregate information for different bands of the object.

1. Bands Area: Calculate the area of relation "Buf Nearest" with bands.

Ll

Select the Generated relation "Buf Nearest" in the left window.

Click [Area].

Input the MinX "0", the MaxX "400", the Step Size "200".

Input the relation name "Buf Nearest Area", left click it to show the areas of these
two bands from 0 to 200 and 200 to 400 in constraints.

3.1.4: The [Set] Operator and [Color Relation] Operator for Color Bands

Display

1. Color_Circle.txt:

23

1. Select "Circle" relation, see the monochromatic circle.

2. Select "NEW _Circle" relation, then click [Color Relation].

3. Select the new Generated "Color NEW_Circle" relation, see the color circle (if not,
click the {View} Menu, uncheck {Same Relation Color} Option).

. tin.txt:

1. Select "tin" relation, click [Color Relation].

2. Select the Generated "Color_tin" relation, then see the color Nebraska (different
colors stand for different heights of those places).

. tiniowa_final.txt:

1. Select "tiniowa_final" relation, then click [Set], then click add button in the dialog,
then input "1000", "5000" and select "red" color. Then click the ok button.

2. Then click [Color Relation], then select the new Generated "Color_tiniowa final"
relation, then see the red partial lowa state (only the heights between 1000 and 5000
are displayed). (If it's not red, then select {View} menu, then uncheck {Same
Relation Color}.)

. tinne_final.txt:

1. Select "tinne final" relation, then click [Set], then click add button, then input
"1000", "3000" and select "blue" color. Then click ok button.

2. Then click [Color Relation], then select "Color tinne final" relation, then see the
blue partial Nebraska state (only the heights between 1000 and 3000 are displayed).
(If it's not blue, then select {View} menu, then uncheck {Same Relation Color}.)

. tinresult.txt: Monochromatic map display. Select "tin" relation, then see the Nebraska

state map, also shown in Figure 4.

L | |y

<15 "5 20 - 25 - a0 - 35 - 40 - 45 - =50
200 25 X 35 400 45 5i

Figure 4: Mean Annual Air Temperature

3.1.5 The 2D Animation

. sface.txt: select relations one by one, then click [Play], then see the face becomes smiling.

24

http://csce.unl.edu/~revesz/MLPQ/specification/specification.html#figmaat

500 EOD

400

400

200 200

u 201 Al (R 1] u 2Ul AUl Luw]

(1) (2)

Figure 3: Two Snapshots of a Video on California Gull Ranges

1. Consider Figure 3 which shows two snapshots of the habitat range of the California Gull

birds.

The data is available in file sgull.txt. Select all except Gull, then select "Gull"

relation, then click [Play], then see the gull changing.

Query 1: How much did the area of the California Gull change from 1970 to 1990?

1.

Click [Dlog] to insert the query to get the Gull snapshot at 1970:
Gulloi, x, y) : - Gull(i, x, y, 0).

Click [Dlog] to insert the query to get the Gull snapshot at 1990:
Gull60(, x, y) : - Gull(i, x, y, 60).

Click the relation "Gull0", then click [Area] to get the area of the Gull at 1970.
Input the MinX=0, MaxX=500 and Step=500. Give the name of the area of the
relation "Gull0" as "Gull0_Area".

Click the relation "Gull60", then click [Area] to get the area of the Gull at 1990.
Input the MinX=0, MaxX=500 and Step=500. Give the name of the area of the
relation "Gull60" as "Gull60 Area".

Click [Dlog] to insert the query to get the area difference of the California Gull t
between 1970 and 1990:

Gull_Area Diff(a) : - Gull0_Area(x, y, al), Gull60 Area(x, y, a2),
al-a2+a=0.

Right Click the relation "CA_Gull Area Diff" to show the constraints and the area
difference.

25

http://csce.unl.edu/~revesz/MLPQ/specification/specification.html#gullsnaps

Query 2: How much did the area of the California Gull change from 1970 to 1990 in the
state of California?

7.

10.

11.

12.

13.

14.

Click [Dlog] to insert the query to get the Gull snapshot at 1970:
Gull70(1, x, y) : - Gull(i, x, y, 0).

Click [Dlog] to insert the query to get the Gull snapshot at 1990:
Gulloo(1, x, y) : - Gull(i, x, y, 60).

Select the relation "Gull70" and "CA", then click [n] to get the area of the Gull at
1970 in the state of California. Input the relation name "CA_Gull70".

Click the relation "Gull90" and "CA", then click [n] to get the area of the Gull at
1990 in the state of California. Input the relation name "CA_Gull90".

Click the relation "CA_Gull70", then click [Area] to get the area of the Gull at 1970
in the state of California. Input the MinX=0, MaxX=500 and Step=500. Give the
name of the area of the relation "CA_Gull70" as "Gull70_Area".

Click the relation "CA_Gull90", then click [Area] to get the area of the Gull at 1990
in the state of California. Input the MinX=0, MaxX=500 and Step=500. Give the
name of the area of the relation "CA_Gull90" as "Gull90 Area".

Click [Dlog] to insert the query to get the area difference of the California Gull t
between 1970 and 1990 in the state of California:

CA_Gull _Area Diff(a) :- Gull70 Area(x,y,al), Gull90 Area(x,y, a2),
al -a2+a=0.

Right Click the relation "CA Gull Area Diff" to show the constraints and the area
difference.

3. Consider the file slincoln.txt. Select "City" relation, then click [Play], then see the Lincoln,
Nebraska city area changing.

3.1.6 The Transformation from the TIN to Constraint Database

1. tin_ia.net: Transform the TIN of Iowa to constraint database.

1.
2
3.

4.

Click menu {New}, then click submenu {File}, click {Import File}, then click
{Elevation File}.

. Choose the file "tin_ia.net".

Input the relation name "tin_ia", then input "tin_ia_ascii" in the third filed, click ok
button to Generate the constraint file "tin ia.txt".
Use Notepad to open the file "tin ia.txt" to see the transformed constraints.

Note: The file "tin_ia.net" is the TIN structure of lowa State with the longitude, latitude
and elevation for each point. The file "tin_ia ascii" includes the slope and aspect of each

point.

26

1. tin_ne.net: Transform the TIN of Nebraska to constraint database.

1.

2.
3.

4.

Click menu {New}, then click submenu {File}, click {Import File}, then click
{Elevation File}.

Choose the file "tin_ne.net".

Input the relation name "tin ne", then input "tin ne ascii" in the third filed, click ok
button to generate the constraint file "tin_ne.txt".

Use Notepad to open the file "tin_ne.txt" to see the transformed constraints.

3.1.7 The Transformation from Polygon File to Constraint Database

1. veg90.pol: Transform polygon file to constraint database.

1.

2.
3.
4

Click menu {New}, then click submenu {File}, click {Import File}, then click
{Elevation File}.

Choose the file "veg90.pol".

Input the relation name "vege".

Click the "vege" relation in the left window, you will see the constraint tuples of

these polygons.

3.1.8 The [Similarity (S)] Operator for Similarity Queries

1. db.lin: Query similarities among the lines.

1.

2.
3.
4

Click menu {New}, then click submenu {File}, then click {Import File}, then click
{Import Line}.

Select the file "db.lin".

Input the relation name "lines".

Then select any one relation, then click [S], then the relations are ordered as the
similarity order from the specified one.

3.1.9 Querying Maps

1. usmap info.txt:

1.
2.

3.

Select all of the relations, then see the U.S. map with 50 states.

The scale of this map is shown by clicking the constraints of the relation "Scale",
the unit is kilometer.

The "Capital" relation is the capital cities of the states.

Query I: Find the capital city of Nebraska:

4. Click [Q], then input

NE_Capital(name) : - NE(id, x, y), Capital(id, name).

5. Right click the relation "NE _capital" to see the capital city of Nebraska State.

27

Query 2: Find the area of the state of Nebraska in MST zone.
6. Click [Q], then input
NE MST(, x,y) : - NE(4, x,y), MST(, x, y).
7. Select the relation "NE_MST", then click [Area].
8. Input MinX=0, MaxX=500 and Step=500.
9. Input the name of the area relation as "NE_MST Area".

10. Then right click the relation "NE_MST _ Area" to see the area of the state of
Nebraska in MST zone.

3.1.10 The [Complement (C)] Operator
1. usmap info.txt:
1. Select the relation "AK" from the left window.
2. Click [C].

3. Input the relation time "comp" and click [OK]..
4. Click the relation "comp" which shows the complement of the "AK".

3.2 PReSTO

Syntax

1. PReSTO Relation: A relation R in PReSTO is defined as follows:

R{A]JAQ,"',A“) - id:%lj
xl —|—[1;11f — E"'l:!
y]- + g1t = bQ:!

x2 +az1t = by,
Y2 + 411 = by,
t>=r,t <= £g,P = 3,8 = 4,
.Al — dl,Ag — dﬂ,' = -!Aﬂ — dﬂ-

where

R: the name of the relation,

A;: the relational attributes,

ai; bi, ci and d;: constraints (¢; <= ¢z, c3>=c2—¢1).
x1, x2: x interval endpoints,

v, y2: y interval endpoints,

t: time,

28

p: period,
e: end time.

Note: For non-periodic relations, c; = -1, c4 = -1. The attributes id, x1, y1, x2, y2, ¢, p, s are
default attributes.

1. PReSTO Database: The PReSTO database must use "STDB" as the module name; that is,
the input file must have the structure:

begin %STDB%
"
r;

u
end %STDB%

1. PReSTO Query:
1. Define a relation with non-default attributes.

Example: Define the cloud relation with the attribute humidity.
clouds(h) :- i=1,
x1 -t=105,
yl - 0.5t =200,
x2-t=111,
y2 - 0.6t = 205,
t >=0, t<=300,
=-1,s=0,
h=0.

2. Selection:
$(condition;, condition,, . , conditiony) Relation(A, . , A,)
Example: Find the cool area in Nebraska.

begin %STDB%
Nebraska(temp) :- i=1, x1=4, y1=4.5, x2=19.5, y2=14.5,
t>=1,t<= 15,p=-1,temp=30.
Nebraska(temp) :- i=2, x1=20, y1=4.5, x2=35, y2=14.5,
t>=1,t<= 15,p=-1,temp=90.
Nebraska(temp) :- i=3, x1=35.5, y1=5, x2=46, y2=14.5,
t>=1,t<= 15,p=-1,temp=60.
cool_area(temp):-$(temp>=50,temp<=80)nebraska(temp).
end %STDB%

29

3. Projection:
ResultRelation(A,, . , A)) : - Relation(A4, . , An)
4. Intersection: Relationl * Relation2.

Example: Find if the ship and the torpedo will meet with each other.
begin %STDB%
ship() :- i=1,
x1-t=20,y1=20,
x2-t=30,y2=25,
t>=0,t<=25,
p=-1,s=-1.
torpedo() :- i=1,
x1=45,y1+t=45,
x2=48,y2+t=51,
t>=0,t<=25,
p=-1,s=-1.
hit() :- ship() * torpedo().
end %STDB%

Operators
Index: N and [J, Area, Difference, Complement, Datalog Query (Dlog), Collide, Block, 2D
Animation, Exponential 2D Animation, Regression Animation.

3.2.1 The [Intersection (n)] Operator and [Union (O)] Operator

1. weather.txt:
Query 1: Find which region is likely to get rain.
1. Select the relation "cool area" and "wet cloud" from the left window.

2. Click [n].
3. Input a relation name "get rain" which is the intersection of these two relations.

Query 2: Find which region is likely to get snow.
4. Select the relation "cold_area" and "wet cloud" from the left window.

5. Click [n].
6. Input a relation name "get snow" which is the intersection of these two relations.

Query 3: Find which region is likely to get rain or get snow.
7. Select the relation "get rain" and "get snow" from the left window.

8. Click [0].
9. Input a relation name "get rain_snow" which is the union of these two relations.

30

2. flight.txt:
Query: Will the plane hit the fleet?
1. Select the relation "plane" and "fleet" from the left window.

2. Click [n].
3. Input a relation name "hit fleet" which is the intersection of these two relations.

3.2.2 The [Area] Operator
1. cloudmap.txt:
Query: Find the area of the clouds at time 10.
Select the relation "clouds" from the left window.
Click [Area].

Input the time of the clouds "10".
A dialog box pop up to give the area of the clouds at time "10".

Ll e

3.2.3 The [Difference (-)] Operator

1. cloudmap.txt:

Select the relation "california" and "clouds" from the left window.

Click [-].

Input the relation time "diff".

Click the relation "diff" which shows the difference between California and the

clouds at time "0".

Ll

3.2.4 The [Complement (C)] Operator
2. cloudmap.txt:
1. Select the relation "clouds" from the left window.
Click [C].

2.
3. Input the relation time "comp".
4. Click the relation "comp" which shows the complement of clouds at time "0".

3.2.5 The Datalog Query [Dlog] Operator
1. weather.txt:

1. Click [Dlog].
2. To get the area where the temperature between 50 and 80, input the query:

cool(temp) : - $(temp >= 50, temp <= 80)nebraska (temp).

3. Click the relation "cool" which shows the interested area.

31

3.2.6 The [Collide (X)] Operator

1.

collide.txt:
1. Select all relations, then click [Play], then see both are moving.
2. Click [Collide], input the relation name "collide".
3. Then select the new generated relation "collide", then click [Play], then see them

collide then bounce back from each other.

3.2.7 The [Block (B)] Operator

1. yellowstone.txt: Foam blocks the fire.

ST W=

Select the relation "lake" and the relation "foam1".

Click [B], give the relation name "blocks".

Select the relation "blocks" and the relation "fire".

Click [Block], input the relation name "blockfire" and set time "10".

Click [Forward] button 10 times till t = 10. Then see the snapshot of the blocked
fire at that time.

3.2.8 The 2D Animation

NoUk k=

1.

halley.txt: select all relations, then click [Play], then see Halley hit some stars.
comet3.txt: select all relations, then click [Play], then see they are moving.
flight.txt: select all relations, then click [Play], then see the planes hit the targets.
shuttle.txt: select all relations, then click [Play], then see the bus is moving.
torpedo.txt: select all relations, then click [Play], then see the torpedo is moving.
weather.txt: select all relations, then click [Play], then see the result.
cloudmap.txt:

Select all relations except "clouds" relation, then select "clouds" relation, click
[Play], then see the cloud is moving. Two snapshots of the animation are shown in
Figure 5.

2.

Figure 5: Cloud at /=25 (left) and =182 (right) in the PReSTO system

Click [Animation], change the speed to "95", then the animation speed will be
slower than it was "100".

32

http://csce.unl.edu/~revesz/MLPQ/specification/specification.html#animationfig

3.2.9 The Exponential 2D Animation
1. mulcolony.txt:

1. Select the relation from the left window.
2. Click [(Animation (A)] then click "Yes" for observing the exponential animation.

Note: If click [A] then click "No", then execute the linear animation.

1. sincolony.txt: Click [(Animation (A)] then click "Yes" for observing the exponential

animation.

2. sinirreg.txt: Click [(Animation (A)] then click "Yes" for observing the exponential
animation.

3. threecolony.txt: Click [(Animation (A)] then click "Yes" for observing the exponential
animation.

3.2.10 The Regression Animation
1. irrigationcountry.txt:

1. Select the relation "NeCounty" from the left window.
2. Click [AR] then enter start and end time instances.

1. Relation will be displayed on the left window.

2. Select all the relation created below relation "NeCounty".
3. Click [play r] to view the regression animation.

33

PART IV. Web Application

4.1 System Infrastructure

The MLPQ web accessible server and the dependent applications are collaborative systems. A
three-tier Browser/Server architecture can be described as shown in Figure 6.

Browser Middle tier Constraint DB

HThL h@ -t Socket

HThL p&q—éncket — - m

HTHL | CGI (= Socket

Specific Applications

Figure 6: MLPQ Web Access System (B/S) Infrastructures

Each tier has its own responsibilities that are listed in Table 1.

Browser Middle tier CDB Server
(User Interface) (Business Logic)
® User interfaces ® Accept requests from the ® Accept commands and
® Send user's requests browser arguments from Web
to Web Server ® Parse the request to CDB Server
® Accept results from acceptable command and @ Activate related
middle tier arguments operations according to
® Display the results ® Send commands to CDB the command and
® Accept result from CDB arguments
® Explain the result ® Return the results to
middle tier
® Return result to Browser

Table 1: Responsibilities for each layer in MLPQ Web Access B/S System

34

4.2 Communication protocol

The MLPQ Web Accessible server uses socket to communicate with other programs. Figure 7 is
the main window of MLPQ web accessible server. To make it work for web access, the "listen"
menu should be selected first. Then the server will listen to a predefined socket port and ready to
act according to the messages received from the port.

MLPQ,;PReSTO - University of Nebraska-Lincoln - |EI|£|

Fil= View | Help

sl po gl o | [0 i 8% |s] N [S(s |

I e e e M= | O S R P e 5 P

Figure 7: Main window of the MLPQ web accessible server with listen menu item

The default environment settings are saved in mlpq_nt.cfg file and the values of the settings are

displayed in Table 2. The system administrator can modify these three settings to configure the
server.

Name and Value Description

WorkDir = "c:\inetpub\wwwroot\dbs\". | Define the directory to load constraint
database files by the server.

OutPut = "c:\inetpub\wwwroot\dbs\". Define the directory for the server to
output its result file.

Port = "2222". Define the socket port value

Table 2: Settings in mlpq_nt.cfg

Table 3 lists all commands and their arguments recognized by the MLPQ web accessible server.
<user> records the login user name. <filename> is the name of constraint database opened in the
server. <relation name> provides the name of the new relation that will be created on the MLPQ
web accessible server. <color> is used to assign a color for the selected relation. The execution of
each command may return 0, I, or a file name. "7" means there are some errors within the
execution. "0" result tells people that the command is executed successfully. If a file name was
returned, it also means the command is successfully executed.

Command Arguments Actions on CDB Result

Open <user> <filename>$ Create a view for 0 (success)

the user and open a | 1 (fail)
CDB data file.

35

Close <user> <filename>$

Close the view of

0 (success)

<relation name> <color>$

the user. 1 (fail)

SQLBasic <user> <filename> Execute a SQL File.txt#
<relation name> query on the user's | 1 (fail)
#<select>#<from>#<where>$ view.

SQLAggregate = <user> <filename> Execute a SQL File.txt#
<relation name> query on the user's | 1 (fail)
#<select>#<from>#<where> view.

#<group>#<having>$

SQLSet <user> <filename> Execute a SQL File.txt#
< relation name> query on the user's | 1 (fail)
#<selectl>#<from1>#<wherel> | view.

#<set_op>
#<select2>#<from2>#<where2>$

SQLNested <user> <filename> Execute a SQL File.txt#
<relation name> query on the user's | 1 (fail)
#<selectl>#<from1>#<wherel> | view.

#<nest_op>
#<select2>#<from2>#<where2>$

Datalog <user> <filename> Execute a Datalog | file.txt#
<datalog string>$ query on the user's | 1 (fail)

view.

Include <user> <filename> Highlight the 0 (success)

relation by its
name and assign a

color for it in the

1 (fail)

view.

Clear <user> <filename>$ Deselect all 0 (success)
relations in the 1 (fail)
view

Getlmage <user> <filename>$ Copy the image of = File.bmp#
the view in screen | 1: fail

and save to disk.

' ColorRelation | <user> <filename>

' Do color relation

| 0 (success) |

36

to the output

directory

H <relation_name>$ H on given relation. H 1 (fail)

Zoom <user> <filename> <x> <y> <w> Zoom the image. 0 (success)
<h>$ 1 (fail)

GetAnimation <user> <filename> <Start Time> Generate serious 0 (success)
<End Time> <Interval Time>$ animation images | 1 (fail)

Table 4 maps the value of <color> to the actual color assigned to the relation.

Table 3: Command list to MLPQ Web Access Program

Value of <color>

Color of the relation

0 Black

1 Red

2

3 Blue

4 -16777216 RGB(Value)

Table 4: Map from the value of <color> to actual color of the relation

4.3 Sample application

Police Emergency Constraint database

The Police Emergency application is a sample implementation that applies the functions provided

by the MLPQ web accessible server in a three-tier architecture. Suppose we know about a town

represented by constraint database as follows.

Emergency (Type, No, Street, T) describes what type of emergency occurs at address (Number,

Street) at time T.

Resident (Name, No, Street) describes which person (Name) resides at which address (Number,

Street).

37

Location (No, Street, X, Y) describes which house (Number, Street) is at which location (X, Y).
Contains (Street, X, Y) describes which Street contains which locations (X, Y).

Police (Name, VIN, X, Y, T) describes which police officer (Name) drives car with vehicle
identification number VIN at location (X, Y) and time 7.

Login and Logout:

Login
Session.Contents("SERVER") = Request.ServerVariables("SERVER_NAME")
Session.Contents("USR") = Request("STR_USR") Session.Contents("VIEW_NM") = 0

Response.Redirect "a1.htm"

Create a Socket.TCP object and connect to the server:
asObj = Server.CreateObject("Socket. TCP")

asObj.Host = Session.Contents("SERVER") & ":2222"
asObj.Open

asObj.Wait

Open a database file:

str = "Open " & Session.Contents("USR") &" police.txt$"
asObj.SendText str

asObj.Wait

Select a relation:

str = "Include " & Session.Contents("USR") &" police.txt Townmap 0$"
asObj.SendText str

asObj.Wait

Return the image:

str = "Getlmage " & Session.Contents("USR") &" police.txt$"
asObj.SendText str

asObj.Wait

Query 1: Find and display a street upon the town map.
The SQL query is:
SELECT Contains.Street, Contains.x, Contains.y
FROM Contains
WHERE Contains.Street = inputStreet

The VB and ASP code in middle tier is

38

Code in middle tier to find the street:
Session.Contents("VIEW_NM") = Session.Contents("VIEW_NM") + 1
str = "SQLBasic " & Session.Contents("USR") & " police.txt " & Session.Contents("USR") &
Session.Contents("VIEW_NM")
str = str & "# Contains.Street, Contains.x, Contains.y"
str = str & "# Contains"
if Request("STR_STREET") ="" Then
str = str & "$"
Else str = str & "# Contains.Street= " & Request("STR_STREET") & "$"
End if
asObj.SendText str
asObj.Wait

ZJ UML Police Website - Microsoft Internet Explorer § =[a x|

ZJUNL Police Website - Microsoft Internet Explorer

File Edic View Favortes Tools Help : Ble Edit Vew Favortes Tools Hep ‘
Gack - = - (@D [A | Queach [igFavorites @Preda BB F B - H 7
Aress [) hps/f127.0.0,1/a htm Address [{@) hetpri[127.0.0. 1L him = @ |
IR
B&w | s
The Street in the Town . 100

-200 -150 -100

1| 50 100 150 200

-100

-150

% Home Y Town Map % Officer % Home Y Town Map % Officer

& Emergency Y Locate Y Resident Y Emergency % Locate Resident

Y Reachable % Logout

& Reachable % Logout

[&1Dore [(o mnternet 7 &) Done |4 Internet 7

[T
|| I@e s By || mE. | Ein. | .| oon.| Gjee.. | glot | || GE e 2 EH || ze. | @ | B .| G| g

Figure 7: Town map query and its result page
Query 2: Find the location of the emergencies during a given time interval.
The SQL query is:

SELECT Emergency.Type, Location.x, Location.y
FROM Emergency, Location
WHERE Emergency.No = Location.No,
Emergency.Street = Location.Street,
Emergency.T >= starttime,
Emergency.T <= endtime

39

The VB and ASP code in middle tier is

Code in middle tier to find emergencies:

Session.Contents("VIEW_NM") = Session.Contents("VIEW_NM") + 1

str = "SQLBasic " & Session.Contents("USR") & " police.txt " & Session.Contents("USR") &
Session.Contents("VIEW_NM")

str = str & "# Emergency.Type, Location.x, Location.y"

str = str & "# Emergency, Location"

str = str & "# Emergency.No=Location.No, Emergency.Street=Location.Street"

str = str & ", Emergency.T>=" & Request("STR_TIME1")

str = str & ", Emergency.T<="& Request("STR_TIME2")

str = str & "$"

asObj.SendText

str asObj.Wait

B UML Police Website - Microsaft Internet Explorer 1 1 ‘2 UNL Palice Website - Microsoft Internet Explorer
Fle Edt View Favortes ook Help Ble Edt View Favortes Jods Help

wiack » = - @ [A 4| Qoeach (iravories Preds B | B S - 5 7 Gmak = - D [A 4| Bsewch [iFavarres Preda | By 5 0 -

pddress [] hetpoif127,0.0,Lat bt -| e Address [] betp:/J127.0.0. 1L bem

T Tl

Find the emergency places

Start Time: i -200 -150 -100
i 40 | T

Y Home Y Town Map % Officer Y Home Y Town Map % Officer

S Emergency Y Locate % Resident

& Emergency Y Locate % Resident

¥ Reachable % Logout W Reachable % Logout

[&1vone |88 Inbsimet 7 (&1 oone o Inbermst 7

N I 3 - T .
,ﬂﬁ!ﬁ |I dWMe AR H [BlE Thes: | [... giww:” alct] R “ dmMeaBAH H Bl | ®th. | Blam. | eamp... giwwm slct]

Figure 8: Page to find the Emergencies and its result
Query 3: Find the places where the given police officer pname is reachable at time.
The Datalog is
Reach(n) :- Contains(n, x, y), Police(Name, VIN, x,y, T),
Name = pname, T = time.

Reach(n) :- Reach(m), Contains(m, x, y), Contains(n, X, y).
Reachable(n, x, y) :- Reach(n), Contains(n, X, y).

40

The VB and ASP code in middle tier is

Code in middle tier to find the reachable street for the officer:
Session.Contents("VIEW_NM") = Session.Contents("VIEW_NM") + 1

prefix = Session.Contents("USR") & Session.Contents("VIEW_NM")

str = "Datalog " & Session.Contents("USR") & " police.txt " & prefix

str = str & "Reach(n) :- Contains2(n,x,y), Police(Name, VIN, x, y, T), Name=" & Chr(34) &
Request("STR_NAME") & Chr(34) & ", T=" & Request("STR_TIME") & ".$"
asObj.SendText str

asObj.Wait

str = "Datalog " & Session.Contents("USR") & " police.txt " & prefix

str = str & "Reach(n) :- "& prefix &"Reach(m), Contains2(m, x, y), Contains2(n, X, y).$"
asObj.SendText str

asObj.Wait

str = "Datalog " & Session.Contents("USR") & " police.txt " & prefix

str = str & "Rable(n, x, y) :- "& prefix &"Reach(n), Contains2(n, x, y).$"
asObj.SendText

str asObj.Wait

R UNL Police Website - Microsoft Internet Explorer | = g_‘ | x| /R UNL Police Website - Microsaft Internet Explorer =0l x|
Ble Edt Wew Favertes Iods Help Fe Edt Yiew Favorites ook Help |ﬁ

Giak « » - @ [0 A | Qoeweh [aiFavortes Gveds B - S H 7 GBack - =% - @D [A] | Qoeach Garavortes Fveds (3| B S B -H >

address [] hetpuif127,0.0.Liat bt - Fe Agdress@http:mz?ﬂ.n‘lfal.htm | P

150

Find all the places where the peolice

100

officer is reachable

50 100 150 200

-200 -150 -100

' \Waitfor & couple of secands for the result

-100

-150

% Home Y Town Map % Officer

Y Home Y Town Map Y Officer

 Emergency % Locate % Resident Y Emergency Y Locate Y Resident

% Reachable % Logout

¥ Reachable w Logout

|21 Done |88 Internet 7 [&1Done |8 Iternet 7

I 3)
R “ HWem A H (BB The | [B ip... glww::‘ gl T H b Rl et H g | Eh, | A | @mip.| Bywe | gt |

Figure 9: Page to find the reachable street for a given Police officer and its result

41

APPENDIX: Input Databases

MLPQ Databases: The files in database/MLPQ are as follows:

buffer.txt
color_Circle. RNG
color_Circle.txt
cost.dat
crops.txt

db.lin
diffonly.txt
gallery.txt
g0.txt

10. hospital.txt

11. houses.txt

12. irricounty.txt
13. StepingStoneOptimized.txt
14. mulcolony.txt
15. pollution.txt

16. powernew.txt
17. regions.txt

18. sface.txt

19. sgull.txt

20. sincolony.txt
21. sinirreg.txt

22. slincoln.txt

23. threecolony.txt
24. tin.txt

25. tin_ia.net

26. tin_ia_ascii
27.tin_ia data

28. tin_ne.net

29. tin_ne_ascii
30. tin_ne_ data

31. tiniowa_final.txt
32. tinne_final.txt
33. tinresult.txt

34. usmap info.txt

LN kL=

PReSTO Database: The files in database/PReSTO are as follows:
35. cloudmap.txt

36. collide.txt
37. comet3.txt

42

38. fight.txt

39. halley.txt

40. torpedo.txt

41. weather.txt

42. yellowstone.txt

43

	PART I. Relational Databases
	1.1 Database Definition Language
	1.2 SQL Syntax
	1.2.1 Basic SQL
	 1.2.2 SQL with Aggregation
	1.2.3 SQL with Set Operations
	1.2.4 Nested SQL Queries
	1.2.5 Recursive SQL

	PART II. Constraint Databases
	2.1 Constraint Database Definition Language
	2.2 SQL in Constraint Databases
	2.3 MLPQ Operators
	2.3.1 The Datalog Query [Dlog] Operator and Buffer[B] Operator
	2.3.2 The Intersection [Ç] Operator and Union [È] Operator
	2.3.3 The [Max] Operator and [Min] Operator
	2.3.4 Recursive Queries
	2.3.5 Approximate Operator [Apx]
	2.3.6 Delete Relations [Del]

	PART III. GIS/PReSTO
	3.1 GIS
	3.1.1 The [Line] Operator, [Rectangle] Operator and [Polygon] Operator
	3.1.2 The [Zoom In], [Zoom Out] Operator
	3.1.3 The [Area] Operator
	3.1.4: The [Set] Operator and [Color Relation] Operator for Color Bands Display
	3.1.5 The 2D Animation
	3.1.6 The Transformation from the TIN to Constraint Database
	3.1.7 The Transformation from Polygon File to Constraint Database
	3.1.8 The [Similarity (S)] Operator for Similarity Queries
	3.1.9 Querying Maps
	3.1.10 The [Complement (C)] Operator

	3.2 PReSTO
	3.2.1 The [Intersection (Ç)] Operator and [Union (È)] Operator
	3.2.2 The [Area] Operator
	3.2.3 The [Difference (-)] Operator
	3.2.4 The [Complement (C)] Operator
	3.2.5 The Datalog Query [Dlog] Operator
	3.2.6 The [Collide (X)] Operator
	3.2.7 The [Block (B)] Operator
	3.2.8 The 2D Animation
	3.2.9 The Exponential 2D Animation
	3.2.10 The Regression Animation

	PART IV. Web Application
	4.1 System Infrastructure
	4.2 Communication protocol
	Arguments
	Black

	4.3 Sample application
	Login

	APPENDIX: Input Databases

