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ABSTRACT

Comprehensive two-dimensional gas chromatography (GCxGC) is
an emerging technology for chemical separation. Chemical identi-
fication is one of the critical tasks in GCxGC analysis. Peak tem-
plate matching is a technique for automatic chemical identifica-
tion. Peak template matching can be formulated as a point pattern
matching problem. This paper proposes a progressive RAST algo-
rithm to solve the problem. Search space pruning techniques based
on peak location distributions and transformation distributions are
also investigated for guided search. Experiments on seven real data
sets indicate that the new techniques are effective.

1. PEAK TEMPLATE MATCHING FOR GCXGC

Comprehensive two-dimensional gas chromatography (GCxGC) is
an emerging technology for chemical separation that provides an
order-of-magnitude increase in separation capacity over traditional
GC [1]. Given a chemical sample, the output data of GCxGC can
be represented, visualized, and processed as an image. In the im-
age, each resolved chemical substance produces a small peak or
cluster of pixels with values that are larger than the background
values.

The objective of GCxGC analysis is to produce an accurate
report on the observed chemicals and their quantity in a sample.
The major image analysis tasks include:

1. Separating individual peaks from background,

2. Quantifying each peak, and

3. Identifying the chemicals for peaks of interest.

GCxGC images contain potentially thousands of peaks in com-
plex patterns, making chemical identification a challenging prob-
lem. Manual identification of chemicals is tedious and time-
consuming. An alternative is to use peak template matching. A
peak templateis a set of peaks with known chemical names and
other characteristics (e.g., whether a chemical is an internal stan-
dard). Simple templates are created through interactive annotation.
Template matching tries to establish as many correspondences as
possible from peaks in the template to peaks in the target peak
set. After correspondences are established, the information (e.g.,
chemical name) carried by the peaks in the template is copied into
the corresponding peaks in the target peak set. Consequently, all
the matched chemicals in the target peak set are identified.
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Two types of information are associated with template peaks:
computed features(peak location, area, volume, shape, etc) and
annotated information(chemical names, chemical group names,
etc). Typically, only computed features are used for matching.
In this paper, we consider peak location (the coordinates of the
pixel with the largest value within the peak) as the primary feature
for matching. In such a case, the peak template matching prob-
lem becomes a point pattern matching problem. The problem is
formalized as follows: Givenpoint template(template point set)
P = {pi(xi, yi)}m

i=1, target point setQ = {qi(ui, vi)}n
i=1, and

a transformation spaceT , find a transformationt in T that maxi-
mizes the number of points inP that can be matched with points
in Q.

2. RECOGNITION BY ADAPTIVE SUBDIVISIONS OF
TRANSFORMATION SPACE

A wide variety of techniques have been developed for solving
point pattern matching problems, including searching matching
space [2], alignment [3], Hough transforms [4], geometric hashing
(also called pose clustering) [5], minimizing Hausdorff distance
[6, 7], computational geometry [8], etc.

Recognition by Adaptive Subdivision of Transformation Space
(RAST) is another family of algorithms [9, 10]. The fundamen-
tal idea of RAST is hierarchical searching for a globally optimal
solution in the transformation space. With RAST, each pair of
a template point and a target point defines aconstraint set(a re-
gion) in the transformation space, containing the transformations
that can match the two points within some distance tolerance. Two
constraint sets are calledcompatibleif their template points are
different. To find a transformation that matchesk template points,
RAST finds a point in transformation space wherek compatible
constraint sets overlap. RAST starts with some initial region (usu-
ally rectangular) in the transformation space, and computes which
of theO(mn) constraint sets intersect the region. If enough com-
patible ones do, it then subdivides the region and repeats the calcu-
lation on each of the subregions. Otherwise, it rejects the region.
The algorithm accepts a region if it intersects enough constraint
sets and its size is smaller than some preset threshold.

The information about the transformation space is implicitly
hard-coded in RAST algorithms. This paper uses constrained glob-
al affine transformations. The constrained global affine transfor-
mation fromp(xp, yp) to q(uq, vq) is:
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andhx is set to0.0, noting thatx coordinates are independent of
they coordinates in GCxGC images.

The inputs to the basic RAST algorithm are point templateP ,
target point setQ, the number of template points to be matched
k, distance toleranceε, and transformation spaceRs. Upon termi-
nation, the algorithm returns either a constraint set ornull. If a
constraint set is returned, then some point (transformation) in the
constraint set is taken as the solution. Roughly speaking, under
such a transformation, there is a subsetP ⊆ P of sizek such that
each point inP lies in the neighborhood of some point inQ, i.e.,
a part ofP is matched to a part ofQ.

This method has two important properties:
• It does not require one to specify in advance which subset

of P is to be matched. The subset is found by searching
through all possible combinations of points inP .

• It does not prevent many-to-one mapping because two com-
patible constraint sets may have the same target point. In
GCxGC, other computed features such as peak volume can
be used to break the tie when many-to-one mappings hap-
pen.

The techniques of minimizing Hausdorff distances also have such
properties when partial directed Hausdorff distance is used [6].

While the worst case running time of RAST is exponential
in the problem size, the average case running time is polynomial
[9]. Compared to the methods of alignment, Hough transforms,
and geometric hashing, RAST is slower but provides more reliable
solutions [10].

3. A PROGRESSIVE RAST ALGORITHM

Given a set of inputs, RAST returns either a constraint set that
meets the requirement ornull. This scheme does not work well
for interactive processing such as inGCImageTM [11]. For in-
teractive applications, users have special concerns:

• Prompt responses. Usually, a quick response with a pre-
liminary matching is preferred to a long wait for a possibly
better matching.

• Range of matched point numbers. It is difficult to determine
how many template points will be matched. It becomes eas-
ier if RAST takes a range of numbers[kl, kh], wherekl

specifies the minimum number of matched points that are
expected, and the algorithm stops searching if no less than
kh matching points have been found.

• Interactive control over the matching process. When the
users see enough matched points, they may choose to ter-
minate the process (interacting with the application through
a separate event thread).

The following progressive RAST algorithm (PRAST) satisfies
these requirements. The algorithm extends the non-progressive al-
gorithm proposed by Breuel [9, 10]. The PRAST algorithm pro-
gressively reports better matching results and allows the users to
terminate the searching at any time.

Let M(R) be the number of compatible constraint sets in-
tersecting regionR. M(R) gives the upper bound of the num-
ber of template points that can be matched by the transforma-
tions in R. In the following algorithm description, ifR is small
enough,M(R) is roughly taken as the number of matched tem-
plate points (and the matching verifying step is skipped for sim-
plicity). Let [kl, kh] be the range of the number of template points
to be matched. The PRAST algorithm is shown in Figure 1.

1 if (M(Rs) ≥ kl)
2 Initialize the priority queue toRs;
3 else
4 Finish the search;
5 while ( the priority queue is not empty ){
6 Extract the first regionR;
7 if (R has the desired accuracy){
8 ReportR andM(R) to the user;
9 Check the user’s action for possible termination;
10 if (M(R) < kh) {
11 Setkl to M(R);
12 Delete from the priority queue those regions whose
M(R) ≤ kl;
13 }
14 else{
15 Finish the search;
16 }
17 }
18 else{
19 SubdivideR into two subregionsR1 andR2;
20 for (Ri, i = 1, 2 ) {
21 ComputeM(Ri);
22 if (M(Ri) ≥ kl ) {
23 EnqueueRi with its priority;
24 }
25 }
26 }
27 }

Fig. 1. The Progressive RAST Algorithm.

The priorities of regions are compared based on two rules:

• Smaller regions have higher priorities. This rule forces
depth-first searching.

• If two regions have the same size, the region with larger
M(R) has higher priority. This rule makes the algorithm
search first the regions that intersect more constraint sets.

The space complexity of PRAST is same as the original ver-
sion. LetC(kl, kh) be the computation needed for range[kl, kh]
when PRAST is used andC(k) be the computation needed fork

when RAST is used. It is clear thatC(kl, kh) ≤ ∑kh
k=kl

C(k).
In practice, because subdivisions are reused during the progressive
search,C(kl, kh) <

∑kh
k=kl

C(k). Based on seven real data sets,
Table 1 shows an average26.5% improvement of PRAST over
RAST in time complexity, where:

I(1, |P |) =

∑|P |
k=1 C(k)− C(1, |P |)∑|P |

k=1 C(k)
.

4. PRUNING CONSTRAINT SETS WITH PEAK
LOCATION DISTRIBUTION

For general object recognition problems in computer vision, ob-
jects can take any pose in the images. Consequently, absolute point
location is usually not used for recognition directly. For GCxGC,
however, peak location encodes the most important information.



Table 1. Time complexity of PRAST with comparison to RAST
Data set Number of

images
Number of se-
lected peaks

I(1, |P |)

D2287 sdalk 3 15 2.3%
D2287 sdgas 3 580 61%
Doixin 3 26 16.7%
GCC2002 12 14 10.5%
Linearity 5 18 20%
NYSDH 5 10 50%
PCB 4 17 25%

Under well-controlled conditions, a chemical peak can appear only
at slightly different locations from image to image. This property
motivates the use of peak location distribution for pruning the con-
straint sets.

The pruning process consists of two steps:

1. Estimating peak location distribution.
LetD be a training data set containing several images (peak
sets) generated from the same chemical sample or from re-
lated samples with the same chemicals. Selected peaks in
D are annotated and correspondences are established. For
each set of corresponding peaks, the variation is modelled
by an uncorrelated normal distributionN(µ, Σ), whereµ
is the mean vector andΣ is the covariance matrix. Values
of µ andΣ are estimated with common techniques such as
those in [12]. Upon completion, there is a set of normal
distributions{Ni(µi, Σi)}g

i=1 with Ni defined at location
µi. Subdivide the domain of the peak sets inD using the
technique described in Section 5 and save the subdivision
for later use.

2. Pruning the constraint sets.
When preparing the constraint sets for a pointp in P , in-
stead of pairing it with everyq in Q, only points in the
set{q ∈ Q, q ∈ A | P (A | p) ≥ probability threshold}
are considered, whereA is some neighborhood ofp and
P (A | p) is the probability thatp’s corresponding points
lie in A. A is estimated as follows:

(a) If p is close to someµi, then setp’s distribution to
Ni(µi, Σi). Otherwise, calculatep’s distribution by
interpolation (or extrapolation) based on the subdivi-
sion computed in the previous step.

(b) Usep’s distribution to estimate regionA. Figure 2
gives the rectangular neighborhoods of some peaks
in data set D2887 sdgas with probability threshold
being99%.

Experiments show that the number of candidate points forp
decreases from thousands (the entire target point set) to tens by
using the pruning technique.

5. POINT SET DOMAIN SUBDIVISION

Let (width, height) be the size of an image. Then,[0, width] ×
[0, height] is defined as the domain of the image as well as the
point sets extracted from it. When a domain is subdivided into
small regions, the subdivision should meet the following two re-
quirements:

Fig. 2. Neighborhoods of some peaks in data set D2887 sdgas.

• the regions do not intersect with each other, and

• the union of the regions equals to the point set domain.

The domain subdivision described here is based on Delaunay
triangulation [13]. However, since the triangulation only covers
the convex hull of the point set (Figure 3 (a)), some measure must
be taken to cover the remaining area. In this investigation, an edge
projection technique is used to expand the triangulation (Figure 3
(b)).

Given a point set, theO(n2) subdivision algorithm runs as
follows:

1. Raise the input point set into 3D space such that(x, y) is
mapped to(x, y, x2 + y2).

2. Use the incremental algorithm to construct the convex hull
of the 3D point set [13]. The implementation is based on
half-edge data structure and Euler operators [14].

3. Project all faces (3D triangles) of the convex hull which
face down (negativez direction) back onto thexy plane.
The result is the Delaunay triangulation of the original 2D
point set.

4. Project all the outside edges of the triangulation onto the
point set domain boundary along the bisectors of neighbor-
ing outside edges. After the projection, outside triangles
become polygons. The triangulation is expanded to be a
domain subdivision.

An example of the domain subdivision is given in Figure 3.

6. ESTIMATING RS WITH TRANSFORMATION
DISTRIBUTION

Given the model of global constrained affine transformation, the
complexity of finding a matching is primarily determined by the
ranges that the transformation parameters vary. If all five param-
eters vary freely, searching for a solution is expensive. However,
experiments show that the optimal transformations for matching



(a) (b)

Fig. 3. (a) Delaunay triangulation. (b) Point set domain subdivi-
sion by edge projection.

GCxGC peak sets are clustered in the transformation space. Con-
sequently, a search over a small region typically will find a good
matching.

For each training data set, optimal transformations are com-
puted from each peak set to every other peak set, based on least-
squares estimation. A normal distributionN(µ, Σ) is then fit to the
distribution of the resultant transformations using common tech-
niques such as those in [12].Rs is set to be a rectangular regionA
in the transformation space, where

∫

A

N(µ, Σ)dt ≥ certain probability threshold

and t is a variable defined in the transformation space. Figure
4 shows the scale parameter distribution of least-squares optimal
transformations for the data sets described in Table 1.
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Fig. 4. Scale parameter distribution.

7. CONCLUSION

GCxGC is a powerful technology for chemical separation. GCxGC
data exhibits some special characteristics. In this paper, the char-

acteristics are explored and used for accelerating the search in the
RAST algorithm. This paper also proposes a progressive RAST
algorithm for interactive applications. Future work includes statis-
tical analysis of spatial configurations of peaks across images and
incorporating this knowledge with the local peak location distribu-
tion to facilitate the search.
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