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Two-Dimensional Cubic Convolution
Stephen E. Reichenbach, Member, IEEE,and Frank Geng, Member, IEEE

Abstract—This paper develops two-dimensional (2-D), nonsep-
arable, piecewise cubic convolution (PCC) for image interpolation.
Traditionally, PCC has been implemented based on a one-
dimensional (1-D) derivation with a separable generalization to
two dimensions. However, typical scenes and imaging systems
are not separable, so the traditional approach is suboptimal. We
develop a closed-form derivation for a two-parameter, 2-D PCC
kernel with support [ 2 2] [ 2 2] that is constrained for
continuity, smoothness, symmetry, and flat-field response. Our
analyses using several image models, including Markov random
fields, demonstrate that the 2-D PCC yields small improvements
in interpolation fidelity over the traditional, separable approach.
The constraints on the derivation can be relaxed to provide greater
flexibility and performance.

Index Terms—Cubic convolution, image reconstruction,
image/video processing, interpolation and spatial transformations.

I. INTRODUCTION

I MAGE interpolation is the process of defining a spatially
continuous image from a set of discrete samples. It is

fundamental to many digital image processing operations,
such as translation, scaling, rotation, and geometric correction.
These general operations require image values at locations for
which no sample is available. Typically, the interpolated values
at these locations are computed as a weighted average (or
convolution) of the neighboring image samples. The weighting
function used in local convolution is called the kernel. Common
kernels for image reconstruction include nearest neighbor,
bilinear, and piecewise cubic.

Piecewise cubic convolution (PCC) has been used for image
interpolation since the 1970’s [1]. The traditional PCC kernel
has been defined as the separable generalization of a symmetric,
one-dimensional (1-D) function consisting of cubic polynomial
pieces between knots at . Parametric cubic
convolution is a popular approach that imposes constraints
to insure continuity and smoothness leaving one parameter
that can be used to tune the kernel for the image [2]. Because
PCC provides a good compromise between computational
complexity and interpolation accuracy, it is used widely in
remote sensing [3] and other applications. However, typical
scenes and imaging systems are not separable and so the
separable derivation is suboptimal.
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In this paper, we develop a two-dimensional (2-D), sym-
metric, PCC kernel defined on . The general
2-D piecewise polynomial of degree six is constrained to yield
a symmetric cubic kernel that ensures smooth, continuous
interpolation. Theoretical analyses and example results both
show that this 2-D convolution kernel yields slightly better
interpolation than the traditional separable PCC kernel. Sec-
tion II formulates the 2-D, nonseparable convolution kernel
subject to constraints for symmetry, continuity, smoothness,
and flat-field response constraints. Section III describes math-
ematical analyses to determine the best values for the two
parameters in the convolution kernel. Section IV presents an
analysis of performance. Section V illustrates an example
image. Section VI summarizes this work and suggests future
directions.

II. TWO-DIMENSIONAL DERIVATION

A. Traditional Separable Derivation

It is useful to review the traditional 1-D derivation of the sep-
arable kernel in order to introduce both concepts and notation.
One-dimensional, PCC interpolation is implemented by con-
volving the samples of a digital imagewith a piecewise-cubic
kernel to define the continuous result

(1)

For notational convenience, the spatial coordinates are normal-
ized in units of the sampling interval.

A symmetric kernel is defined piecewise by cubic polyno-
mials in the intervals and . For , the
kernel is zero. In its most general (symmetric) form, there are
eight degrees of freedom

if
if
otherwise.

(2)
To insure continuous, smooth interpolation and flat-field re-
sponse, it is necessary to impose constraints at the knots. A
smooth function is continuous

(3)

(4)

and has a continuous first-derivative

(5)

(6)

(7)
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A flat-field response means that if the digital image has con-
stant pixel values, then the interpolated image will have constant
value. For unity response, this requires that for any:

(8)

Interpolation requires that the function value be 0 for integer
abscissa except at the origin

(9)

The seven constraints in (3)–(9) leave one degree of freedom
which can be identified with the slope of the kernel at .
The resulting 1-D PCC kernel is

if
if
otherwise

(10)
where is the first derivative or slope of the kernel at .
The kernel function can be written as the sum of a component
independent of and a component weighted by

(11)

where
if
otherwise

(12)

if
if
otherwise.

(13)

The slope has been used and matches the slope of
the sinc function1 at [1]. The slope of-
fers third-order convergence [4] and guaranteed superiority to
nearest-neighbor (first-order convergence) and linear interpola-
tion (second-order convergence) with respect to sampling-and-
interpolation error for sufficiently sampled scenes. Interestingly,
1-D PCC with does not provide that guarantee [2].
Finally, if the autocorrelation (or power-spectrum) of the image
is known, the slope can be set to optimize expected performance
[2].

The Fourier transforms of the kernel function components in
(12) and (13) are

(14)

(15)

The 2-D separable generalization of the 1-D PCC kernel is

(16)

1The sinc function is the interpolation function (or point-spread function) of
the ideal low-pass filter for images sampled at the Nyquist rate or higher

sinc(u) =
(sin(�u))=(�u); if u 6= 0

1; if u = 0:

B. Nonseparable Derivation

The general, 2-D, symmetric, piecewise polynomial with
degree six on the interval is defined by the
function in the first quadrant as

(17)
This general form has parameters.

We enforce the following constraints to ensure symmetry,
continuity, smoothness, flat-field response, and interpolation
and to reduce the number of parameters. For symmetry of the
axes

(18)

For continuity between pieces

(19)

(20)

(21)

(22)

For a continuous first-derivative between pieces

(23)

(24)

(25)

(26)

(27)

(28)

For a flat-field response and interpolation

(29)

(30)

(31)

Equations (30) and (31) actually constrain the solution more
than is necessary for 2-D interpolation, but taken with the other
constraints, reduce the number of free parameters from 112 to 2.
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Fig. 1. Two-dimensional PCC components (spatial-domain left and Fourier-domain right).

With these constraints, the 2-D PCC kernel can be written as
the sum of the traditional, separable kernelin (16) and an
additional term weighted by a new parameter

(32)

where

(33)

with the kernel component defined in (13). The new term
in the 2-D filter is the separable product of a component of the
traditional 1-D derivation. The details of this derivation are pro-
vided in Appendix A. Expanding (32) yields

(34)

(35)

With , (32) is identical to the traditional separable PCC
kernel.

The three components of the kernel are illustrated in
Fig. 1(a)–1(c) and the three corresponding Fourier transforms
are illustrated in Fig. 1(d)–1(f).

III. A NALYSES

A. Fidelity and Mean-Square-Error

This section describes how the values of the parameters
and in (34) (and (35)) can be set to maximize the fidelity [5]
of the output. Fidelity can be analyzed in the Fourier domain
using a simple system model with sampling and interpolation.
For image , formed by sampling a scene

(36)
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where is a uniform lattice with Dirac-delta sampling impulses

(37)

the corresponding Fourier-domain equation is

(38)

Spatial sampling causes a folding or aliasing of components in
the Fourier domain spectrum as shown in (38).

The fidelity of the interpolated image formed by spatial
convolution of the image with the kernel [as in (1)]

(39)

(40)

is determined by the expected mean-square error (MSE)after
sampling and interpolation

(41)

If the aliased components are uncorrelated [6], then the expected
MSE can be expressed in terms of the scene power spectrum and
filter transfer function

(42)

where is the scene power-spectrum (the expected power as
a function of frequency)

(43)

The kernel parameterthat minimizes expected MSE in (42)
(and so maximizes fidelity) can be determined by substituting
the expression for the transfer function of 2-D PCC kernel from
(35) into (42) and solving for where the partial derivative of

with respect to is equal to zero

(44)

The value of that yields optimal fidelity is (see (45) at the
bottom of the page). Note that the optimal value forin (45)
is a function of the scene power-spectrum and the kernel com-
ponents with parameter.

The optimal value for the kernel parametercan be de-
termined by numerical analysis. That is, for a given power-
spectrum, the value of can be varied to determine the value
that minimizes the expected MSE in (42).

A similar analysis can be used to derive the least-squares op-
timal reconstruction function, known as the Wiener filter [6]

(46)

From (42), the expected mean-square error for the Wiener filter
is

(47)

The Wiener filter is an approximator, not an interpolator, and
its unconstrained spatial support makes it relatively impractical,
but all other filters have greater expected mean-square error. The
mean-square error for any filter exceeds that of the Wiener filter
by its difference with the Wiener filter weighted by the scene
power-spectrum:

(48)

B. Scene Models and Optimal Parameters

This section considers three simple scene models—a circular
pulse, a rotated square, and a Markov random field—and illus-
trates the optimal parameters for each model.

Consider a scene that contains a circular pulse. Such a scene
contains an edge point for all orientations. The scene power-
spectrum is a function of the diameter

(49)

where and is the first-order Bessel function.
The optimal PCC parameters and can be determined for
values of the diameteras described in Section III-A. In the re-
sults presented here, (42) is evaluated numerically using a fre-
quency space of 16 to 16 cycles/pixel in a 512 512 coeffi-
cient array (yielding 16 16 pixel space).

Fig. 2 graphs the optimal parameters for 2-D PCC, given a
scene with a circular pulse, as a function of the diameter. For a
circular pulse with diameter pixels, the optimal values
for 2-D PCC are about and . The optimal
parameters for circular pulses with diameter larger than 2 pixels
vary slowly with diameter. For comparison, a separable analysis
for this model indicates an optimal value ofbetween 0.45
and 0.50 for larger diameters pixels.

(45)
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Fig. 2. Optimal PCC parameters for a circular pulse as a function of pulse
diameter.

Consider a scene that contains a square pulse of dimension
and rotated by angle. The scene power-spectrum is

(50)

where and .
The optimal PCC parameters and can be determined for
values of and .

Fig. 3 graphs the optimal parameters for 2-D PCC, given a
scene with a square pulse with dimension pixels, as a
function of the rotation angle. The figure illustrates that the op-
timal parameters are different depending on the angle of rota-
tion. The optimal value for the parameterin 2-D PCC ranges
from 0.08 for rotation 0 down to 0.39 for rotation . For
comparison, a separable analysis for this model indicates an op-
timal value of between 0.16 for rotation 0 down to 0.68 for
rotation .

Consider a more complex and general scene model—a 2-D,
isotropic, Markov random field with mean-spatial-detail. This
power-spectrum is appropriate for modeling both images and
geostatical quantities [7]

(51)

The mean-spatial-detail can be interpreted as the average size of
elements in the scene, i.e., scenes with larger objects (relative
to the sampling interval) have larger mean-spatial-detail. The
optimal PCC parametersand can be determined for values
of the mean-spatial-detail.

Fig. 4 graphs the optimal parameters for 2-D PCC, given a
scene that is a Markov field, as a function of mean-spatial-detail.
For mean-spatial-detail pixel, the optimal parameters are

and . As the mean-spatial-detailincreases,
the optimal values of both and decrease, with the rate
of decrease diminishing, to about and
at mean-spatial-detail pixels. The magnitude of the
parameter decreases as the mean-spatial-detail increases.
This is expected, because as can be seen in Fig. 1(f), the

Fig. 3. Optimal PCC parameters for a rotated square pulse (dimension 2
pixels) as a function of rotation angle.

Fig. 4. Optimal kernel parameters for a Markov random field as a function of
mean-spatial-detail.

component of the filter controlled by the parameter affects
primarily high-frequency signal components. For comparison,
a separable analysis for this model indicates an optimal value
of 0.22 for mean-spatial-detail pixel and the optimal
value decreasing (and rate of decrease diminishing) to0.44
for mean-spatial-detail pixels.

IV. PERFORMANCE

This section examines three issues of performance: optimal
fidelity, robustness, and computation. Optimal fidelity concerns
how well the system can achieve the goal of interpolating the
scene. Robustness concerns how well the system performs when
there is a mismatch between the kernel design and the scene
(i.e., the kernel is applied to a scene with different characteris-
tics than were assumed in the design). Computation concerns
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Fig. 5. Interpolation fidelity for a scene with a Markov random field as a function of mean-spatial-detail.

Fig. 6. Various filter transfer functions (frequencies�2 to 2 cycles/pixel for a Markov field with mean-spatial-detaild = 2) and the differences from the Wiener
transfer function.

how many operations and how much memory are required in
the processing.

This section employs the 2-D, isotropic, Markov random field
scene model described in Section III-B, in which Fig. 4 presents
the optimal parameters for PCC as a function of the mean-spa-
tial-detail. The independent variable in the experiments is the
mean-spatial-detail, with values to pixels. The reported
dependent variables are

1) fidelity for the optimal kernel;
2) fidelity for mismatched kernels (derived for one mean-

spatial-detail and applied to scenes with another mean-
spatial-detail).

Fidelity [5] is a normalized measure of image quality as a
function of the mean-square error

(52)

The greatest fidelity possible is 1.0, where the mean-square error
is 0.

Fig. 5(a) graphs the fidelity for 2-D PCC with the optimal
parameter values and the fidelity for several other filters, in-
cluding: Wiener, separable PCC with optimal parameters (de-
termined by separable analysis), separable PCC with a fixed
parameter , and cubic spline interpolation [8]. The
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Fig. 7. Images produced by various methods.

Wiener filter (46) has the best fidelity that can be expected (47).
For the Markov field, the 2-D PCC with optimal parameters
out-performs all of the other listed methods, but the differences
are relatively small. In particular, the improvement of the op-
timal 2-D PCC over the optimal separable PCC is smallest of
the methods compared. Table I summarizes the fidelity values
for several levels of mean-spatial-detail.

The reason for the superior performance of the optimal PCC
filters in this problem can be understood by examining the filter
transfer functions, illustrated in Fig. 6(a) (frequencies2 to 2
cycles/pixel for a Markov field with mean-spatial-detail
pixels). The Wiener filter achieves the best-possible expected
result for the signal and aliasing present in this example. The
transfer functions of cubic spline interpolation and separable
PCC with are much more square than the Wiener
transfer function, with the differences illustrated in Fig. 6(b).
The transfer functions of the optimal separable PCC and optimal
2-D PCC are closer to the Wiener transfer function, explaining
their better performance. This is a single example, but illustrates
the type of analysis that can be used to understand performance.

Fig. 5(b) graphs the fidelity for mismatched 2-D PCC. Mis-
match means that the 2-D PCC parameters were derived for a
scene with a different mean-spatial detail than was actually pre-
sented. Here, the 2-D PCC designed for a Markov field with
mean-spatial-detail and the 2-D PCC designed for a

TABLE I
FIDELITY OF SEVERAL PROCESSINGMETHODSAPPLIED TO A SAMPLED

MARKOV FIELD WITH VARIOUS MEAN-SPATIAL-DETAIL

Markov field with mean-spatial-detail both are consid-
ered for Markov fields with mean-spatial-detail from 1 to 4. For
the Markov field, even with a design mismatch, the 2-D PCC
yields better fidelity than separable PCC with and
cubic spline interpolation. Table I includes the fidelity for the
mismatched PCC.

Cubic convolution is attractive because the output can be
computed relatively simply. With the separable kernel, the
convolution can be performed as two, 1-D operations. As has
been shown, the 2-D PCC kernel is the sum of two separable
functions. Therefore, the convolution still can be performed
as 1-D operations, with two computations in each dimension.
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TABLE II
FIDELITY OF SEVERAL PROCESSINGMETHODSAPPLIED TO A SAMPLED

INFRARED SCENE

So, computing output for 2-D PCC requires no more than
twice the number of operations as the separable convolution.
Two-dimensional PCC is a local operation that requires very
little memory.

V. EXAMPLE IMAGE

The 2-D PCC is derived based on quantitative optimization of
fidelity (subject to constraints). Many image processing appli-
cations are quantitative, but some applications are visual, so it is
worthwhile to also consider the visual quality produced by 2-D
PCC. Fig. 7(a) presents an infrared scene of an M60 tank. This
512 512 scene is sampled to 1616 and then reconstructed to
512 512 using several filters: Wiener, optimal 2-D PCC, op-
timal separable PCC, separable PCC with , and cubic
spline interpolation. The images produced by these methods are
presented in Fig. 7. The fidelity for each of the methods for this
image are presented in Table II. Two-dimensional PCC achieves
the highest fidelity of the methods compared. As with the math-
ematical expectations, the differences between the methods are
small—both visually and quantitatively.

VI. CONCLUSION

Emerging technologies such as commercial digital still-cam-
eras and high-resolution digital television are increasing interest
in 2-D interpolation algorithms designed to balance computa-
tional complexity and accuracy.

Piecewise cubic convolution (PCC) is a relative efficient
method of interpolation with performance that exceeds
nearest-neighbor and bi-linear methods. The traditional PCC
kernel is derived in one-dimension and the kernel is generalized
to two dimensions by assuming separability. However, most
scenes and imaging systems are not separable.

This paper develops a closed-form, 2-D derivation for PCC.
Experiments with image models and actual images indicate
that 2-D PCC produces high-fidelity images, is robust, and is
efficient. However, the improvements over separable PCC are
small. Future improvements in 2-D PCC may be realized by
relaxing some of the constraints imposed on the derivation.
More parameters would both improve performance and provide
greater flexibility.

APPENDIX

VII. D ETAILS OF THETWO-DIMENSIONAL DERIVATION

The reduction [9] employs two propositions.
Proposition 1: For , a polynomial of and with

degree , if , , then must have
factor .

Proposition 2: For , with
a polynomials of and with degree , if
, , then must have

factor .
Then, with the constraints in (19)–(22), (27),(28), and

(30),(31), the kernel can be written more simply as:

(53)

(54)

(55)

(56)

Note that the coefficients in (53)–(56) are distinct from those in
(17).

Proceeding from (53), the smoothness constraint in (23) on
at requires:

(57)

Then:

With symmetric axes:

(58)

Next, the smoothness constraint in (23) onat
requires:

(59)
So:
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With symmetric axes

(60)

Next, after simplification using the equalities in (60), the
smoothness constraint in (26) onand at requires

(61)

Then:

(62)

Next, after simplification using the equalities in (58), (60),
and (62), the smoothness constraint in (26) onand at
requires

(63)

Then

With symmetric axes

(64)

Finally, observing that from the constraints related to flat-
field response and interpolation

(65)

leaves only two free parameters in defining the kernel,and
.

The function in the two free parameters is

(66)

(67)

(68)

(69)

This formulation can be written using the same slope param-
eter used in the 1-D parametric formulation

(70)

with and . The formulation
with and is shown in (32).
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