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Restoration and Reconstruction from Overlapping
Images for Multi-Image Fusion

Stephen E. Reichenbach and Jing Li

Abstract—This paper describes a technique for restoring and
reconstructing a scene from overlapping images. In situations
where there are multiple, overlapping images of the same scene, it
may be desirable to create a single image that most closely approx-
imates the scene, based on the data in all of the available images.
For example, successive swaths acquired by NASA’s moderate
imaging spectrometer (MODIS) will overlap, particularly at wide
scan angles, creating a severe visual artifact in the output image.
Resampling the overlapping swaths to produce a more accurate
image on a uniform grid requires restoration and reconstruction.
The one-pass restoration and reconstruction technique developed
in this paper yields mean-square optimal resampling, based on
a comprehensive end-to-end system model that accounts for
image overlap and is subject to user-defined and data-availability
constraints on the spatial support of the filter.

I. INTRODUCTION

RESAMPLING is required in many imaging applications
and is particularly important in remote sensing to cor-

rect for geometric distortion and to register, rescale, or other-
wise remap. Resampling requiresreconstruction, the process of
determining values at arbitrary spatial locations. Determining
the best value requiresrestoration, the process of correcting for
degradations that are introduced during the imaging process in
order to obtain more accurate estimates of the scene radiance
field. With multiple images, a resampling technique should use
all available data in restoring and reconstructing the scene.

This paper develops a technique for multi-image fusion that,
in one-pass through overlapping input images, restores and
reconstructs the scene radiance field. The technique is effective
because it maximizes fidelity based on a comprehensive
end-to-end system model that accounts for scene statistics,
acquisition blurring, sampling, and noise. The technique is
efficient because the filter is derived subject to user-defined and
data-availability constraints on spatial support for spatial-do-
main processing.

Our approach is similar in some respects to the interpolation
method described by Moreno and Melia [1]. Both techniques ac-
count for nonuniform sampling and overlap related to off-nadir
satellite geometries. Both methods use mean-square difference
metrics, but our technique minimizes the mean-square differ-
ence between the scene and the resampled image while the in-
terpolation method in [1] minimizes the mean-square difference
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between the original system response and the postresampling re-
sponse. Our method accounts for the scene statistics and noise
to perform restoration during resampling.

Section II presents the end-to-end imaging system model that
is the basis for the derivation and extends the imaging system
model to account for overlapping images. Section III describes
the derivation of the optimal constrained filter. It defines the
performance criteria for the derivation, presents the derivation
of the optimal unconstrained filter for overlapping images, and
then imposes user-defined and spatial-availability constraints on
the derivation. It also describes performance evaluation of the
optimal constrained filters. Section IV gives the experimental
results. It describes the experimental simulation of a wide-angle,
scanning imaging system like NASA’s moderate imaging spec-
trometer (MODIS) presents the expected experimental perfor-
mance of the optimal unconstrained filter, gives the actual exper-
imental results of the optimal constrained filters, and compares
these results with the results of the nearest-neighbor reconstruc-
tion. Section V looks briefly at the more general problem of
multi-image fusion.

II. DIGITAL IMAGING SYSTEM MODEL WITH

OVERLAPPING IMAGES

A. Digital Imaging System Model

This section presents a model of the basic components of the
digital image acquisition process. The model is a simplifica-
tion of the more complex interactions in real imaging systems,
but it captures the most fundamental effects of the acquisition
process. Even a well designed imaging system introduces degra-
dations that make the output image an imperfect representation
of the scene. Fig. 1 illustrates a comprehensive, end-to-end, con-
tinuous-discrete-continuous (CDC) model of the normal opera-
tion of a digital imaging system with digital image processing.
The optics, scanner, and photodetector cause blurring. The com-
bined response is characterized by the acquisition point-spread
function (PSF) . Spatial sampling with a uniform, rectangular
lattice causes aliasing. During acquisition, noise is introduced
including shot noise, circuit noise, and quantization error.

Mathematically, we model the image acquisition PSF as a
linear shift-invariant (LSI) process. The LSI operation is a con-
volution process. Here, we assume dimensional separability for
simplicity of presentation, but the approach does not depend
upon this assumption. The combined PSF of the optics, scanner
(motion during temporal integration), and detector (spatial inte-
gration) is

(1)
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Fig. 1. Digital imaging system model.

Fig. 2. Scan overlap due to GIFOV as a function of scan angle.

Fig. 3. Landsat TM scene.

where
optical system PSF;
scanner PSF;
detector PSF.

Using the system model illustrated in Fig. 1, the digital image
is

(2)

where the continuous scene radiance fieldis convolved with
the presampling acquisition PSF, sampled at spatial location

and degraded by noise. In reality, some noise is caused by
spatially continuous processes, but for any such processes, one
can define a discrete noise process that has statistically iden-
tical effects on the image. Spatial coordinatesare normalized
to the ground sampling interval (GSI), and pixels have integer
indices that determine spatial location within the field of
view (FOV). This is a fairly modest acquisition model, but it
is adequate to demonstrate the radiometric issues in resampling
and to develop an improved restoration and resampling tech-
nique.

The filter restores and reconstructs a continuous image that
then can be resampled. The resulting (continuous) imageis

(3)

As a practical matter, only a finite portion of the imageis
available. To address the limited FOV and to facilitate Fourier
analysis, it is common to assume the scene and hence the image
are periodic with period equal to the FOV and to constrain the
filter support to the extent of the image (or smaller). The effect
of this assumption in the filter derivation is negligible because
the image FOV is large relative to the scene mean spatial detail
and system PSF.

B. Overlapping Swaths in MODIS Images

In a wide-angle scanning imager such as MODIS, pixel size
is a function of scan angle. As the scan angle from nadir in-
creases, the cross-track pixel size increases at a faster rate than
the along-track pixel size. For example, a detector with 1 km
square ground-projected instantaneous FOV (GIFOV) at nadir
(bands 8–36) has a GIFOV of 4.83 km cross-track by 2.01 km
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TABLE I
IMAGE SIZE, GSI,AND GSI RATIOS FOR THESIMULATED MODIS IMAGE TILES

TABLE II
SIMULATION PARAMETERS FOR THEACQUISITION TRANSFERFUNCTION

along-track at a scan angle of 55[2]–[4]. The GSI is equal to
the GIFOV and increases in the same manner as the GIFOV.

The along-track dimension of the MODIS scan swath is 10
km at nadir (0) but reaches approximately 20 km at the max-
imum scan angle (55) at the end of each swath. Because of
its geometric shape, narrow at the center and broad at the left
and right, this is referred to as the bow-tie effect [2]–[4]. The
along-track ground speed is 10 km per swath, so successive
scans overlap off-nadir. At wide scan angles, the overlap is as
much as 50% with the swath above and 50% and the swath
below. The overlap in coverage for two consecutive MODIS
scan swaths is depicted in Fig. 2. The two scan swaths are shown
with solid and dashed lines.

In overlapping images generally, the pixels may or may not be
uniformly spaced. In MODIS, pixel size and GSI is a function
of scan angle, but the change is so gradual that we can assume
locally uniform sampling. Consider two overlapping sets of uni-
formly spaced pixels, such as would be produced by successive
swaths of MODIS. Referencing the coordinate system to one of
the sample sets, the pixel locations are

if mod

if mod
(4)

where is the interpixel spacing in both sample sets, and
is the offset between the sampling sets. The even indices refer-
ence locations in one sample set and the odd indices reference
locations in the other sample set.

Aliasing introduced by sampling can be analyzed more
directly in the Fourier spatial-frequency domain. The Fourier
transform or spatial-frequency spectrumof a single (periodic)
image with uniform sampling is

(5)

where
spatial frequency in cycles per image;
modulation transfer function (MTF);
spatial-frequency spectrum of the scene;
spatial-frequency spectrum of the noise.

Assuming a periodic scene and image, the spectra coefficients
are discrete, uniformly spaced, and have integer indices.

Sampling causes folding of the spatial-frequency components
of the attenuated scene spectrum (hence, the summation with
index ). The noise spectrum is not folded because noise is
modeled as a discrete process (which can model equivalently
the effect of any continuous noise process).

With two overlapping images, the image transformis

(6)

where is related to the offset between the
two overlapping images, and and are the spatial-frequency
spectrums of the noise in the two overlapping images. The offset
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Fig. 4. Two sets of pixels from two overlapping swaths.

Fig. 5. Simulated MODIS image (half-swath, nadir to swath edge).

(or shift) in the second sample set does not change the sto-
chastic nature of the noise process. The period of the image
spectrum in (6) will be at least as large as the period of the
spectrum of a single image in (5).

The frequency-domain equation for restoration and recon-
struction filtering [corresponding to (3)] is

(7)

The problem of deriving the filter is the subject of the next sec-
tion.

III. D ERIVATION OF OPTIMAL AND CONSTRAINEDFILTERS

A. Digital Imaging System Performance

System performance is measured by how closely the output
image matches the scene. Linfoot [5] used the expected
mean-square error (MSE) of an imaging system (with stochastic
scene and noise)

(8)

to define image fidelity as

(9)
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Fig. 6. Simulated MODIS image tile with scan angle 0.0826.

Fig. 7. Simulated MODIS image tile with scan angle 0.5170.

where is the expected (ensemble average) variance of the
scene radiance field

(10)

For notational simplicity, equations in this paper assume the
scene radiance field is a zero-mean process. In practice, the
mean can be accounted for during filtering. Fidelity is bounded
by 1 with 1, if and only if the output image is identical
to the scene radiance field. MSE metrics such as fidelity facil-
itate mathematical analyses but do not correspond directly to

Fig. 8. Simulated MODIS image tile with scan angle 0.9428.

subjective visual quality. However, a more definitive objective
measure of image quality has proven elusive.

B. Derivation of Optimal Unconstrained Filter

The derivation of the CDC Wiener filter is conditioned on the
following assumptions.

• The scene power spectra and noise power spectra
are known.

• The sideband components of the scene spectrum that alias
to the same frequency are uncorrelated.

• The noise is random and the scene and noise stochastic
processes are uncorrelated.

Mathematically, these assumptions are

(11)

if
if

(12)

(13)

where the “ ” superscript denotes complex conjugation.
The filter design criterion is to minimize MSE (or equiva-

lently to maximize fidelity) of the system. From (6)–(8) and
(11)–(13), it can be shown that the expected MSE after filtering
(8) is

(14)

where is the expected variance of the output image, and
is the expected covariance of the scene radiance field and image.
These terms can be expressed as

(15)
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TABLE III
EXPECTEDRMSEAND FIDELITY FOR THE CDC WIENER FILTER

Fig. 9. Nearest-neighbor reconstruction: resampled MODIS image tile with
scan angle 0.0826.

(16)

(17)

where
power spectrum of the scene;
cross-power spectrum of the scene and image;
power spectrum of the image.

(18)

(19)

(20)

Fig. 10. Nearest-neighbor reconstruction: resampled MODIS image tile with
scan angle 0.5170.

The coefficients “2” in (19) and (20) reflect the overlap of two
images. Because all of the spatial functions are real, the fre-
quency-domain transforms are Hermitian and the power spectra

, , and are real, nonnegative, and even.
The expression for expected MSE can be regrouped to make

clear the tradeoff between blurring and aliasing in system design

(21)

The first term represents the error associated with blurring the
image by both the acquisition PSFand the reconstruction PSF

. To minimize this term, should be equal to one-half the
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Fig. 11. Nearest-neighbor reconstruction: resampled MODIS image tile with
scan angle 0.9428.

reciprocal of at all frequencies. The second term represents
the error associated with the aliasing. To minimize this term,

should be equal to zero at all frequencies. The final term is
associated with system noise. To minimize this term,should
be equal to zero at all frequencies. So there is clearly a tradeoff
between blurring, aliasing, and noise.

With no restrictions on the spatial support of the filter, the
MSE is minimized when the filter transfer function is [6]

(22)

We refer to this filter as the CDC Wiener filter because it is
based on the CDC model. Acquisition converts from a contin-
uous scene to a digital image, and the filter converts from a dig-
ital image to a continuous result.

The CDC Wiener filter cannot be implemented practically via
spatial convolution because it is continuous and its support is the
extent of the FOV. Moreover, it has been assumed to this point
that both sample sets are fully populated, but as with the overlap-
ping swaths of the MODIS instrument, the overlap may occur in
only part of the image. To produce a filter that is both more effi-
cient and weights only available sample values, we impose sup-
port constraints on the filter, limiting the filter to weight a subset
of the image values during convolution prior to the derivation.

C. Derivation of Optimal Constrained Filter

The derivation of the optimal, constrained filter is condi-
tioned on constraints imposed on its spatial support. The support
of the kernel is a nonempty set of spatial locations, for which
filter values can be nonzero. Except for locations in the support
set, the filter value is 0

if (23)

The optimal, spatially constrained kernel is derived by mini-
mizing the MSE with respect to the elements in the support
set. Minimization of with respect to the kernel elements re-
quires that

(24)

The transfer function of the spatially constrained kernel is

(25)

After substituting this expression for into (14) [with
(15)–(20)], it can be shown [7] that minimization of with
respect to the kernel elements requires

(26)

where is the auto-covariance of the image, and is
the cross-covariance of the scene and image (again, assuming
zero-mean processes). The number of unknowns in (26) is
equal to the number of elements in the support set of the kernel.
There are equations in unknowns. Solving for yields
the optimal constrained filter.

D. Filter Performance

Equation (14), with the expressions in (15)–(20), can be used
to compute the expected MSE from , , , and . For the
CDC Wiener filter in (22)

(27)

Therefore, the fidelity (9) for the CDC Wiener filter is

(28)

No filter can restore with higher fidelity (smaller MSE) than
in (28). However, for typical imaging systems, a small filter

with a few centrally located elements can perform nearly as well
[7]. For any filter , including the constrained filter , the ex-
pected MSE is

(29)

As can be seen in (29), and is the upper bound on
fidelity.

IV. EXPERIMENTAL RESULTS

A. Imaging System Simulation

To illustrate the bow-tie effect described in Section II-B and
to demonstrate resampling and restoration, we have constructed
a simulation of a wide FOV scanning imaging system similar to
MODIS. The simulation uses as its input scene a Landsat TM
image (Band 5) with GSI of 28.5 m, a portion of which is pic-
tured in Fig. 3. Following the imaging system model illustrated
in Fig. 1, the Landsat TM scene is blurred, subsampled, and cor-
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(a) (b)

(c)

Fig. 12. Restoration kernels and spatial locations in the corresponding support set.

rupted by noise. In this simulation, the GSI is 250 m at nadir with
40 pixel swaths (as in MODIS Bands 1–2).

In order to facilitate comparison of the effects at different
scan angles and because the ground projection of the MODIS
scan is much wider than the Landsat TM scene, the Landsat
TM image is tiled repeatedly edge-to-edge to produce a scene
as wide as the half-width of a MODIS scan (i.e., nadir to one
end of the scan). The 4096 4096 Landsat TM image rep-
resents a 116.736 km 116.736 km ground area. The half-
width of a MODIS scan is 10 km along-track at nadir and 1165
km cross-track [2]–[4]. Thus, the size of the ten-tile TM image
116.736 km 1167.36 km is approximately 12 swaths of a
half-width MODIS scan.

To simplify processing, we use a constant scan angle for each
tile in the simulation. The left-most tile has a scan angle of
0.0826 radians (set according to the center of the tile). This tile
is used to approximately simulate the MODIS image near nadir.
The right-most tile with scan angle of 0.9428 radians is used to
approximate MODIS at the largest scan angle. At a larger scan
angle, the GSI of MODIS is larger. Table I lists the scan angle
and GSI (cross-track along-track) for each tile. The ratios of
the off-nadir GSI to at-nadir and cross-track GSI also are listed
in Table I, where and denote the cross-track ratio
and along-track ratio, respectively.

In the first step of the simulation, the Landsat TM scene tiles
are blurred. It is more efficient to compute the blurred image
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Fig. 13. Restoration and reconstruction: resampled MODIS image
(half-swath, nadir to swath edge).

Fig. 14. Restoration and reconstruction: resampled MODIS image tile with
scan angle 0.0826.

Fig. 15. Restoration and reconstruction: resampled MODIS image tile with
scan angle 0.5170.

in the spatial-frequency domain, where the scene spectrumis
multiplied by , , and . The Gaussian function is a conve-
nient, commonly used model for the optics transfer function.
Sinc functions are used to simulate the scanner and the detector

transfer functions and . At larger scan angles, the GIFOV
of the detector is larger, and the scene is more blurred during
acquisition. In order to simulate this increasing blur, different
acquisition transfer functions are applied to the scene tiles at
different scan angles. The equation of the Gaussian function is

(30)

where the radius is the standard deviation of the Gaussian
MTF and is related to GSI as

GSI
(31)

The value 0.494 is selected to give a moderate response of 0.3
at the Nyquist limit. In the spatial-frequency domain, the radius
of the Gaussian MTF decreases as a function of and

as the scan angle increases. Table II lists the radius of
the Gaussian MTF in cycles per kilometer for each tile. The
equation of the sinc function is

GSI
GSI

(32)

The radius of the first zero of the detector MTFalso decreases
as the scan angle increases in both cross-track and along-track
directions. The scanner MTF is the same as the detector in
the cross-track dimension. In the along-track dimension, the ra-
dius of the first zero of is very large in all tiles because the
scanning due to orbital motion is small during the temporal in-
tegration of a pixel. Table II also lists the radius of the first zero
for the sinc function.

In the second step of the simulation, the blurred scene tiles
are scanned and subsampled. Twelve swaths are extracted from
the blurred scene to simulate twelve scans. The along-track cen-
ters of the swaths are the same for different tiles, but the height
of each swath increases as scan angle increases. Off-nadir, suc-
cessive swaths overlap. Note that, at larger scan angles, the GSI
is larger and so fewer MODIS pixels are sampled in the same
ground area. The size of the subsampled tile at 0.5170 radians is
334 463 (cross-track along-track). The size of the subsam-
pled tile at the largest scan angle is 106454. Because 4096
scene pixels do not yield exactly twelve swaths, the along-track
size of the subsampled image is slightly different from tile to
tile. Table I lists the sizes of subsampled tiles at different scan
angles.

Fig. 4 illustrates two sets of subsampled pixels from the two
overlapping swaths. The offset between the two sampling sets

is a constant value inside the same tile (due to the assumption
that scan angle is constant within a tile). Between different tiles,

varies.
In the third and final step of the simulation, random noise

(zero-mean, Gaussian noise with variance8.5549) is added
to the subsampled image in order to achieve SNR of 21 (in the
typical range for many imaging systems). SNR is defined as

SNR (33)

The simulated image produced by this process is illustrated
in Fig. 5. The left edge of the image is at nadir and right edge
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Fig. 16. Restoration and reconstruction: resampled MODIS image tile with
scan angle 0.9428.

is at the extreme scan angle. The left-most tile, with its center
at a scan-angle of 0.0826 radians, is enlarged in Fig. 6. A tile
from the middle of the half-scan, with its center at a scan-angle
of 0.5170 radians, is enlarged in Fig. 7. The right-most tile, with
its center at scan angle of 0.9428 radians, is enlarged in Fig. 8.
The bow-tie effect is a dominant artifact in the portion of the tile
pictured in Fig. 8 and is clearly visible in Fig. 7. In these images,
the delineation between swaths is clear and overlap makes it
difficult to discern spatial structures in the scene.

B. Scene Model and Expected Performance for CDC Wiener
Filter

In the derivation in Section III-B, the scene power spectra
must be known. In this paper, we use a 2-D Markov random
field scene model. We assume the mean spatial detail (in pixel
units) denoted by is the same along-track and cross-track and
the power spectrum of the stochastic scene is [8]

(34)
where and are pixel size ratios along-track and
cross-track, respectively, as described in Table I.

Table III gives the expected RMS error (RMSE) and fidelity
for the CDC Wiener filter (27) and (28) based on this scene
model with 3. The value of is chosen to roughly match
the characteristics of the actual Landsat TM scene used in the
simulation. Table III also gives the expected RMSE from blur-
ring, sampling, and noise after filtering (21) as described in Sec-
tion III-B.

C. Experimental Results for Optimal Constrained Filters

Resampling the overlapping scans on a uniform rectangular
raster eliminates the troublesome bow-tie effect. The MODIS
land data storage approach, Level 2 Grid (L2G), stores multiple
observations and allows Level 3 gridded products based on mul-
tiple observations from different orbits and resulting from the
bowtie effect [4]. The MODIS L2G structure supports restora-
tion and resampling.

One of the simplest algorithms for resampling is to take
the value of the nearest pixel to the resampling point. This
reconstruction method is callednearest-neighbor interpolation.
Nearest-neighbor interpolation is simple and easily computed
but produces images with visible blockiness and low fidelity.
Nearest-neighbor interpolation reconstructs but does not
restore. Figs. 9–11 are the portions of tiles with centers at
scan-angles 0.0826, 0.5170, and 0.9428 radians, respectively,
resampled by nearest neighbor interpolation. The artifacts
of nearest-neighbor interpolation are clearest in Fig. 11.
Table IV presents the actual RMS errors for the 40964096
nearest-neighbor reconstructed tiles.

More sophisticated reconstruction techniques, such as linear
interpolation or cubic convolution, yield better results than
nearest-neighbor interpolation, and techniques that restore as
well as reconstruct can yield much better fidelity [1], [9], [10].
Our technique described in this paper not only reconstructs but
also restores from overlapping images.

For each tile, the optimal restoration and reconstruction
kernel determined by (26) weights the 44 nearest pixels. The
weights of the optimal kernel depend on the spatial locations
in the support set. The spatial locations in the support set for
different output pixels may be different because input pixels in
the overlapping image may not be uniformly spaced. The 44
nearest pixels may come from one swath (if there is no overlap
in the area) or come from two swaths (if there is overlap).
Fig. 4 shows some input pixels from two overlapping swaths of
the tile at 0.5170 radians. Fig. 12 illustrates three kernels for
three different output locations in Fig. 4. They have the same
across-track locations. In Fig. 12(a), the output pixel is between
Swath 1 Row 2 and Swath 0 Row 37. Its value is determined by
the nearest pixels from two overlapping swaths. In Fig. 12(b),
the output pixel is between Swath 1 Row 5 and Swath 1
Row 6. Its value is determined by the pixels from two partially
overlapping swaths. In Fig. 12(c), the output pixel is between
Swath 1 Row 7 and Swath 1 Row 8. Its value is determined by
the pixels from one swath. In these figures, the coordinates are
relative to the output pixel location and normalized to the GSI.

The kernel weights are influenced both by the distance to
the pixel and by the presence of other pixels. For example, in
Fig. 12(a), the pixel at (0.3086, 0.3171) is the nearest of the
16 weighted pixels and so has the largest positive weight 0.7250
in the kernel. In Fig. 12(b), the pixel at (0.3086, 0.3171) has
the same distance, but another pixel at (0.3086, 0.0732) is
much closer in the same general direction. So in the example
of Fig. 12(b), the closer pixel has the largest positive weight
1.7120, and the pixel at (0.3086, 0.3171) has a negative
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TABLE IV
ACTUAL RMSEAND FIDELITY FOR NEAREST-NEIGHBOR RECONSTRUCTION AND FORRESTORATION AND RECONSTRUCTION

Fig. 17. RMSE and fidelity for nearest-neighbor reconstruction and for restoration and reconstruction.

weight 0.4846, effectively extending the difference between
the pixels’ values to sharpen the restored image.

Fig. 13 illustrates the result of restoring and reconstructing
the simulated image in Fig. 5. Each tile of the image is resam-
pled to the size of original scene with pixel values to be deter-
mined at 4096 4096 locations. Figs. 14–16 are the portions
of restored and reconstructed tiles with centers at scan-angles
0.0826, 0.5170, and 0.9428 radians, respectively. The visual ar-
tifacts related to the bow-tie effect in Figs. 6–8 are removed and
the visual quality is better than in Figs. 9–11. Table IV compares
the results of our restoration and reconstruction technique to the
results of nearest-neighbor interpolation. Fig. 17 compares the
RMSE and the fidelity. Our method for restoration and recon-
struction achieves much better fidelity than nearest-neighbor in-
terpolation.

V. CONCLUSION

Based on a comprehensive end-to-end system model that ac-
counts for overlapping images, the one-pass restoration and re-
construction technique developed in this paper yields high fi-
delity and mean-square optimal resampling. The restoration and
reconstruction filter is derived subject to user-defined and data
availability constraints on spatial support for spatial domain pro-
cessing.

The restoration and reconstruction technique in this paper is
described in terms of its applicability to overlapping swaths in
images from a wide angle scanning imager such as MODIS.
The approach has broader applicability to multi-image fusion
[11], the more general problem of combining images from mul-
tiple data sources to form a single image. Other multi-image
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fusion problems may be complicated by sources with different
imaging geometries, spatial resolution, spectral response, time
of acquisition, or other variables. With respect to these issues,
the problem of resampling MODIS images on a uniform grid is
a fairly straightforward problem but provides a useful arena for
developing, demonstrating, and evaluating various approaches.
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